Final Exam (Sample)

Problem 1.

Let $U \subseteq \mathbb{C}$ be a convex open set, and $f : U \to \mathbb{C}$ be a holomorphic function. Prove that if Re f'(z) > 0 in U then f is a conformal mapping of U to f(U).

Problem 2.

How many roots of the equation $z^4 + z^3 - 4z + 1 = 0$ are in the ring 1 < |z| < 4?

Problem 3.

Let u and v be harmonic in $\mathbb C$ and assume that v is harmonic conjugate of u. Assume that

$$u^3 - 3uv^2 \ge 0$$

in \mathbb{C} . Prove that u and v are constants.

Problem 4.

Is there a function f holomorphic in the unit disc D(0,1) and such that $|f(z)| = e^{|z|}$ there?

Problem 5.

TRUE or FALSE: If u is a harmonic function on an open set U and p > 0 then $|u|^p$ is subharmonic. Prove or give a counterexample.