Ergodic Theory, Winter 2011

Final Exam

Student's name:

Problem 1.

Show that there are uncountably many ergodic measures for the linear doubling map of the circle $E_{2}(x)=2 x(\bmod 1)$.

Problem 2.

Prove that the arithmetic mean of the cubes of digits appearing in the base 10 expansion of Lebesgue-a.e. $x \in[0,1$) is well defined (and is the same for almost every x), i.e. prove that if $x=\sum_{j=0}^{\infty} \frac{x_{j}}{10^{j+1}}, x_{j} \in\{0,1, \ldots, 9\}$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+\ldots+x_{n-1}^{3}\right)
$$

exists a.e. Find the value (for a.e. x) of this limit.

Problem 3.

Fix $\alpha \in \mathbb{R}, \alpha \notin \mathbb{Q}$, and define the map $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ by

$$
T(x, y)=(x+\alpha, x+y)(\bmod 1) .
$$

Show that the Lebesgue measure is T-invariant and ergodic.

Problem 4.

Define the map $T:[0,1] \rightarrow[0,1]$ by $T(x)=4 x(1-x)$. Define the measure μ by

$$
\mu(B)=\frac{1}{\pi} \int_{B} \frac{1}{\sqrt{x(1-x)}} d x
$$

a) Check that μ is a probability measure;
b) Show that T preserves μ;
c) Prove that $T:([0,1], \mu) \rightarrow([0,1], \mu)$ is ergodic;
d) Prove that $T:([0,1], \mu) \rightarrow([0,1], \mu)$ is mixing;
e) Show that $h_{\mu}(T)=\log 2$;
f) Show that $T:([0,1], \mu) \rightarrow([0,1], \mu)$ has countable Lebesgue spectrum.

Problem 5.

Let $\beta>1$ denote the golden mean (i.e. $\beta^{2}=\beta+1$). Define $T:[0,1] \rightarrow[0,1]$ by $T(x)=\beta x(\bmod 1)$. Define the measure μ by $\mu(B)=\int_{B} \rho(x) d x$, where

$$
\rho(x)= \begin{cases}\frac{1}{\frac{1}{\beta}+\frac{1}{\beta^{3}}}, & \text { on }[0,1 / \beta) ; \\ \frac{1}{\beta\left(\frac{1}{\beta}+\frac{1}{\beta^{3}}\right)}, & \text { on }[1 / \beta, 1] .\end{cases}
$$

Prove that μ is an invariant ergodic measure, and show that $h_{\mu}(T)=\log \beta$.

