REAL ANALYSIS MATH 205C, SPRING 2012

$HW\# \ 1$

Problem 1.

Two norms, $|\cdot|_1$ and $|\cdot|_2$, on a vector space V are equivalent if there are positive constants C_1, C_2 such that for any nonzero vector $v \in V$

$$C_1 \le \frac{|v|_1}{|v|_2} \le C_2$$

Prove that this gives an equivalence relation on norms.

Problem 2.

Prove that any two norms on a finite-dimensional vector space are equivalent. (*Hint: We did that last quarter!*)

Problem 3.

Consider the norms

$$|f|_1 = \int_0^1 |f(t)| dt$$
, and $|f|_{C^0} = \max\{|f(t)| : t \in [0,1]\}$

defined on $C^0[0, 1]$. Show that these norms are not equivalent.

Problem 4.

Prove that for any operators $A, B \in L(\mathbb{R}^n, \mathbb{R}^n)$ we have $||AB|| \le ||A|| \cdot ||B||$. Give an example of two 2×2 matrices such that the norm of the product is strictly less than the product of the norms.

Problem 5.

Consider the matrix $S = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$ and the linear transformation $S : \mathbb{R}^2 \to \mathbb{R}^2$ it represents. Calculate the norm of *S*.

Problem 6.

Prove that the set of invertible $n \times n$ matrices is open in the space of all $n \times n$ matrices. Is it dense?

Problem 7.

Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ and $g : \mathbb{R}^3 \to \mathbb{R}$ be defined by f(s,t) = (x,y,z), where $x(s,t) = st, y(s,t) = s \cos t, z(s,t) = s \sin t$, and g(x,y,z) = xy + yz + zx. Calculate the derivative of $g \circ f$ directly and then using the Chain Rule.

Problem 8.

Give an example of a function $f : \mathbb{R}^2 \to \mathbb{R}$ that is differentiable at 0 and discontinuous at any other point.

Problem 9.

If *f* and *g* are differentiable real valued functions in \mathbb{R}^n , prove that

$$\nabla(fg) = f\nabla g + g\nabla f$$

Problem 10.

Suppose *f* is differentiable mapping of \mathbb{R}^1 into \mathbb{R}^3 such that |f(t)| = 1 for every *t*. Prove that $f'(t) \cdot f(t) = 0$. Interpret this result geometrically.