Ergodic Theory, Math 211A, Midterm

Problem 1.

Prove that the decimal expansion of the number 2^{n} may begin with any finite combination of digits.

Problem 2.

Prove that if a measure-preserving transformation $T:(X, \mu) \rightarrow(X, \mu)$ has a generating partition ξ with k elements then $h_{\mu}(T) \leq \log k$.

Problem 3.

Prove that the measure preserving transformations $\sigma_{2}:\left(\Sigma_{2}, \mu_{1 / 2,1 / 2}\right) \rightarrow\left(\Sigma_{2}, \mu_{1 / 2,1 / 2}\right)$ and σ_{3} : $\left(\Sigma_{3}, \mu_{1 / 3,1 / 3,1 / 3}\right) \rightarrow\left(\Sigma_{3}, \mu_{1 / 3,1 / 3,1 / 3}\right)$ are not metrically isomorphic.

Problem 4.

Let $\sigma_{A}: \Sigma_{A} \rightarrow \Sigma_{A}$ be a topological Markov chain with the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$. Find
$\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\# \operatorname{Per}_{n}\left(\sigma_{A}\right)\right)$.

Problem 5.

Consider the map $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, T(x, y)=(x+\alpha, x+y)(\bmod 1)$, where $\alpha \notin \mathbb{Q}$. Formulate as many questions about this map (e.g. "Is Lebesgue measure the only invariant measure of f, i.e. is f uniquely ergodic?") and answer them.

