# Real Analysis Math 205B, Winter 2012 

Midterm Exam

Tuesday, February 21, 2012 - 10:00am-10:50am

| Problem | 1 | 2 | 3 | 4 | 5 | $\Sigma$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points |  |  |  |  |  |  |

Student's name:

## Problem 1.

For which values of the real parameters $\alpha, \beta$ the function

$$
f_{\alpha, \beta}(x)= \begin{cases}0, & x=0 ; \\ x^{\alpha} \sin x^{\beta}, & x>0\end{cases}
$$

has bounded variation?

## Problem 2.

Suppose that $\left\{f_{\alpha}\right\}_{\alpha \in A}, f_{\alpha}:[0,1] \rightarrow \mathbb{R}$, is an equicontinuous family. Suppose also that $f_{\alpha}(0)=0$ for all $\alpha \in A$. Prove that $\left\{F_{\alpha}\right\}_{\alpha \in A}, F_{\alpha}:[0,1] \rightarrow \mathbb{R}$, $F_{\alpha}(x)=\int_{0}^{x} f_{\alpha}(t) d t$, is also an equicontinuous family.

## Problem 3.

For $x \geq 1$ denote by $l(x) \in \mathbb{N}$ the number of digits in the natural number $[x]$. Prove that the improper integral

$$
\int_{1}^{\infty} \frac{d x}{x(l(x))^{2}}
$$

converges.

## Problem 4.

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $f_{n}(x)=f(n x), n \in \mathbb{N}$, and the family of functions $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is equicontinuous on $[-1,1]$. What conclusion can you draw about $f$ ?

## Problem 5.

Prove that the space $C^{1}[0,1]$ (the space of continuously differentiable functions on $[0,1]$ with the metric $\|f-g\|_{C^{1}}=\max \left(\|f-g\|_{\infty},\left\|f^{\prime}-g^{\prime}\right\|_{\infty}\right)$ is connected.

