Complex Analysis Math 220A

Midterm Sample Exam

Problem 1.

Find the radius of convergence for the series:

$$
\sum_{n=1}^{+\infty} \frac{z^{2 n}}{n!} \quad \text { and } \quad \sum_{n=1}^{+\infty} \frac{z^{n!}}{2 n}
$$

Problem 2.

Prove that

$$
\cos \frac{\pi}{11}+\cos \frac{3 \pi}{11}+\cos \frac{5 \pi}{11}+\cos \frac{7 \pi}{11}+\cos \frac{9 \pi}{11}=\frac{1}{2}
$$

(Hint: use complex numbers!)

Problem 3.

At which points the following functions are \mathbb{C}-differentiable?
a) $f(z)=x^{2}+y^{2}+2 i x y$, where $z=x+i y$,
b) $f(z)=z$ Rez.

Compute their derivatives at these points where they are \mathbb{C}-differentiable.
Problem 4.
Suppose that $\gamma:[0,1] \rightarrow U$, where $U=\mathbb{C}\{0,1\}$, is a closed $(\gamma(0)=\gamma(1))$ smooth curve, and for any $f \in \mathcal{O}(U)$ we have

$$
\int_{\gamma} f(z) d z=0
$$

Does it imply that γ is homotopic to a point?

Problem 5.

Let $p(z)$ be a polynomial. Suppose that $p(z) \neq 0$ for $\operatorname{Re}(z)>0$. Prove that $p^{\prime}(z) \neq 0$ for $\operatorname{Re}(z)>0$.

