Real Analysis
 Math 205C, Spring 2012

HW \# 5

Problem 1.

Find the volume of the set

$$
\left\{(x, y, z) \mid-1 \leq z \leq 1,4(x-\sin z)^{2}+(y-\cos z)^{2} \leq 1\right\}
$$

Problem 2.

Find the area of the set

$$
\left\{(x, y)\left|-1 \leq x \leq 1,\left|y-\sqrt{1-x^{2}}\right| \leq|x|\right\}\right.
$$

Problem 3.
Find $\int_{\mathbb{R}^{2}} f(x, y) d x d y$, where

$$
f(x, y)= \begin{cases}\cos \sqrt{x^{2}+y^{2}}, & \text { if } x^{2}+y^{2} \leq \frac{\pi^{2}}{4} \\ 0, & \text { if } x^{2}+y^{2}>\frac{\pi^{2}}{4}\end{cases}
$$

Problem 4.

Let $f(x, y, z)=z\left(x^{2}+y^{2}\right)$. Find $\int_{K} f$, where $K=\left\{0 \leq z \leq 1, x^{2}+y^{2} \leq 1\right\}$.

Problem 5.

Find $\int_{C} \omega$, where $\omega=\sin y \cos x d x+\sin x \cos y d y$, and C is a unit circle (oriented counterclockwise).

Problem 6.
Find $\int_{C} \omega$, where $\omega=x d x+x y^{2} d y$, and C is an interval connecting $(0,0)$ and $(2,2)$.

Problem 7.

Suppose α and β are smooth 1 -forms in \mathbb{R}^{2} such that for any path C we have $\int_{C} \alpha=\int_{C} \beta$. Prove that $\alpha=\beta$ (i.e. coefficients of α and β are equal).

Problem 8.
Assume that ω is a 1-form in \mathbb{R}^{2} such that $\int_{C} \omega=0$ for any closed curve C. Prove that ω is exact.

Problem 9.

Let D be a unit disc in \mathbb{R}^{2} centered about the origin. Calculate explicitly $\int_{D} d \omega$ and $\int_{\partial D} \omega$ if $\omega=x d y$.

Problem 10.
TRUE OR FALSE: If ω is a k-form and k is odd then $\omega \wedge \omega=0$. What if k is even?

