Real Analysis
 Math 205C, Spring 2012

HW \# 7

Problem 1.

Use the Divergence Theorem to calculate the flux of the vector field $v(x, y, z)=\left(x^{3}, y^{3}, z^{3}\right)$ through the unit sphere.

Problem 2.

Calculate the flux of the vector field $v(x, y, z)=(x, y, z)$ through the outwardly oriented surface obtained by removing the cube $[1,2] \times[1,2] \times[1,2]$ from the cube $[0,2] \times[0,2] \times[0,2]$.

In the problems 3.-5. find a vector field v in \mathbb{R}^{3} whose divergence is given by function f :
Problem 3.
$f(x, y, z)=1$

Problem 4.

$f(x, y, z)=x^{2} y$

Problem 5.

$f(x, y, z)=\sqrt{x^{2}+z^{2}}$

Problem 6.

Let S be the surface obtained by rotating the curve

$$
\left\{\begin{array}{l}
x=\cos u, \\
z=\sin 2 u,
\end{array} \quad-\frac{\pi}{2} \leq u \leq \frac{\pi}{2}\right.
$$

around the z-axis. Find the flux of the vector field $v(x, y, z)=(0,0, z)$ through S.

Problem 7.

Find the volume of the region inside S, where S is the surface from Problem 6.

Problem 8.

Evaluate the flux of the vector field $v(x, y, z)=\left(x+y, z^{2}, x^{2}\right)$ through the hemisphere $\left\{x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$ (note that the surface is not closed!).

Problem 9.

Consider a surface $S=\left\{x^{2}+y^{2}+z^{2}-2 x y z=1,|x| \leq 1,|y| \leq 1,|z| \leq 1\right\}$. Prove that the flux of the vector field $v(x, y, z)=(x, y, z)$ through S is equal to the flux of the vector field $w(x, y, z)=(x-\sin y \sin z, \cos y+\sin z,(2+\sin y) z)$ through S.

Problem 10.

Let S_{C} be the compact connected component of the set $\left\{x^{2}+y^{2}+z^{2}-2 x y z=C\right\}, C \in$ $(0,1)$. Suppose that C^{*} is such that the volume of the region inside of $S_{C^{*}}$ is equal to $1 / 10$. Evaluate the integral

$$
\int_{S_{C^{*}}} \frac{x^{2}+y^{2}+z^{2}-3 x y z}{\sqrt{(x-y z)^{2}+(y-z x)^{2}+(z-x y)^{2}}} d A
$$

