Complex Analysis, HW \# 3

Problem 1.

Let $f(z)$ be analytic in the disk $U=\{|z|<1\}$, with $f(0)=f^{\prime}(0)=0$. Show that $g(z)=\sum_{n=1}^{\infty} f\left(\frac{z}{n}\right)$ defines an analytic function on U. Moreover, show that the above function $g(z)$ satisfies

$$
g(z)=\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right) f(z)
$$

if and only if $f(z) \equiv c z^{2}$.

Problem 2.

Show that $f(z)=\alpha e^{z}-z$ has only one zero in $U=\{|z|<1\}$ if $|\alpha|<\frac{1}{3}$ and no zeros if $|\alpha|>3$.

Problem 3.

Let $f(z)$ be analytic in the unit disk punched disk $U_{0}=\{0<|z|<1\}$ such that there is a positive integer n with $\left|f^{(n)}(z)\right| \leq|z|^{-n}$ for all $z \in U_{0}$. Show that $z=0$ is a removable singularity for f.

Problem 4.

Find explicitly a conformal mapping of G onto the unit disk, where

$$
G=\{z=x+i y:|z|<1 \text { and } y>-1 / \sqrt{2}\} .
$$

Problem 5.

Find the integral

$$
\int_{|z|=2} \frac{4 z^{7}-1}{z^{8}-2 z+1} d z
$$

Problem 6.

Prove or disprove each of the statements:
a) If f is a function on the unit disc D such that $f(z)^{2}$ is analytic on D, then f itself is analytic.
b) If f is a continuously differentiable function on D, and if $f(z)^{2}$ is analytic on D, then f itself is analytic.

Problem 7.

If f is an entire function satisfying the estimate

$$
|f(z)| \leq 1+|z|^{\sqrt{2010}} \text { for every } z \in \mathbb{C}
$$

show that f is a polynomial and determine the best upper bound for the degree of f.

