Final Exam

Problem 1.

Consider the map $f: S^1 \to S^1$,

 $f(x) = \begin{cases} 4x \pmod{1}, & \text{if } x \in [0, \frac{1}{2}); \\ 6x \pmod{1}, & \text{if } x \in [\frac{1}{2}, 1). \end{cases}$

Calculate $h_{top}(f)$.

Problem 2.

Consider the map $F_{\alpha,\beta}: \Sigma^2 \times S^1 \to \Sigma^2 \times S^1, \ \omega \in \Sigma^2, \ \varphi \in S^1,$

$$F_{\alpha,\beta}(\omega,\varphi) = \begin{cases} (\sigma(\omega), R_{\alpha}(\varphi)), & \text{if } \omega_0 = 0; \\ (\sigma(\omega), R_{\beta}(\varphi)), & \text{if } \omega_0 = 1. \end{cases}$$

For which pairs (α, β) the map $F_{\alpha,\beta}$ is transitive?

Problem 3.

Consider expending maps

$$E_2: S^1 \to S^1, \ E_2(x) = 2x \pmod{1}, \quad \text{and}$$

 $E_3: S^1 \to S^1, \ E_3(x) = 3x \pmod{1}.$

Denote by *F* the product map, $F : \mathbb{T}^2 \to \mathbb{T}^2$, $F = E_2 \times E_3$. Is it possible to find a point $x \in \mathbb{T}$ such that $\omega(x)$ is homeomorphic to a circle? To a Cantor set? To a product of a circle and a Cantor set?

Problem 4.

Let Λ_i be a hyperbolic set of $f_i : U_i \to M_i$, i = 1, 2. Prove that $\Lambda_1 \times \Lambda_2$ is a hyperbolic set of $f_1 \times f_2 : U_1 \times U_2 \to M_1 \times M_2$.

Problem 5.

Prove that any contracting C^1 -diffeomorphism of \mathbb{R} is topologically conjugated to a linear contraction.