Complex Analysis Math 220A

Final Exam (sample)

Problem 1.

Evaluate the following integral:

$$
\int_{\partial D(0, r)} \frac{d z}{(z-b)(z-a)^{m}},|a|<r<|b|, m \text { is arbitrary integer. }
$$

Problem 2.

Let $f(z)$ be analytic on $\mathbb{C} \backslash\{1\}$ and have a simple pole at $z=1$ with residue λ. Prove that for every $R>0$,

$$
\lim _{n \rightarrow \infty} R^{n}\left|(-1)^{n} \frac{f^{(n)}(2)}{n!}-\lambda\right|=0
$$

Problem 3.

Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos k x}{1+x+x^{2}} d x
$$

where k is a non-negative real number.

Problem 4.

Suppose that $f(z)$ and $g(z)$ are non-constant entire functions such that $(f \circ g)(z)$ is a polynomial. Show that both $f(z)$ and $g(z)$ are polynomials.

Problem 5.

Let

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=1+z+2 z^{2}+3 z^{3}+5 z^{4}+8 z^{5}+13 z^{6}+21 z^{7}+\ldots
$$

where the coefficients a_{n} are the Fibonacci numbers, i.e. $a_{0}=a_{1}=1, a_{n}=$ $a_{n-1}+a_{n-2}$ for $n \geq 2$. Show that $f(z)=\frac{1}{1-z-z^{2}}$ for $z \in D\left(0, \frac{\sqrt{5}-1}{2}\right)$.

