Real Analysis
 Math 205C, Spring 2012

HW \# 4

In problems 1-4 determine the maxima and minima of f on the surface (or curve).

Problem 1.

$f(x, y, z)=x+y+2 z$ on the surface $x^{2}+y^{2}+z^{2}=3$.

Problem 2.

$f(x, y, z)=x y$ on the curve $3 x^{2}+y^{2}=6$.

Problem 3.

$f(x, y, z)=x^{2}-y^{2}$ on the surface $x^{2}+2 y^{2}+3 z^{2}=1$.

Problem 4.

$f(x, y, z)=8 x-4 z$ on the surface $x^{2}+10 y^{2}+z^{2}=5$.

Problem 5.

Find minimum of $\sum_{i=1}^{5} x_{i}^{2}$ subject to constraints $\left\{\begin{array}{l}x_{1}+2 x_{2}+x_{3}=1 \\ x_{3}-2 x_{4}+x_{5}=6\end{array}\right.$

Problem 6.

Find the extreme values of $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ on the region $x^{2}+y^{2} \leq 16$.

Problem 7.

What is the smallest possible value of the sum of squares of elements of a matrix from $S L(2, \mathbb{R})$? Find all the matrices where this minimum is attained.

Problem 8.

Among all rectangles with diagonal 1 find the one with the largest difference between its area and the square of its smaller side.

Problem 9.

Is it true that any compact set $K \subset \mathbb{R}^{2}$ is Riemann measurable (i.e. its boundary is a set of zero measure)?

Problem 10.

Is it true that any bounded open set $U \subset \mathbb{R}^{2}$ is Riemann measurable (i.e. its boundary is a set of zero measure)?

