# Real Analysis Math 205C, Spring 2012 

## Practice Exam

Friday, May 25, 2012 - 1:00pm-3:30pm

| Problem | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\Sigma$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points |  |  |  |  |  |  |  |  |  |

Student's name:

## Problem 1.

TRUE or FALSE? For any bounded collection of real numbers $\left\{a_{m n}\right\}_{m, n \in \mathbb{N}}$ we have

$$
\limsup _{n \rightarrow \infty}\left(\limsup _{m \rightarrow \infty} a_{m n}\right)=\limsup _{m \rightarrow \infty}\left(\limsup _{n \rightarrow \infty} a_{m n}\right)
$$

## Problem 2.

Which number is larger, $\pi^{3}$ or $3^{\pi}$ ?

## Problem 3.

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous for $x \in \mathbb{R}$, differentiable for $x \in(-\infty, 0) \cup$ $(0, \infty)$, and $\lim _{x \rightarrow 0} f^{\prime}(x)=2$. Show that $f$ is differentiable at $x=0$ and $f^{\prime}(0)=2$.

## Problem 4.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function of two variables and assume that the restriction of $f$ to any line in $\mathbb{R}^{2}$ is differentiable (i.e. for any $a, b, c, d \in \mathbb{R}$ the function of one variable $g(t)=f(a t+b, c t+d)$ is differentiable). Is $f$ continuous on $\mathbb{R}^{2}$ ? Prove or give a counterexample.

## Problem 5.

Suppose $\left(x_{0}, y_{0}, u_{0}, v_{0}\right)$ is a solution to the system of equations

$$
\left\{\begin{array}{l}
e^{x} \cos y+2 u-v=0 \\
e^{x} \sin y-u+2 v=0
\end{array}\right.
$$

(a) Show that in a neighborhood of $\left(x_{0}, y_{0}, u_{0}, v_{0}\right)$ the system can be solved for $(x, y)$ as a function of $(u, v)$;
(b) Show that in a neighborhood of $\left(x_{0}, y_{0}, u_{0}, v_{0}\right)$ the system can be solved for $(u, v)$ as a function of $(x, y)$.

## Problem 6.

Suppose $\left\{x_{n}\right\}$ is a sequence in a complete metric space $(M, d)$ such that

$$
\sum_{n \in \mathbb{N}} d\left(x_{n}, x_{n+1}\right)
$$

is a convergent series. Show that the sequence $\left\{x_{n}\right\}$ is convergent in $M$.

## Problem 7.

Let $\left\{f_{n}\right\}$ be a sequence of real-valued continuous functions on $[0,1]$ which converges pointwise on the interval $[0,1]$. Suppose that $f_{n}$ is continuously differentiable on $(0,1)$ and that

$$
\int_{0}^{1}\left|f_{n}^{\prime}(x)\right|^{2} d x \leq 1, \quad n=1,2,3, \ldots
$$

Prove that
(a) $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is equicontinuous on $[0,1]$;
(b) $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly on $[0,1]$.

## Problem 8.

Find the maximal area of all triangles that can be inscribed in an ellipse with semiaxes $a$ and $b$.

