REAL ANALYSIS MATH 205C, SPRING 2012

$HW\# \ 3$

Problem 1.

Suppose $f \in C^1(\mathbb{R}^2, \mathbb{R}^2)$, and Df(0) in not invertible. Does it imply that f is not invertible?

Problem 2.

Prove that for any $n \times n$ matrix A which is close enough to Id_n there exists an $n \times n$ matrix X such that $A = e^X$.

Problem 3.

Is it true that for any $n \times n$ matrix A which is close enough to zero $n \times n$ matrix there exists an $n \times n$ matrix X such that $A = e^X$?

Problem 4.

Consider the equation $xe^y + ye^x = 0$. Show that there is a C^{∞} solution y = y(x) of this equation near (0,0). What is its derivative at x = 0? What is its second derivative at x = 0?

Problem 5.

Let *M* denote the space of all $n \times n$ matrices, and *G* denote the set of invertible $n \times n$ matrices. Prove that inversion $Inv : G \to G$, $Inv(A) = A^{-1}$ is a diffeomorphism and show that its derivative at *A* is the linear transformation $M \to M$, $X \mapsto -A^{-1} \circ X \circ A^{-1}$. What does it give you in the case n = 1?

Problem 6.

Consider cubic polynomials of the form $f(x) = x^3 + ax^2 + bx + c$, where a, b and c are real. Note that when a = 1, b = -1 and c = 0 the equation f(x) = 0 has three distinct roots, namely, u = 1, v = -1 and w = 0. Use the Inverse Function Theorem to show that when the coefficients (a, b, c) are sufficiently near (0, -1, 0) then the solutions u, v, w of the equation f(x) = 0 can be expressed as a continuously differentiable functions of the coefficients a, b, c.

Problem 7.

Define $f : \mathbb{R}^2 \to \mathbb{R}^1$ by

$$f(x,y) = 2x^3 - 3x^2 + 2y^3 + 3y^2$$

Let *S* be the set of all $(x, y) \in \mathbb{R}^2$ at which f(x, y) = 0. Find those points of *S* that have no neighborhoods in which the equation f(x, y) = 0 can be solved for *x* in terms of *y* (or for *y* in terms of *x*).

Problem 8.

Define $f : \mathbb{R}^2 \to \mathbb{R}^1$ by

$$f(x,y) = 2x^3 + 6xy^2 - 3x^2 + 3y^2$$

Let *S* be the set of all $(x, y) \in \mathbb{R}^2$ at which f(x, y) = 0. Find those points of *S* that have no neighborhoods in which the equation f(x, y) = 0 can be solved for *x* in terms of *y* (or for *y* in terms of *x*).

Problem 9.

Define $f : \mathbb{R}^3 \to \mathbb{R}^1$ by

$$f(x_1, x_2, y) = y^2 x_1 + e^y + x_2.$$

Show that there exists a differentiable function g in some neighborhood of (1, -1) in \mathbb{R}^2 , such that g(1, -1) = 0 and $f(x_1, x_2, g(x_1, x_2)) = 0$. Find $\frac{\partial g}{\partial x_1}(1, -1)$ and $\frac{\partial g}{\partial x_2}(1, -1)$.

Problem 10.

Let $y = (y_1(x), y_2(x))$ be a function of x defined by a system of equations

$$\begin{cases} y_1^2 + y_2^2 = e^x \\ y_1 = xy_2, \end{cases}$$

where (x, y_1, y_2) is in a neighborhood of the point $(1, \sqrt{\frac{e}{2}}, \sqrt{\frac{e}{2}})$. Compute $\frac{dy_1}{dx}$ at the point $(1, \sqrt{\frac{e}{2}}, \sqrt{\frac{e}{2}})$. Justify the existence of the derivative.