Real Analysis
 Math 205A, Fall 2011

Homework 2, due October 14, 2011 in class

Problem 1.
Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=a$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\ldots+a_{n}}{n}=a .
$$

Problem 2.

Calculate $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right)$.
Problem 3.
If $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}}, n \in \mathbb{N}$, prove that $\left\{s_{n}\right\}$ converges, and $s_{n}<2$ for all $n \in \mathbb{N}$.

Problem 4.

If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.

Problem 5.

Prove that the product of two absolutely converging series converges absolutely.

Problem 6.
Test for convergence or divergence:

$$
\sum_{n=1}^{\infty} \frac{\log n}{n^{\frac{3}{2}}}
$$

Problem 7.

For which values of $p>0$ does the series

$$
\sum_{n=1}^{\infty} \frac{n^{p}}{n!}
$$

converges?

Problem 8.

Find the values of $x \in \mathbb{R}$ for which the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{n}}{2^{n} n^{2}}
$$

converges.
Problem 9.
Prove that the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(n-1)}{n^{2}+1}
$$

converges. Does it converge absolutely?
Problem 10.
If $\sum_{n=1}^{\infty} a_{n}$ is a converging series of positive terms, show that $\sum_{n=1}^{\infty} a_{n}^{p}$ also converges for every $p>1$.

