Complex Analysis, HW \# 2

Section 10, problems 9, 10, 12, and these problems:

Problem 1.

Find all roots of the equation $2 z+\sin z=0$ in the unit disk.

Problem 2.

Compute the area of the image of the unit disc $D=\{z| | z \mid<1\}$ under the map $f(z)=z+\frac{z^{2}}{2}$.

Problem 3.

Suppose a function $f: \bar{D} \rightarrow \mathbb{C}$ is continuous and holomorphic in D. Suppose also that for any $z \in \partial D$ we have $\operatorname{Re} f(z)=(\operatorname{Im} f(z))^{2}$. Prove that f is a constant.

Problem 4.

Let $U \subset \mathbb{C}$ be a connected (but not necessarily simply connected) open set, and γ be a closed curve in U. Suppose that for any function f holomorphic on U we have

$$
\oint_{\gamma} f(z) d z=0 .
$$

Does it imply that γ is homotopic to a constant curve?

