Real Analysis

HW \# 5

Chapter 14, problems 6, 7, 12, 18, 25,
and also the following problems:
Problem 1.
Does the integral $\int_{0}^{\infty} \sin \left(x^{2}\right) d x$ converge?

Problem 2.

Suppose $f:[0,+\infty) \rightarrow \mathbb{R}$ is non-negative and continuous, and $\int_{0}^{\infty} f(x) d x$ converges. Does it imply that $f(x) \rightarrow 0$ as $x \rightarrow \infty$?

Problem 3.

Does the integral $\int_{0}^{\infty}\left|\sin \left(x^{2}\right)\right| d x$ converge?
Problem 4.
Suppose $f:[0,+\infty) \rightarrow \mathbb{R}$ is continuous, and there exists a limit

$$
\lim _{x \rightarrow \infty}\left(f(x)+\int_{0}^{x} f(t) d t\right)=L<+\infty
$$

Prove that $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

Problem 5.

Consider the "dyadic ruler function" $g(x):[0,1] \rightarrow \mathbb{R}$,

$$
g(x)= \begin{cases}\frac{1}{2^{n}}, & \text { if } x=\frac{k}{2^{n}}, \text { where } k \text { is an odd natural number; } \\ 0, & \text { otherwise } .\end{cases}
$$

What is its set of discontinuities? At which points its oscillation $\geq \mu>0$? Is it Riemann integrable?

