Sample Final

Problem 1.

Show that $\int_0^\infty x^{-\alpha} \sin x dx$ exists for $0 < \alpha < 2$.

Problem 2.

a) For what real values of x does the series

$$f(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^2}$$

converge?

b) Compute f'(1/3). Justify your answer.

Problem 3.

Suppose *f* is differentiable on [a, b], f(a) = 0, and there is M > 0 such that $|f'(x)| \le M|f(x)|$ for each $x \in [a, b]$. Prove $f \equiv 0$ on [a, b].

Problem 4.

Suppose $f_1 \in R[0, M]$, and $f_{n+1}(x) = \int_0^x f_n(t)dt$, $n \in \mathbb{N}$. Prove that $f_n \Rightarrow 0$ on [0, M].

Problem 5.

Let *F* be a collection of all finite linear combinations of function of the form $f_a(x) = e^{ax}$, $a \in \mathbb{R}$, restricted to [0, 1]. Check that *F* is an algebra of functions. Is it dense in C[0, 1]?