REAL ANALYSIS MATH 205C, SPRING 2012

$\mathbf{HW}\#~\mathbf{7}$

Problem 1.

Use the Divergence Theorem to calculate the flux of the vector field $v(x, y, z) = (x^3, y^3, z^3)$ through the unit sphere.

Problem 2.

Calculate the flux of the vector field v(x, y, z) = (x, y, z) through the outwardly oriented surface obtained by removing the cube $[1, 2] \times [1, 2] \times [1, 2]$ from the cube $[0, 2] \times [0, 2] \times [0, 2]$.

In the problems 3.-5. find a vector field v in \mathbb{R}^3 whose divergence is given by function f:

Problem 3.

f(x,y,z) = 1

Problem 4.

 $f(x, y, z) = x^2 y$

Problem 5.

 $f(x,y,z) = \sqrt{x^2 + z^2}$

Problem 6.

Let *S* be the surface obtained by rotating the curve

$$\begin{cases} x = \cos u, \\ z = \sin 2u, \end{cases} \quad -\frac{\pi}{2} \le u \le \frac{\pi}{2} \end{cases}$$

around the *z*-axis. Find the flux of the vector field v(x, y, z) = (0, 0, z) through *S*.

Problem 7.

Find the volume of the region inside S, where S is the surface from Problem 6.

Problem 8.

Evaluate the flux of the vector field $v(x, y, z) = (x + y, z^2, x^2)$ through the hemisphere $\{x^2 + y^2 + z^2 = 1, z \ge 0\}$ (note that the surface is not closed!).

Problem 9.

Consider a surface $S = \{x^2 + y^2 + z^2 - 2xyz = 1, |x| \le 1, |y| \le 1, |z| \le 1\}$. Prove that the flux of the vector field v(x, y, z) = (x, y, z) through *S* is equal to the flux of the vector field $w(x, y, z) = (x - \sin y \sin z, \cos y + \sin z, (2 + \sin y)z)$ through *S*.

Problem 10.

Let S_C be the compact connected component of the set $\{x^2 + y^2 + z^2 - 2xyz = C\}$, $C \in (0, 1)$. Suppose that C^* is such that the volume of the region inside of S_{C^*} is equal to 1/10. Evaluate the integral

$$\int_{S_{C^*}} \frac{x^2 + y^2 + z^2 - 3xyz}{\sqrt{(x - yz)^2 + (y - zx)^2 + (z - xy)^2}} dA$$