Real Analysis

Sample Final

Problem 1.

Show that $\int_{0}^{\infty} x^{-\alpha} \sin x d x$ exists for $0<\alpha<2$.
Problem 2.
a) For what real values of x does the series

$$
f(x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}}
$$

converge?
b) Compute $f^{\prime}(1 / 3)$. Justify your answer.

Problem 3.

Suppose f is differentiable on $[a, b], f(a)=0$, and there is $M>0$ such that $\left|f^{\prime}(x)\right| \leq M|f(x)|$ for each $x \in[a, b]$. Prove $f \equiv 0$ on $[a, b]$.

Problem 4.
Suppose $f_{1} \in R[0, M]$, and $f_{n+1}(x)=\int_{0}^{x} f_{n}(t) d t, n \in \mathbb{N}$. Prove that $f_{n} \rightrightarrows 0$ on $[0, M]$.

Problem 5.

Let F be a collection of all finite linear combinations of function of the form $f_{a}(x)=e^{a x}, a \in \mathbb{R}$, restricted to $[0,1]$. Check that F is an algebra of functions. Is it dense in $C[0,1]$?

