Real Analysis
 Math 205C, Spring 2012

HW \# 2

In Problems 1-4 calculate all first-order partial derivatives of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$, if

Problem 1.

$f(x)=a \cdot x$, where a is a fixed vector in \mathbb{R}^{n};
Problem 2.
$f(x)=\|x\|^{4} ;$

Problem 3.

$f(x)=x \cdot L(x)$, where $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear function;
Problem 4.
$f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}$, where $a_{i j}=a_{j i}$.

Problem 5.

Suppose $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}^{1}\right)$. Let $F(r, \theta)=f(r \cos \theta, r \sin \theta)$.
Calculate $\frac{\partial F}{\partial r}$ and $\frac{\partial F}{\partial \theta}$ in terms of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
Problem 6.
Suppose $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}^{1}\right)$. Let $F(r, \theta)=f(r \cos \theta, r \sin \theta)$. Show that

$$
\|\nabla f(r \cos \theta, r \sin \theta)\|^{2}=\left(\frac{\partial F}{\partial r}(r, \theta)\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial F}{\partial \theta}(r, \theta)\right)^{2}
$$

Problem 7.

Suppose $U \subset \mathbb{R}^{n}$ is open and connected, $f: U \rightarrow \mathbb{R}^{m}$ is second differentiable everywhere and $\left(D^{2} f\right)_{p}=0$ for all $p \in U$. What can you say about the function f ?

Problem 8.

Let f be a C^{1} function from the interval $(-1,1)$ into \mathbb{R}^{2} such that $f(0)=0$ and $f^{\prime}(0) \neq 0$. Prove that there is a number $\varepsilon \in(0,1)$ such that $\|f(t)\|$ is an increasing function of t on $(0, \varepsilon)$.

Problem 9.
Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}, f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \text {; } \\ 0, & \text { if }(x, y)=(0,0) .\end{cases}$ has well defined partial derivatives everywhere, but is not continuous at the origin.

Problem 10.
Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}, f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \text {; } \\ 0, & \text { if }(x, y)=(0,0) .\end{cases}$
has well defined partial derivatives and is continuous everywhere, but is not differentiable at the origin.

