DYNAMICAL SYSTEMS (FALL 2010)

Final Exam

Problem 1.

Consider the map $f: S^{1} \rightarrow S^{1}$,

$$
f(x)= \begin{cases}4 x(\bmod 1), & \text { if } x \in\left[0, \frac{1}{2}\right) \\ 6 x(\bmod 1), & \text { if } x \in\left[\frac{1}{2}, 1\right)\end{cases}
$$

Calculate $h_{\text {top }}(f)$.

Problem 2.

Consider the map $F_{\alpha, \beta}: \Sigma^{2} \times S^{1} \rightarrow \Sigma^{2} \times S^{1}, \omega \in \Sigma^{2}, \varphi \in S^{1}$,

$$
F_{\alpha, \beta}(\omega, \varphi)= \begin{cases}\left(\sigma(\omega), R_{\alpha}(\varphi)\right), & \text { if } \omega_{0}=0 ; \\ \left(\sigma(\omega), R_{\beta}(\varphi)\right), & \text { if } \omega_{0}=1\end{cases}
$$

For which pairs (α, β) the map $F_{\alpha, \beta}$ is transitive?

Problem 3.

Consider expending maps

$$
\begin{gathered}
E_{2}: S^{1} \rightarrow S^{1}, E_{2}(x)=2 x(\bmod 1), \quad \text { and } \\
E_{3}: S^{1} \rightarrow S^{1}, E_{3}(x)=3 x(\bmod 1) .
\end{gathered}
$$

Denote by F the product map, $F: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, F=E_{2} \times E_{3}$. Is it possible to find a point $x \in \mathbb{T}$ such that $\omega(x)$ is homeomorphic to a circle? To a Cantor set? To a product of a circle and a Cantor set?

Problem 4.

Let Λ_{i} be a hyperbolic set of $f_{i}: U_{i} \rightarrow M_{i}, i=1,2$. Prove that $\Lambda_{1} \times \Lambda_{2}$ is a hyperbolic set of $f_{1} \times f_{2}: U_{1} \times U_{2} \rightarrow M_{1} \times M_{2}$.

Problem 5.

Prove that any contracting C^{1}-diffeomorphism of \mathbb{R} is topologically conjugated to a linear contraction.

