Ergodic Theory, Math 211A, Final

Problem 1.

Calculate the frequency with which 2^{n} has $r(r=0,1, \ldots, 9)$ as the second digit of its base 10 representation.

Problem 2.

Let $\beta>1$ denote the golden ratio (so that $\beta^{2}=\beta+1$). Define

$$
T:[0,1] \rightarrow[0,1], \quad T(x)=\beta x(\bmod 1) .
$$

Shoe that T does not preserve Lebesgue measure. Define

$$
\mu(B)=\int_{B} k(x) d x, \text { where } k(x)= \begin{cases}\frac{1}{\frac{1}{\beta}+\frac{1}{\beta^{3}}}, & \text { on }\left[0, \frac{1}{\beta}\right) ; \\ \frac{1}{1+\frac{1}{\beta^{2}}}, & \text { on }\left[\frac{1}{\beta}, 1\right) .\end{cases}
$$

Prove that T preserves the measure μ.

Problem 3.

Prove that the arithmetic mean of the digits appearing in the base 10 expansion of Lebesgue-a.e. $x \in[0,1)$ is equal to 4.5 , i.e. if $x=0 . x_{1} x_{2} x_{3} \ldots, x_{i} \in\{0,1,2, \ldots, 9\}$, then

$$
\text { for a.e. } x \in[0,1) \quad \lim _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\ldots x_{n}}{n}=4.5 \text {. }
$$

Problem 4.

Consider $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, T(x, y)=(2 x, 3 y)(\bmod 1)$. Prove that T preserves Lebesgue measure. Is it ergodic? Mixing? Is it transitive? Minimal? Find $h_{\text {top }}(T)$ and show that Lebesgue measure is the measure of maximal entropy for T.

Problem 5.

Denote the continued fraction expansion of $x \in(0,1)$ by $x=\left[a_{1}, a_{2}, \ldots\right]$. Prove that there exists $C>0$ such that for a.e. $x \in(0,1)$ we have

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\ldots \frac{1}{a_{n}}}{n}=C .
$$

