REAL ANALYSIS MATH 205A, FALL 2011

Midterm Sample

Problem 1.

Define a sequence $(a_1, a_2, ..., a_n, ...)$ recursively by setting $a_1 = 1, a_2 = 3$, and $a_{n+2} = (a_{n+1} + 2a_n)/3$ for $n \ge 1$. Prove that the sequence $\{a_n\}$ converges, and compute its limit.

Problem 2.

Prove that \mathbb{R}^2 is equivalent (i.e. has the same cardinality) to \mathbb{R}^1 .

Problem 3.

Prove that any subset of a metric space can be written as

- a) a union of closed sets;
- b) an intersection of open sets.

Problem 4.

Which of the following metric spaces are separable (explain!):

a) l_1 ; b) l_2 ; c) l_∞ ; d) \mathbb{R}^n .

Problem 5.

Let $f : [a, b] \to \mathbb{R}$ be a real-valued function defined on a closed bounded interval [a, b] in \mathbb{R} . We define the graph of the function f to be set Γ_f of points $(x, y) \in \mathbb{R}^2$ such that $x \in [a, b]$ and y = f(x).

Prove or Disprove: The function f is continuous on [a, b] if, and only if, the set Γ_f is a closed subset of \mathbb{R}^2 .