Midterm Sample

Problem 1.

Prove that the following improper integral converges: $\quad \int_{0}^{\infty} \frac{\cos (2 x)}{x^{1 / 3}} d x$

Problem 2.

Suppose U is an open subset of \mathbb{R}, containing a point x_{0}, f and g are real-valued functions, defined on U, such that g is continuous, f is differentiable, and $f\left(x_{0}\right)=0$. Prove that the froduct $f g$ is differentiable at x_{0}.

Problem 3.

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that f, f^{\prime}, and $f^{\prime \prime}$ are all bounded and continuous realvalued functions. Assume also that $f(0)=f^{\prime}(0)=0$. Analyze the convergence of the series $\sum_{n=1}^{\infty} f\left(\frac{x}{n}\right)$, i.e. determine for which values of x the series is convergent, and for which values of x the series converges absolutely. Is the convergence uniform? Justify all your claims.

Problem 4.

Determine whether the family of functions $f_{\alpha}:[0,1] \rightarrow \mathbb{R}$, given by the formula

$$
f_{\alpha}(x)=\frac{1}{1+e^{\alpha x}} \text { for } x \in[0,1], \alpha \in[1, \infty)
$$

is equicontinuous on $[0,1]$. Justify your answer.

Problem 5.

Let $f_{n}, n=1,2, \ldots$ and f be Riemann integrable real-valued functions defined on $[0,1]$. For each of the following statements, determine whether the statement is true or not:
(a) If $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=0$, then $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right|^{2} d x=0$.
(b) If $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right|^{2} d x=0$, then $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=0$.

