Real Analysis

HW \# 8

Remark: This is the last homework this quarter, so it contains only 5 problems to allow sufficient time to prepare for the final exam.

Chapter 15, problems 8, 9, and also the following problems:

Problem 1.

Suppose the trigonometric polynomial

$$
T(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

is represented as

$$
T(x)=\sum_{m=-n}^{n} c_{m} e^{i m x}, \quad c_{m} \in \mathbb{C}
$$

Find the relation between a_{k}, b_{k}, and c_{k}.

Problem 2.

Under what condition on the coefficients $\left\{c_{m}\right\}$ the trigonometric polynomial

$$
T(x)=\sum_{m=-n}^{n} c_{m} e^{i m x}, \quad c_{m} \in \mathbb{C}, x \in \mathbb{R}
$$

is real-valued?

Problem 3.
Let $f(x)$ be Riemann integrable on $[0,2 \pi]$, and let

$$
g(t)=\int_{0}^{2 \pi} f(x) \sin t x d x, \quad t \in \mathbb{R}
$$

a) Prove that $g(t)$ is uniformly continuous on \mathbb{R};
b) Prove that $\lim _{n \rightarrow \infty} g(n)=0$.

