Complex Analysis Math 220B

Final Exam (Sample)

Problem 1.

Let $U \subseteq \mathbb{C}$ be a convex open set, and $f: U \rightarrow \mathbb{C}$ be a holomorphic function. Prove that if $\operatorname{Re} f^{\prime}(z)>0$ in U then f is a conformal mapping of U to $f(U)$.

Problem 2.
How many roots of the equation $z^{4}+z^{3}-4 z+1=0$ are in the ring $1<$ $|z|<4$?

Problem 3.

Let u and v be harmonic in \mathbb{C} and assume that v is harmonic conjugate of u. Assume that

$$
u^{3}-3 u v^{2} \geq 0
$$

in \mathbb{C}. Prove that u and v are constants.

Problem 4.
Is there a function f holomorphic in the unit disc $D(0,1)$ and such that $|f(z)|=e^{|z|}$ there?

Problem 5.

TRUE or FALSE: If u is a harmonic function on an open set U and $p>0$ then $|u|^{p}$ is subharmonic. Prove or give a counterexample.

