Real Analysis
 Math 205A, Fall 2011

Midterm Sample

Problem 1.

Define a sequence $\left(a_{1}, a_{2}, \ldots a_{n}, \ldots\right)$ recursively by setting $a_{1}=1, a_{2}=3$, and $a_{n+2}=\left(a_{n+1}+2 a_{n}\right) / 3$ for $n \geq 1$. Prove that the sequence $\left\{a_{n}\right\}$ converges, and compute its limit.

Problem 2.
Prove that \mathbb{R}^{2} is equivalent (i.e. has the same cardinality) to \mathbb{R}^{1}.

Problem 3.

Prove that any subset of a metric space can be written as
a) a union of closed sets;
b) an intersection of open sets.

Problem 4.

Which of the following metric spaces are separable (explain!):
a) l_{1};
b) l_{2};
c) l_{∞};
d) \mathbb{R}^{n}.

Problem 5.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a real-valued function defined on a closed bounded interval $[a, b]$ in \mathbb{R}. We define the graph of the function f to be set Γ_{f} of points $(x, y) \in \mathbb{R}^{2}$ such that $x \in[a, b]$ and $y=f(x)$.
Prove or Disprove: The function f is continuous on $[a, b]$ if, and only if, the set Γ_{f} is a closed subset of \mathbb{R}^{2}.

