Real Analysis Math 205C, Spring 2012

HW \# 3

Problem 1.

Suppose $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, and $D f(0)$ in not invertible. Does it imply that f is not invertible?

Problem 2.

Prove that for any $n \times n$ matrix A which is close enough to Id_{n} there exists an $n \times n$ matrix X such that $A=e^{X}$.

Problem 3.

Is it true that for any $n \times n$ matrix A which is close enough to zero $n \times n$ matrix there exists an $n \times n$ matrix X such that $A=e^{X}$?

Problem 4.

Consider the equation $x e^{y}+y e^{x}=0$. Show that there is a C^{∞} solution $y=y(x)$ of this equation near $(0,0)$. What is its derivative at $x=0$? What is its second derivative at $x=0$?

Problem 5.

Let M denote the space of all $n \times n$ matrices, and G denote the set of invertible $n \times n$ matrices. Prove that inversion $\operatorname{Inv}: G \rightarrow G, \operatorname{Inv}(A)=A^{-1}$ is a diffeomorphism and show that its derivative at A is the linear transformation $M \rightarrow M, X \mapsto-A^{-1} \circ X \circ A^{-1}$. What does it give you in the case $n=1$?

Problem 6.

Consider cubic polynomials of the form $f(x)=x^{3}+a x^{2}+b x+c$, where a, b and c are real. Note that when $a=1, b=-1$ and $c=0$ the equation $f(x)=0$ has three distinct roots, namely, $u=1$, $v=-1$ and $w=0$. Use the Inverse Function Theorem to show that when the coefficients (a, b, c) are sufficiently near $(0,-1,0)$ then the solutions u, v, w of the equation $f(x)=0$ can be expressed as a continuously differentiable functions of the coefficients a, b, c.

Problem 7.

Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ by

$$
f(x, y)=2 x^{3}-3 x^{2}+2 y^{3}+3 y^{2} .
$$

Let S be the set of all $(x, y) \in \mathbb{R}^{2}$ at which $f(x, y)=0$. Find those points of S that have no neighborhoods in which the equation $f(x, y)=0$ can be solved for x in terms of y (or for y in terms of x).

Problem 8.

Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ by

$$
f(x, y)=2 x^{3}+6 x y^{2}-3 x^{2}+3 y^{2} .
$$

Let S be the set of all $(x, y) \in \mathbb{R}^{2}$ at which $f(x, y)=0$. Find those points of S that have no neighborhoods in which the equation $f(x, y)=0$ can be solved for x in terms of y (or for y in terms of x).

Problem 9.

Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ by

$$
f\left(x_{1}, x_{2}, y\right)=y^{2} x_{1}+e^{y}+x_{2} .
$$

Show that there exists a differentiable function g in some neighborhood of $(1,-1)$ in \mathbb{R}^{2}, such that $g(1,-1)=0$ and $f\left(x_{1}, x_{2}, g\left(x_{1}, x_{2}\right)\right)=0$. Find $\frac{\partial g}{\partial x_{1}}(1,-1)$ and $\frac{\partial g}{\partial x_{2}}(1,-1)$.

Problem 10.

Let $y=\left(y_{1}(x), y_{2}(x)\right)$ be a function of x defined by a system of equations

$$
\left\{\begin{array}{l}
y_{1}^{2}+y_{2}^{2}=e^{x} \\
y_{1}=x y_{2},
\end{array}\right.
$$

where $\left(x, y_{1}, y_{2}\right)$ is in a neighborhood of the point $\left(1, \sqrt{\frac{e}{2}}, \sqrt{\frac{e}{2}}\right)$. Compute $\frac{d y_{1}}{d x}$ at the point $\left(1, \sqrt{\frac{e}{2}}, \sqrt{\frac{e}{2}}\right)$. Justify the existence of the derivative.

