Real Analysis

Sample Final

Problem 1.

TRUE or FALSE: For any $n \times n$ matrix A which is close enough to Id_{n} there exists an $n \times n$ matrix X such that $A=X^{2}+3 X+\operatorname{Id}_{n}$.

Problem 2.

Among all rectangular parallelepipeds with diagonal equal to 3 find the one with largest value of $x+2 y+3 z$, where x, y, z are the sides of parallelepiped.

Problem 3.

Find the area of the set $\left\{|y| \leq 1, \quad|x-10 y| \leq \sqrt{1-y^{2}}\right\}$.

Problem 4.

Let $y=\left(y_{1}(x), y_{2}(x)\right)$ be a function of x defined by a system of equations

$$
\left\{\begin{array}{l}
y_{1}^{2}+y_{2}^{2}=x \\
y_{1}=\sin 2 \pi x+\cos 2 \pi y_{2}
\end{array}\right.
$$

where $\left(x, y_{1}, y_{2}\right)$ is in a neighborhood of the point $(2,1,1)$. Compute $\frac{d y_{1}}{d x}$ and $\frac{d y_{2}}{d x}$ at the point $(2,1,1)$. Justify the existence of the derivative.

Problem 5.

A C^{1}-function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has the derivative $D F(p)=\left(\begin{array}{ll}a(p) & b(p) \\ c(p) & d(p)\end{array}\right)$ with the following properties: $|a(p)| \leq 1,|b(p)| \leq 2|a(p)|,|c(p)| \leq|b(p)|,|d(p)|=$ $|a(p)|$ for all $p \in \mathbb{R}^{2}$. Is it possible that $f(0)=0$ and $f(1)=2012$?

