Real Analysis Math 205A, Fall 2011

Final Exam
Thursday, November 3, 2011 - 10:0-10:50am

Problem	1	2	3	4	5	Σ
Points						

Student's name:

Problem 1.

Prove that

$$
\liminf _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) \geq \liminf _{n \rightarrow \infty} a_{n}-\limsup _{n \rightarrow \infty} b_{n}
$$

for any real sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$.

Problem 2.

Let Σ^{2} be the space of all infinite sequences of 0 's and 1 's,

$$
\Sigma^{2}=\left\{\bar{\omega} \mid \bar{\omega}=\omega_{1} \omega_{2} \omega_{3} \ldots \omega_{k} \ldots, \omega_{i} \in\{0,1\}\right\}
$$

Show that

$$
d(\bar{\omega}, \bar{u})= \begin{cases}0, & \text { if } \bar{\omega}=\bar{u} \\ 2^{-m}, & \text { if } \omega_{i}=u_{i} \text { for } i<m, \text { but } \omega_{m} \neq u_{m}\end{cases}
$$

is a metric on Σ^{2}.

Problem 3.

Suppose that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely. Does it imply that the series

$$
\sum_{n=1}^{\infty}\left(a_{n}+a_{n}^{2}+\ldots+a_{n}^{n}\right)
$$

converges?

Problem 4.

Fix $k \in \mathbb{N}$ and define $f: l_{1} \rightarrow \mathbb{R}$ by $f(x)=x_{k}$ (here $\left.x=\left(x_{1}, \ldots, x_{k}, \ldots\right) \in l_{1}\right)$. Show that f is continuous.

Problem 5.

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ define $|x|=\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2}$. Suppose f maps \mathbb{R}^{n} onto \mathbb{R}^{n} in such a way that $|f(x)-f(y)| \geq|x-y|$ for any $x, y \in \mathbb{R}^{2}$. Suppose A is an open subset of \mathbb{R}^{n}. Prove that $f(A)$ is open.

