Problem 1.

Consider a Lissajous figure on the plane

$$x(t) = A\sin(t+\phi), \ y(t) = B\sin(\omega t + \psi), \ t \in \mathbb{R}.$$

Prove that if ω is irrational then for any phases ϕ, ψ this curve is dense in the rectangle $|x| \leq A, |y| \leq B$.

Problem 2.

Consider the set *C* of all points of the unit interval which have a binary representation without two successive zeros. Prove that *C* is an uncountable set invariant under the map $T : [0,1) \rightarrow [0,1)$, $T(x) = 2x \pmod{1}$. Why doesn't it contradict to ergodicity of *T*?

Problem 3.

Prove that the hyperbolic automorphism of the torus $T : \mathbb{T}^2 \to \mathbb{T}^2$ induced by the matrix $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ has infinitely many periodic points, and these periodic points are dense in \mathbb{T}^2 .

Problem 4.

Prove that the map $T : S^1 \to S^1$, $T(x) = 2x \pmod{1}$, is a factor (as a topological dynamical system) of the topological Bernoulli shift $\sigma : \Sigma_2 \to \Sigma_2$. Also, show that $T : (S^1, Leb) \to (S^1, Leb)$ and the Bernoulli shift $\sigma : (\Sigma_2, \mu_{1/2, 1/2}) \to (\Sigma_2, \mu_{1/2, 1/2})$ are isomorphic (as measure preserving transformations).

Problem 5.

Let $f : [0,1] \rightarrow [0,1]$ be a homeomorphism. Prove that $h_{top}(f) = 0$.

Problem 6.

Show that $f : [0, 1] \rightarrow [0, 1]$ given by

$$f(x) = \begin{cases} \frac{x}{2}, & \text{when } 0 < x \le 1; \\ 1, & \text{when } x = 0. \end{cases}$$

has no invariant Borel probability measure. Does it contradict to the Krylov-Bogolyubov Theorem?

Problem 7.

Prove that the map $g : [0,1] \rightarrow [0,1]$ given by

$$f(x) = \left\{ \begin{array}{ll} 2x, & \text{when } 0 \leq x \leq 1/2 \text{;} \\ 2-2x, & \text{when } 1/2 \leq x \leq 1. \end{array} \right.$$

preserves Lebesgue measure and is ergodic with respect to Lebesgue measure.

Problem 8.

Consider the map $f: S^1 \times [0,1] \to S^1 \times [0,1]$, $f(x,t) = (x + \alpha, t)$, $\alpha \notin \mathbb{Q}$. Prove that the averages of every continuous function ϕ converge uniformly but that f is not uniquely ergodic.

Problem 9.

Let $\sigma_A : \Sigma_A \to \Sigma_A$ be a topological Markov chain with the matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Find $\#Per_n(\sigma_A)$ for each $n \in \mathbb{N}$.

Problem 10.

For each a > 0 construct an example of a homeomorphism of a compact metric space with topological entropy a.

Problem 11.

Is it possible to find a topological Markov chain $\sigma_A : \Sigma_A \to \Sigma_A$ such that $h_{top}(\sigma_A) = \ln \pi$?