REAL ANALYSIS MATH 205B, WINTER 2012

Midterm Exam

Tuesday, February 21, 2012 — 10:00am-10:50am

Problem	1	2	3	4	5	Σ
Points						

Student's name:

Problem 1.

For which values of the real parameters α, β the function

$$f_{\alpha,\beta}(x) = \begin{cases} 0, & x = 0; \\ x^{\alpha} \sin x^{\beta}, & x > 0 \end{cases}$$

has bounded variation?

Problem 2.

Suppose that $\{f_{\alpha}\}_{\alpha \in A}$, $f_{\alpha} : [0,1] \to \mathbb{R}$, is an equicontinuous family. Suppose also that $f_{\alpha}(0) = 0$ for all $\alpha \in A$. Prove that $\{F_{\alpha}\}_{\alpha \in A}$, $F_{\alpha} : [0,1] \to \mathbb{R}$, $F_{\alpha}(x) = \int_{0}^{x} f_{\alpha}(t) dt$, is also an equicontinuous family.

Problem 3.

For $x \ge 1$ denote by $l(x) \in \mathbb{N}$ the number of digits in the natural number [x]. Prove that the improper integral

$$\int_{1}^{\infty} \frac{dx}{x \left(l(x)\right)^2}$$

converges.

Problem 4.

Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, $f_n(x) = f(nx)$, $n \in \mathbb{N}$, and the family of functions $\{f_n\}_{n \in \mathbb{N}}$ is equicontinuous on [-1, 1]. What conclusion can you draw about f?

Problem 5.

Prove that the space $C^{1}[0, 1]$ (the space of continuously differentiable functions on [0, 1] with the metric $||f - g||_{C^{1}} = \max(||f - g||_{\infty}, ||f' - g'||_{\infty})$ is connected.