Ergodic Theory, Homework

Problem 1.

Consider a Lissajous figure on the plane

$$
x(t)=A \sin (t+\phi), y(t)=B \sin (\omega t+\psi), \quad t \in \mathbb{R} .
$$

Prove that if ω is irrational then for any phases ϕ, ψ this curve is dense in the rectangle $|x| \leq$ $A,|y| \leq B$.

Problem 2.

Consider the set C of all points of the unit interval which have a binary representation without two successive zeros. Prove that C is an uncountable set invariant under the map $T:[0,1) \rightarrow[0,1)$, $T(x)=2 x(\bmod 1)$. Why doesn't it contradict to ergodicity of T ?

Problem 3.

Prove that the hyperbolic automorphism of the torus $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ induced by the matrix $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ has infinitely many periodic points, and these periodic points are dense in \mathbb{T}^{2}.

Problem 4.

Prove that the map $T: S^{1} \rightarrow S^{1}, T(x)=2 x(\bmod 1)$, is a factor (as a topological dynamical system) of the topological Bernoulli shift $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$. Also, show that $T:\left(S^{1}, L e b\right) \rightarrow\left(S^{1}, L e b\right)$ and the Bernoulli shift $\sigma:\left(\Sigma_{2}, \mu_{1 / 2,1 / 2}\right) \rightarrow\left(\Sigma_{2}, \mu_{1 / 2,1 / 2}\right)$ are isomorphic (as measure preserving transformations).

Problem 5.

Let $f:[0,1] \rightarrow[0,1]$ be a homeomorphism. Prove that $h_{\text {top }}(f)=0$.

Problem 6.

Show that $f:[0,1] \rightarrow[0,1]$ given by

$$
f(x)= \begin{cases}\frac{x}{2}, & \text { when } 0<x \leq 1 \\ 1, & \text { when } x=0\end{cases}
$$

has no invariant Borel probability measure. Does it contradict to the Krylov-Bogolyubov Theorem?

Problem 7.

Prove that the map $g:[0,1] \rightarrow[0,1]$ given by

$$
f(x)= \begin{cases}2 x, & \text { when } 0 \leq x \leq 1 / 2 \\ 2-2 x, & \text { when } 1 / 2 \leq x \leq 1\end{cases}
$$

preserves Lebesgue measure and is ergodic with respect to Lebesgue measure.

Problem 8.

Consider the map $f: S^{1} \times[0,1] \rightarrow S^{1} \times[0,1], f(x, t)=(x+\alpha, t), \alpha \notin \mathbb{Q}$. Prove that the averages of every continuous function ϕ converge uniformly but that f is not uniquely ergodic.

Problem 9.

Let $\sigma_{A}: \Sigma_{A} \rightarrow \Sigma_{A}$ be a topological Markov chain with the matrix $A=\left(\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right)$. Find $\# \operatorname{Per}_{n}\left(\sigma_{A}\right)$ for each $n \in \mathbb{N}$.

Problem 10.

For each $a>0$ construct an example of a homeomorphism of a compact metric space with topological entropy a.

Problem 11.

Is it possible to find a topological Markov chain $\sigma_{A}: \Sigma_{A} \rightarrow \Sigma_{A}$ such that $h_{\text {top }}\left(\sigma_{A}\right)=\ln \pi$?

