Complex Analysis Math 220A

Final Exam (sample)

Problem 1.

Evaluate the following integral:

$$
\int_{\partial D(0, r)} \frac{d z}{(z-b)(z-a)^{m}},|a|<r<|b|, m \text { is arbitrary integer. }
$$

Problem 2.

Let $f(z)$ be analytic on $\mathbb{C} \backslash\{1\}$ and have a simple pole at $z=1$ with residue λ. Prove that for every $R>0$,

$$
\lim _{n \rightarrow \infty} R^{n}\left|(-1)^{n} \frac{f^{(n)}(2)}{n!}-\lambda\right|=0
$$

Problem 3.

Evaluate the integral

$$
\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right) x^{1 / 2}} d x
$$

Problem 4.
Show that there is a holomorphic function defined in the set

$$
\Omega=\{z \in \mathbb{C}| | z \mid>4\}
$$

whose derivative is

$$
\frac{z}{(z-1)(z-2)(z-3)} .
$$

Is there a holomorphic function on Ω whose derivative is

$$
\frac{z^{2}}{(z-1)(z-2)(z-3)} ?
$$

Problem 5.

Let f be an entire function. Suppose that for each complex number a, the power series expansion

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}, \quad z \in \mathbb{C}
$$

has at least one coefficient $c_{n}=0$. Show that f is a polynomial.

