Real Analysis
 Math 205C, Spring 2012

HW \# 6

Problem 1.
Calculate $\int_{\gamma} \omega$, where $\omega=x d x+y d y+z d z$ and $\gamma:[0,1] \rightarrow \mathbb{R}^{3}, \gamma(t)=$ $(\cos 2 \pi t, \sin 2 \pi t, t)$.

Problem 2.

Calculate $\int_{\gamma} \omega$, where $\omega=\frac{1}{\sqrt{2}} d x+\frac{1}{\sqrt{2}} d y$ and $\gamma:[0,1] \rightarrow \mathbb{R}^{2}, \gamma(t)=(t, t)$. Compare the result with the length of γ.

Problem 3.

Is it possible to find a 1-form ω in \mathbb{R}^{2} such that $\int_{\gamma} \omega$ is equal to the length of γ for any smooth curve γ ?

Problem 4.

Consider the following 2-cell in \mathbb{R}^{3} :

$$
\varphi:[0,1] \times[0,1] \rightarrow \mathbb{R}^{3}, \varphi(u, v)=(\sin \pi u \cos 2 \pi v, \sin \pi u \sin 2 \pi v, \cos \pi u)
$$

Show that the range of φ is the unit sphere in \mathbb{R}^{3}, and check that $\partial \varphi=0$.

Problem 5.

Calculate $\int_{\varphi} \omega$, where

$$
\omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

and

$$
\varphi:[0,1] \times[0,1] \rightarrow \mathbb{R}^{3}, \varphi(u, v)=(\sin \pi u \cos 2 \pi v, \sin \pi u \sin 2 \pi v, \cos \pi u)
$$

Problem 6.

Consider the form $\omega=\sin 2 x \sin y d x+\sin ^{2} x \cos y d y$ in \mathbb{R}^{2}. Is it closed? Exact?

Problem 7.

Consider the form $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ in $\mathbb{R}^{2} \backslash\{(0,0)\}$. Is it closed? Exact?

Problem 8.

Consider the form $\omega=y z d x+x z d y+x y d z$ in \mathbb{R}^{3}. Is it closed? Exact?

Problem 9.

Consider the form $\omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{/ 2}}$ in $U \subset \mathbb{R}^{3}, U=\{(x, y, z) \mid 1<$ $\left.x^{2}+y^{2}+z^{2}<9\right\}$. Is it closed? Exact?

Problem 10.
The following problem was given for the final exam:"Find $\int_{C} \omega$, where $\omega=$ $d x \wedge d z$ and $C=\left\{(x, y, z) \mid x^{2}+y^{2}=1,0 \leq z \leq 1, y \geq 0\right\}$ " One student gave the answer " 2 ", another one gave the answer "-2". Who has made a mistake?

