HW# 8

Remark: This is the last homework this quarter, so it contains only 5 problems to allow sufficient time to prepare for the final exam.

Chapter 15, problems 8, 9, and also the following problems:

Problem 1.

Suppose the trigonometric polynomial

$$T(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$

is represented as

$$T(x) = \sum_{m=-n}^{n} c_m e^{imx}, \ c_m \in \mathbb{C}.$$

Find the relation between a_k , b_k , and c_k .

Problem 2.

Under what condition on the coefficients $\{c_m\}$ the trigonometric polynomial

$$T(x) = \sum_{m=-n}^{n} c_m e^{imx}, \ c_m \in \mathbb{C}, \ x \in \mathbb{R},$$

is real-valued?

Problem 3.

Let f(x) be Riemann integrable on $[0, 2\pi]$, and let

$$g(t) = \int_0^{2\pi} f(x) \sin tx dx, \ t \in \mathbb{R}.$$

a) Prove that g(t) is uniformly continuous on \mathbb{R} ;

b) Prove that $\lim_{n\to\infty} g(n) = 0$.