Final exam (sample), v. 1

Problem 1.

Find all singular points of the vector field

$$
\left\{\begin{array}{l}
\dot{x}=\sin y \\
\dot{y}=\sin x
\end{array}\right.
$$

and determine their stability (both Lyapunov and asymptotic).

Problem 2.

Plot the phase portrait for the Newton equation

$$
\ddot{x}=-4 x^{3}+4 x
$$

Problem 3.

Let $f:[0,1] \rightarrow[0,1]$ be a continuous mapping. Is it possible that f has a periodic orbit of prime period 2011, but does not have a periodic orbit of prime period 2010?

Problem 4.

Find all fixed points of the map $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}, f(x)=2 x-x^{2}$, and determine their stability.

Problem 5.

Find the box counting dimension of the subset of $[0,1]$ consisting of real numbers without digit " 7 " in their decimal expansion.

Final exam (sample), v. 2

Problem 1.

Show that for every value of the real parameter μ the singular point $(0,0)$ of the system

$$
\left\{\begin{array}{l}
\dot{x}=2 x+(1+\mu) y \\
\dot{y}=(1-\mu) x+y
\end{array}\right.
$$

is not Lyapunov stable.

Problem 2.

Plot the phase portrait of the system

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=x^{2}-1
\end{array}\right.
$$

Problem 3.

Show that the first order system $\dot{x}=\mu-x^{3}+x$ undergoes two saddle-node bifurcations as μ varies, and find the values of μ at the bifurcation points.

Problem 4.

Let $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ be a map given by

$$
f(x)= \begin{cases}4 x, & \text { if } x \leq \frac{1}{2} \\ -4 x+4, & \text { if } x>\frac{1}{2}\end{cases}
$$

Describe the set

$$
C=\left\{x \in \mathbb{R} \mid\left\{f^{n}(x)\right\}_{n \in \mathbb{N}} \text { is bounded }\right\},
$$

and find its box counting dimension.

Problem 5.

Find all fixed points of the map $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}, f(x)=x^{2}-2$, and determine their stability.

