Complex Analysis Math 220A

Midterm Exam

Monday, October 29, 2012 - 2:00 pm - 2:50 pm

Problem	1	2	3	4	5	Σ
Points						

Student's name:

Problem 1.

Prove that for any $z_{1}, z_{2} \in \mathbb{C}$

$$
\begin{equation*}
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \tag{1}
\end{equation*}
$$

When do equalities hold in (1)?

Problem 2.
Solve the equation (where $n \in \mathbb{N}$)

$$
(1-z)^{n}=z^{n}
$$

Problem 3.

Let $p(z)=\sum_{l=0}^{n} p_{l} z^{l}$ be a polynomial bounded by 1 in modulus in the closed unit disc. Show that all $\left|p_{l}\right| \leq 1$ for $l=0, \ldots, n$.

Problem 4.
Compute, for $t \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1+e^{i t}+e^{i 2 t}+\ldots+e^{i n t}}{n}
$$

Problem 5.

Show that the series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{n}\right)
$$

converges for every $z \notin \mathbb{N}$. Show that the convergence is uniform on any compact set which does not intersect \mathbb{N}.

