REAL ANALYSIS MATH 205C, SPRING 2012

$\mathbf{HW}\#\ \mathbf{5}$

Problem 1.

Find the volume of the set

 $\{(x, y, z) \mid -1 \le z \le 1, \ 4(x - \sin z)^2 + (y - \cos z)^2 \le 1\}$

Problem 2.

Find the area of the set

$$\{(x,y) \mid -1 \le x \le 1, |y - \sqrt{1 - x^2}| \le |x|\}$$

Problem 3.

Find $\int_{\mathbb{R}^2} f(x, y) dx dy$, where

$$f(x,y) = \begin{cases} \cos\sqrt{x^2 + y^2}, & \text{if } x^2 + y^2 \le \frac{\pi^2}{4}; \\ 0, & \text{if } x^2 + y^2 > \frac{\pi^2}{4}. \end{cases}$$

Problem 4.

Let $f(x, y, z) = z(x^2 + y^2)$. Find $\int_K f$, where $K = \{0 \le z \le 1, x^2 + y^2 \le 1\}$.

Problem 5.

Find $\int_C \omega$, where $\omega = \sin y \cos x dx + \sin x \cos y dy$, and *C* is a unit circle (oriented counterclockwise).

Problem 6.

Find $\int_C \omega$, where $\omega = xdx + xy^2dy$, and *C* is an interval connecting (0,0) and (2,2).

Problem 7.

Suppose α and β are smooth 1-forms in \mathbb{R}^2 such that for any path *C* we have $\int_C \alpha = \int_C \beta$. Prove that $\alpha = \beta$ (i.e. coefficients of α and β are equal).

Problem 8.

Assume that ω is a 1-form in \mathbb{R}^2 such that $\int_C \omega = 0$ for any closed curve *C*. Prove that ω is exact.

Problem 9.

Let *D* be a unit disc in \mathbb{R}^2 centered about the origin. Calculate explicitly $\int_D d\omega$ and $\int_{\partial D} \omega$ if $\omega = x dy$.

Problem 10.

TRUE OR FALSE: If ω is a *k*-form and *k* is odd then $\omega \wedge \omega = 0$. What if *k* is even?