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Abstract

We study the algebraization problem for principal bundles with reductive structure groups
on a non-proper formal scheme. When the formal scheme can be compactified by adding a closed
subset of codimension at least 3, we show that any such bundle admits an algebraization. For
codimension 2 we provide a necessary and sufficient condition.

1 Introduction

This work is a contribution toward an algebraic understanding of the Uhlenbeck compactification.
Recall, cf. [DK] that for a complex projective surface S the moduli space Mn of semistable vector
bundles with fixed rank, determinant and c2 = n is non-compact, but the union Uhln =

∐
s≥0 Mn−s×

SymsS can be given a topology of a compact space (since one deals with semistable bundles for
s À 0 the space Mn−s will be empty). We will call Uhln the Uhlenbeck moduli space although
sometimes this name is reserved for the closure of Mn in Uhln.

Some time ago, see e.g. [Li], [BFG], [FGK], the Uhlenbeck moduli space started to appear in
algebraic geometry and higher dimensional Langlands Program. For instance, it is a convenient tool
for the study of higher versions of Hecke correspondences which modify a vector bundle on S (more
generally, a principal bundle) along a divisor, obtaining a new bundle. For several reasons, we would
like to have a definition of Uhln as a “functor”, i.e. we want to be able to describe in geometric terms
the set of maps F (T ) (actually, a category of maps) from any test scheme T = Spec(A) to Uhln.
Firstly, that would allow to define Uhln over any field k and not to require stability. Secondly, in the
study of the cohomology of Uhln and the action of Hecke correspondences on it, one needs to deal
with the phenomenon of unexpected dimension of Uhln. A possible approach involves defining a
“derived moduli space” DUhln in the sense of [Lu] which would amount to considering more general
“spaces” T . Thus, defining Uhln as a functor is a necessary preliminary step to constructing DUhln.

Very roughly, it is expected that a map T → Uhln should be described by a vector bundle F on an
open subset U ⊂ T ×S such that its complement Z is finite over T , a family ξ of effective zero cycles
on X parametrized by T plus an agreement condition between ξ and F . Such a definition gives a
“reasonable space” Uhln if it satisfies a criterion due to Artin, cf. [Ar], or its “derived” generalization
proved in [Lu]. The most difficult part of Artin’s criterion is the effectiveness condition: if A is a
complete noetherian local k-algebra with maximal ideal m and Ap = A/mp+1 one needs to show
that F (Spec(A)) = lim←− F (Spec(Ap)). Ignoring the family of zero cycles ξ (as will be done in this

paper), if X = Spec(A)×k S and X̂ is its formal completion along the fiber over the closed point of
Spec(A), we are trying to find whether a bundle F on an open subset Û ⊂ X̂ comes from a bundle
F on an open subset U ⊂ X. Such F is called an algebraization of F .
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In this paper we prove that, when S has arbitrary dimension and Û has complement of codi-
mension ≥ 3, algebraization always exists (for vector bundles and principal bundles over reductive
groups). If Û has complement of codimension ≥ 2 then algebraization exists only under an additional
condition (which, in the Uhlenbeck functor case, guaranteed by the presence of ξ).

Earlier similar questions were studied for coherent sheaves on proper schemes by Grothendieck,
see [EGAIII], and in the case of Lefschetz type theorems by Grothendieck and Raynaud in [SGA2],
and [R]. Although these results do not apply to our case directly, our proof is based on the tools
developed in [EGAIII], [SGA2].

In Section 2 we fix the notation, give examples illustrating some issues to be encountered,
and prove algebraization results for vector bundles, summarized in Corollary 8. In Section 3 we
formulate an algebraization criterion for principal bundles over reductive groups, see Theorem 9.
Finally, Section 4 provides a categorical restatement of our results, see Theorem 13.

Acknowledgements. The author thanks V. Ginzburg who first formulated the problem of defining
the Uhlenbeck functor and whose unpublished preprint on it (written jointly with the present author)
served as a principal motivation for this work. Many thanks are also due to V. Drinfeld who
conjectured the statement of Theorem 6(i), brought the author’s attention to the references [SGA2],
[Ha1], and also suggested Example 3 in Section 2.2 below.

This work was supported by the Sloan Research Fellowship.

2 Algebraization for vector bundles.

2.1 Setup

We refer the reader to Expose III in [SGA2] regarding basic properties of depth and its relation to
local cohomology. Let S be an irreducible noetherian scheme of finite type over a field k. We will as-
sume that S is proper and satisfies Serre’s S2 condition: for any s ∈ S, depthsOS ≥ min(dimOS,s, 2).
Let V ⊂ S be an open subset with closed complement of codimension ≥ 2 in S and A a com-
plete noetherian local k-algebra with residue field K = A/m and associated graded K-algebra
gr(A) = ⊕p≥0grp(A) = ⊕p≥0m

p/mp+1. Define X = S ×k Spec(A) and

Xp = S ×k Spec(A/mp+1); Up = V ×k Spec(A/mp+1). p ≥ 0

Let ip : Up → Xp be the natural open embeddings. The completion X̂ of X along X0 may be viewed
at the limit of {Xp}p≥0, cf. Section 10.6 in [EGAI]. The limit of ip gives an open formal subscheme
î : Û → X̂. The ideal sheaf of X0 in X will be denoted by by JX and the closed subset X0 \ U0 by
Z0. Finally, f : X → Spec(A) is the natural proper projection and, for any s ∈ Spec(A), Xs stands
for the fiber f−1(s).

Observe that X may no longer satisfy the S2 condition (since we made no depth assumptions on
A). However, for f(x) = s one can lift a regular sequence from OXs,x to OX,x which gives

Lemma 1 For any x ∈ X with f(x) = s, depth OX,x ≥ min(dimOXs,x, 2). ¤

Consider a vector bundle F on Û , i.e. a sequence of vector bundles Fp on Up with isomorphisms

Fp|Up−1 ' Fp−1; p ≥ 1. (1)
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Definition. We will say that a vector bundle F on Û admits an algebraization (U,F ) if there exists
an open subset U ⊂ X with U ∩X0 = U0 and a vector bundle F on U such that F is isomorphic to
the completion of F , i.e. for JU = JX |U there exist isomorphisms Fp ' F/J p+1

U F compatible with
(1). In Section 3 we apply similar terminology to principal bundles.

Let Z be the closed subset X \ U and i : U ↪→ X the open embedding.

Lemma 2 Assume that codimX0Z0 ≥ 2 and an open subset U ⊂ X satisfies U ∩X0 = U0. For any
s ∈ Spec(A), define Zs = Z ∩Xs. Then codimXsZs ≥ 2 for all s ∈ SpecA and codimXZ ≥ 2.

Proof. Since f is proper, the image f(Zs) contains the unique closed point s0 ∈ Spec(A). Therefore
Zs ∩ X0 ⊂ Z0 is not empty. By semicontinuity of dimensions in the fibers we have codimXsZs ≥
codimX0(Zs ∩X0) ≥ codimX0Z0 = 2. The second assertion of the lemma follows from the first.¤

In our discussion, we repeatedly use the following results

Proposition 3 In the notation introduced above

(i). Completion along X0 induces an equivalence between the category of coherent sheaves on X
and the category of coherent sheaves on the formal scheme X̂.

(ii). For any locally free sheaf F (resp. F0) on U (resp. U0) its direct image i∗F (resp (i0)∗F0) is
coherent. If codimX0Z0 ≥ 3 then R1(i0)∗F0 is also coherent.

(iii). Let E be a coherent sheaf on X and ψ : E → i∗i∗E the canonical morphism. Then ψ is an
isomorphism if and only if depthxE ≥ 2 for any point x ∈ Z = X \ U .

Proof. Part (i) follows from Corollary 5.1.6 in [EGAIII]. To check the coherence of i∗F , by Corollary
VIII.2.3 in [SGA2] it suffices to check that depthxF ≥ 1 for any point x ∈ U such that {x} ∩ Z has
codimension 1 in {x}. But Lemma 1 and local freeness of F imply that any x with depthxF = 0
must be generic in its fiber, and the Lemma 2 implies that {x} ∩Z would in fact have codimension
2 in {x}. The same proof applies to (i0)∗F0. If codimX0Z0 ≥ 3 then the above argument can also
by applied to R1(i0)∗F0 once we show that depthxF0 ≥ 2 for any x ∈ U0 such that {x} ∩ Z0 has
codimension 1 in {x}. But by S2 condition depthxF0 ≤ 1 can only hold for points x of codimension
≤ 1 in U0, which would imply that {x} ∩ Z0 has codimension ≥ 2 in {x}. This proves (ii). Part
(iii) is a particular case of Corollary II.3.5 in loc.cit. ¤

2.2 Examples.

The first example with codimX0Z0 = 3 and K = k shows that one may not be able to take
U = U0 ×k Spec(A).

Example 1. Take S = X0 = P3 with homogeneous coordinates [x : y : z : w] and set V = U0 =
S \ [0 : 0 : 0 : 1], A = k[[t]] (formal power series in t). Define vector bundles Fp as kernels of

ϕp : O⊕3
Up
→ O(1)Up

; (s1 ⊕ s2 ⊕ s3) 7→ s1x + s2y + s3(z − tw).

Observe that ϕp is surjective since t is nilpotent on Up and [0 : 0 : 0 : 1] /∈ Up.

Lemma 4 The bundle F admits no algebraization (U,F ) with U = U0 ×k Spec(A).
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Proof. Set F to be the kernel of morphism ϕ : O⊕3 → O(1)of vector bundles on U , given by the
same formula as for ϕp. By definition, ϕ is not surjective only at P = [0 : 0 : t : 1] ∈ U which
projects to the generic point ξ = Spec(k[t−1, t]]) ∈ Spec(A). The specialization at t = 0 is not in
U0, hence P is closed in U and U \ P is an open subset containing U0. Since on U \ P we have the
short exact sequence of locally free sheaves

0 → F → O⊕3 → O(1) → 0,

the restriction of F to each Up is given by Fp, i.e. F is indeed the completion of F . On the other
hand, F is not locally free at P : from 0 → F → O⊕3

U → OU → kP → 0 we immediately get
Ext1(F,OU ) ' Ext3(kP ,O) ' kP since the middle two terms are projective.

Suppose that E is a locally free sheaf on U with completion isomorphic to F . We will see later
in Proposition 7(ii) that in such situation we must have: î∗E ' î∗F ' î∗F hence by Proposition
3(i), i∗F ' i∗E which contradicts Ext1(F,OU ) 6= 0. ¤

The second example illustrates that for codimX0 Z0 = 2, a pair (U,F ) may not exist at all.

Example 2. Consider A = k[[t]] and S = X0 = P2 with homogeneous coordinates (x : y : z). Let
V = U0 = X0 \P where P = (0 : 0 : 1) and define a rank 2 bundle Fp on Up = U0×k Spec(k[t]/tp+1)
as follows. The affine open subsets U

(x)
p , U

(y)
p given by non-vanishing of x, resp. y, form a covering

of Up and we can glue trivial rank 2 bundles on these open sets, using the transition function
(

1
∑p

m=0

(
tz2

xy

)m

0 1

)

on U
(x)
p ∩ U

(y)
p . Clearly Fp|Up−1 ' Fp−1 in a natural way, and we obtain a vector bundle F on Û .

Lemma 5 There exists no vector bundle F on U = X \ Z with F̂ ' F|bU\(Z∩U0)
, for any closed

subset Z ⊂ X such that Z0 ⊂ (Z ∩X0) and codimX0(Z ∩X0) ≥ 2.

Proof. Suppose otherwise and take the direct image of F with respect to the open embedding
i : U → X. By Proposition 3, i∗F is coherent and has depth ≥ 2 at all codimension 2 points of X.
Since modules of depth 2 over two-dimensional regular local rings are free by Auslander-Buchsbaum
formula, i∗F will be locally free in codimension two. Therefore shrinking Z we can assume that Z
has codimension 3 in X which in our case means that Z is a finite set of points in X0. Then the
short exact sequence of sheaves on X \ Z

0 → F
tp+1−→ F → Fp → 0,

(we identify Fp with its direct image on X \Z abusing notation), gives a long exact sequence on X:

0 → i∗F
tp+1−→ i∗F → i∗Fp → R1i∗F

tp+1−→ R1i∗F

where R1i∗F is coherent for the same reason as in Proposition 3(ii). Since R1i∗F is supported at
the finite set Z of closed points, it has finite length at each of them and the last arrow is zero for
p ≥ p0. For such p we can write i∗F → i∗Fp → R1i∗F → 0 which gives

i∗F ⊗OX
k(P ) → i∗Fp ⊗OX

k(P ) → R1i∗F ⊗OX
k(P ) → 0
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To prove the lemma it suffices to show that dimk i∗Fp ⊗OX
k(P ) is unbounded as p →∞.

To that end, replace X0 with the affine open subset X̃0 ' A2 given by non-vanishing of z, with
affine coordinates u = x

z , v = y
z . Set W0 = U0 ∩ X̃0 and similarly for X̃p, Wp, W

(x)
p and W

(y)
p . Then

i∗Fp| eXp
is the sheaf associated to H0(Wp, Fp|Wp) viewed as a module over A(X̃p) = k[u, v, t]/tp+1.

By its definition, Fp is an extension of OUp with OUp which leads to long exact sequence

0 → H0(Wp,OWp) → H0(Wp, Fp|Wp) → H0(Wp,OWp) → H1(Wp,OWp).

where the last arrow sends the constant function 1 to the class of the extension. Let Mp be the
kernel of the last arrow. It suffices to show that dimk(Mp/〈u, v, t〉Mp) is unbounded. Computing
Mp via the affine covering {W (x)

p , W
(y)
p } we identify it with the kernel of

k[u, v, t]/tp+1 πp◦ψp−→ 1
uv

k[u−1, v−1, t]/tp+1

where ψp is multiplication by
∑p

l=0

(
t

uv )l (i.e. the upper right corner of the transition matrix in the
definition of Fp), and πp is the natural projection

k[u, u−1, v, v−1, t]/tp+1 → 1
uv

k[u−1, v−1, t]/tp+1

It follows that Mp is generated by the monomials tp, tiup−i, tivp−i for i = 0, . . . , p− 1, thus

dimk(Mp/〈u, v, t〉Mp) = 2p + 1 →∞ as p →∞. ¤

Example 3. (Suggested to the author by V. Drinfeld.) The bundle in the previous example has
trivial determinant, but if we don’t insist on that, there is a rank one example: glue two trivial line
bundles on U

(x)
p , U

(y)
p using the transition function

∑p
m=0

(
tz2

xy

)m. The resulting line bundle admits
no algebraization since again dimk(ip)∗Fp ⊗OX

k(P ) is not bounded as p →∞.

2.3 Algebraization of vector bundles.

Theorem 6 In the notation of section 2.1,

(i). If codimX0Z0 ≥ 3 then F admits an algebraization.

(ii). If codimX0Z0 ≥ 2 and the cokernel of the natural morphism (ip)∗Fp|Xp−1 → (ip−1)∗Fp−1 is
supported in codimension ≥ 3 for all p large enough, then F admits an algebraization.

(iii). In either of the two situations (codimension ≥ 3 or codimension ≥ 2 with the additional support
assumption) the projective system {(ip)∗Fp}p≥0 satisfies the Mittag-Leffler condition, the direct
image î∗F is coherent and isomorphic to lim←− (ip)∗Fp.

Proof. We split the proof of (i) and (ii) in a number of steps. Part (iii) will follow from Step 2.

Step 1.
Suppose that î∗F is coherent. By Proposition 3(i) there exists a unique coherent sheaf E on X such
that Ê ' î∗F . The subset U ⊂ X of points where E is locally free is open and contains U0 (e.g. by
Nakayama’s Lemma). Shrinking U if necessary we can achieve U ∩X0 = U0. Now set F = E|U .
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Step 2.
Therefore (i) and (ii) are reduced to showing that, under the conditions stated, î∗F is coherent. To
that end we modify the argument of 0.13.7.7 in [EGAIII] which will also prove (iii). First, as in
0.13.7.2 of loc. cit., we choose injective resolutions Fk → L•k such that L•k+1/J k+1

U L•k+1 ' L•k and
the natural filtrations by J n

U (. . .) agree with those on Fk. Each î∗(L•k) is a filtered complex and has
a spectral sequence with E1 term given by

Epq
1 = Rp+q î∗(J p

UFk/J p+1
U Fk)

As in 0.13.7.3 of loc.cit. we pass to the limit as k →∞ and get a spectral sequence with

Ep,q
1 = Rp+q î∗(Fp/Fp+1) ' Rp+q î∗(F0)⊗K (mp/mp+1) = Rp+q î∗(F0)⊗K grp(A)

We are interested in the components

E0
1 =

⊕

p+q=0

Ep,q
1 = î∗(F0)⊗K gr(A); E1

1 =
⊕

p+q=1

Ep,q
1 = R1̂i∗(F0)⊗K gr(A).

We would like to show that the spectral sequence converges at the E0 = ⊕Ep,−p terms. Note that
each E1

k+1 = ⊕Ep,1−p
k+1 is a quotient of a subsheaf in E1

k while each E0
k+1 is a subsheaf E0

k (since
Ep,−1−p terms are zero). Taking successive preimages of the boundaries in Er−1, Er−2, . . . , E1 we
get a sequence of boundary subsheaves B1 ⊂ B2 ⊂ B3 ⊂ . . . ⊂ E1

1 , and taking preimages of cycles
in Ek we get a sequence of cycle subsheaves E0

1 ⊃ Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . . By 0.13.7.6 in loc.cit. these
are actually OX0 ⊗K gr(A)-submodules.

Suppose that sequence of cycles stabilizes, i.e. for some r0 one has Zr = Zr0 whenever r ≥ r0,
then by 0.13.7.4 in [EGAIII], the projective system {̂i∗(Fk)}k≥0 satisfies the Mittag-Leffler condition
and the associated graded of î∗(F) is precisely Zr0 ⊂ î∗(F0) ⊗K gr(A). But î∗(F0) is a coherent
by Proposition 3(ii), hence the subsheaf gr(̂i∗F) ⊂ î∗(F0) ⊗K gr(A) is a coherent OX0 ⊗K gr(A)-
module, by the noetherian property of X0 and A. By loc.cit. 13.7.7.2, î∗F is itself coherent on X̂.
Also, î∗F ' lim←− (ip)∗Fp by 0.13.7.5.1 in loc.cit..

Step 3.
Now the assertion of the theorem is reduced to showing that the sequence of cycles Z1 ⊃ Z2 ⊃ . . .
stabilizes. By definition of Zi this is equivalent to saying that the higher differentials of the spectral
seqence dr : E0

r → E1
r become zero for r ≥ r0. That in turn is equivalent to saying that the sequence

of boundaries B1 ⊂ B2 ⊂ B3 ⊂ . . ., also stabilizes.
If codimX0Z0 ≥ 3 by Proposition 3(ii), R1(i0)∗F0 is also coherent and {Br}r≥1 stabilizes by the

noetherian property of R1(i0)∗F0 ⊗K gr(A), which proves (i). If codimX0Z0 ≥ 2 we need to find a
coherent subsheaf of R1(i0)∗F0 ⊗K gr(A) containing Br for all r ≥ 1.

Step 4.
At this point we reduced (ii) to showing that, under the assumptions stated, there exists a coherent
subsheaf G ⊂ R1(i0)∗F0 such that Br ⊂ G⊗K gr(A) for all r. By 0.11.2.2 in [EGAIII] for r ≥ p the
term Bp,1−p

r is the image of the connecting homomorphism

î∗Fp → î∗Fp−1
ρp→ R1̂i∗F0 ⊗K (mp/mp+1)

in the long exact sequence obtained by applying Rî∗ to the short exact sequence on Û :

0 → F0 ⊗K (mp/mp+1) → Fp → Fp−1 → 0.
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Observe that by our assumptions each Im(ρp) is coherent, and supported in codimension ≥ 3 for
p À 0. Thefore we are done once we show that the subsheaf of R1(i0)∗F0 formed by all sections
with support in codimension ≥ 3, is coherent whenever codimX0Z0 ≥ 2 and F0 is locally free on U0.

Step 5.
Set Q = (i0)∗F0, a coherent sheaf on X0 by Step 2. By the standard exact sequence we have
H2

Z0
Q = R1(i0)∗Q|U0 = R1(i0)∗F0, so it suffices to show that H0

≥3H2
Z0

Q is coherent where H0
≥3 is

the functor of sections supported in codimension ≥ 3. Let Hi
≥3 be the higher derived functors.

First, the standard spectral sequence for the composition of functors RH0
≥3, RH0

Z0
has Ep,q

2 =
Hp
≥3Hq

Z0
Q. But Hi

Z0
Q = 0 for i = 0, 1 by Proposition 3(iii), so

H0
≥3H2

Z0
Q ' H2

ΦQ

where the local cohomology H2
Φ has family of supports Φ = {all codim ≥ 3 closed subsets in Z0}.

Step 6.
To show that H2

ΦQ is coherent note that by [Ha2] the scheme X0 has a dualizing complex ω of the
form

0 → K0 → . . . → KdimK X0 → 0

with Ki =
⊕

dimOX0,x=i
J(x) and each J(x) is the direct image of the injective envelope of the residue

field k(x) with respect to the natural morphism ix : Spec(OX0,x) → X0. By definition of a dualizing
complex, the double complex Kp,q = Hom(Hom(Q,K−q),Kp) has total complex quasi-isomorphic
to Q. Moreover, by Proposition IV.2.1 and the remark on page 123 in [Ha2], the total complex is a
flasque resolution of Q and hence can be used to compute H•Φ(Q). This leads to a spectral sequence:

Ep,q
2 = ExtpΦ(Ext−q(Q,ω), ω) ⇒ Hp+q

Φ (Q)

where ExtpΦ = Rp(ΓΦ ◦Hom) and the Ext sheaves are understood in the sense of hypercohomology.
Only finitely many terms Ep,q

2 with p+q = 2 will be non-trivial: since Kq are injective, the nonva-
nishing implies 0 ≤ (−q) ≤ dimK X0. Thus it suffices to show that Ep,2−p

2 = ExtpΦ(Extp−2(Q,ω), ω)
is coherent for p ≥ 2.

An important observation which we use below is that Kp has no sections supported in codimen-
sion ≥ p + 1.

Step 7.
First observe that Ext2Φ(G,ω) = 0 for any quasi-coherent sheaf G since K2 has no sections supported
in codimension ≥ 3 and hence no sections with support in Φ. Hence we can assume that p ≥ 3.

We first claim that codimX0Supp(Extp−2(Q,ω)) = d ≥ p ≥ 3. In fact, let x ∈ Supp(Extp−2(Q,ω))
be a point with dimOX0,x = d. By local duality, cf. V.6 in [Ha2], the nonvanishing of the stalk
Extp−2(Q,ω)x is equivalent to the non-vanishing of local cohomology Hd+2−p

x (Q) which implies
d + 2 − p ≥ 0 and d ≥ p − 2 ≥ 1. If d = 1 then p = 3 and also x /∈ Z0 hence the stalk Qx is free.
Thus H0

x(O) 6= 0, contradicting the S2 assumption. If d ≥ 2 then applying the S2 condition when
x /∈ Z0 and Proposition 3(iii) when x ∈ Z0 we actually have d + 2− p ≥ 2 so d ≥ p as required.

By primary decomposition, the coherent sheaf Extp−2(Q,ω) admits a finite filtration by coherent
subsheaves such that all successive quotients have irreducible supports of codimension ≥ p. By the
standard long exact sequence for Ext•Φ(·, ω) is suffices to show that ExtpΦ(G,ω) is coherent whenever
p ≥ 3 and G is a coherent sheaf with irredicuble support Y of codimension ≥ p.
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If Y * Z0 for any W in the family Φ, the intersection Y ∩W is not equal to Y and therefore has
codimension ≥ p + 1. But then ExtpΦ(G, ω) = 0 because any section ρ of Hom(G,Kp) representing
a class in ExtpΦ(G,ω) has zero values since Kp has no sections supported in codimension ≥ p + 1. If
Y ⊆ Z0 then Y is an element of Φ and ExtpΦ(G,ω) ' Extp(G,ω) since all sections of Hom(G,Kt)
have support in Φ. But Extp(G,ω) is coherent which finishes the proof. ¤

The converse to Theorem 6 can be formulated as follows.

Proposition 7 In the setting of Section 2.1, assume that F admits an algebraization (U,F ) and
view each Fp as a sheaf on U . Then

(i). The cokernel of i∗Fp → i∗Fp−1 is supported in codimension ≥ 3 for p À 0.

(ii). The isomorphism F̂ ' F extends to direct images: î∗F ' î∗F . In particular, î∗F is coherent.

Proof. To prove (i) observe that the cokernel of i∗Fp → i∗Fp−1 is is annihilated by JX , being a
subsheaf of R1i∗F0 ⊗K grp(A), and is therefore isomorphic to the cokernel of i∗Fp|X0 → i∗Fp−1|X0 .

We will first show that the natural map i∗Fp|X0 → i∗F0 is an embedding of sheaves for all p.
Considering the exact sequence

0 → JX(i∗Fp) → i∗Fp → i∗Fp|X0 → 0

and its map to the first terms of the sequence

0 → i∗(JUFp) → i∗Fp → i∗F0 → R1i∗(JUFp) → . . .

we see that i∗Fp|X0 → i∗F0 is an embedding precisely when the natural map JX(i∗Fp) → i∗(JUFp)
is an isomorphism. Observe that i∗OU = OX hence i∗JU is a sheaf of ideals in OX .

Using Lemma 1 and the Cohen-Macaulay assumption on X0 we see that Ht
ZOX = Ht

Z0
OX0 = 0

for t = 0, 1. By the short exact sequence 0 → JX → OX → OX0 → 0 we derive Ht
ZJX = 0 for

t = 0, 1 and hence JX = i∗JU by Proposition 3 (iii). Then

i∗(JUFp) = (i∗JU )(i∗Fp) = JXi∗Fp

as required. Similarly, i∗F |X0 → i∗F0 is an embedding. So for any p ≥ 1 we have embeddings

i∗F |X0 ↪→ i∗Fp|X0 ↪→ i∗Fp−1|X0 ↪→ i∗F0

Consequently, the coherent sheaf K = Coker(i∗(F )|X0 → i∗F0) has a decreasing filtration by images
of i∗Fp|X0 and each Coker(i∗Fp|X0 → i∗Fp−1|X0) is its successive quotient. But K is a coherent
sheaf with Supp(K) ⊂ Z0 and Z0 has at most finitely many points of codimension 2. Since for each
point x ∈ X0 of codimension 2, the localization Kx is a module of finite length, only finitely many
successive quotients of the filtration of K can be non-trivial in codimension 2, which proves (i).

To prove (ii) first observe that î∗F and E = i∗F are coherent by Theorem 6(iii) and Proposition
3(ii), respectively. By Proposition 3(i) we can find a sheaf E′ such that Ê′ ' î∗F . The isomorphism
Ê|bU ' F = î∗̂i∗F extends uniquely to a morphism of sheaves φ̂ : Ê → î∗F = Ê′. By Proposition
3(i), φ̂ is the completion of a unique morphism φ : E → E′ which by Corollary 10.8.14 in [EGAI]
should be an isomorphism on an open subset W containing U0. Shrinking W if necessary we can
assume W ⊂ U . By Lemma 2, each point x ∈ U \ W has codimension ≥ 2 in its fiber, hence
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depthxE ≥ 2 by Lemma 1. For x ∈ X \U we still have depthxE ≥ 2 by Proposition 3(iii). Applying
the same result to j : W ↪→ X instead of U we see that E = j∗j∗E. By adjunction of j∗ and j∗ the
isomorphism (φ|W )−1 : j∗E′ → j∗E extends uniquely to a morphism ψ : E′ → j∗j∗E = E.

By construction, the composition ψφ : E → E restricts to identity on W hence ψφ = IdE ,
by the same adjunction. Similarly, the composition φ̂ψ̂ = Ê′ → Ê′ restricts to identity on Û and
since Ê′ ' î∗F , we must have φ̂ψ̂ = IdcE′ , so φψ = IdE′ by Proposition 3(i). We have proved that
E = i∗F ' E′. Since Ê′ = î∗F we conclude that î∗F = î∗F . ¤

Corollary 8 The following conditions are equivalent:

(i). The cokernel of (ip)∗Fp|Xp−1 → (ip−1)∗Fp−1 is supported in codimension ≥ 3 for p À 0.

(ii). The projective system {̂i∗Fp}p≥1 satisfies the Mittag-Leffler condition.

(iii). The direct image î∗F is coherent.

(iv). The bundle F admits an algebraization.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (iv) are established in the proof of Theorem 6. The
implication (iv) ⇒ (i) is proved in Proposition 7. If the projective system {̂i∗Fp}p≥1 satisfies the
Mittag-Leffler condition, by 0.13.3.1 in [EGAIII] the natural map î∗F → lim←− î∗Fp is an isomorphism.

By the Mittag-Leffler condition we can replace î∗Fp by a system of subsheaves Gp ⊂ î∗Fp so that
the property î∗F ' lim←− Gp still holds and Gp|Xp−1 → Gp−1 is surjective. Since each Gp is coherent
by the noetherian property of Xp, Proposition 10.11.3 in [EGAI] tells that lim←− Gp is also coherent.
Therefore, (ii) ⇒ (iii). ¤

Remark. Suppose that X0 is a smooth projective surface over K, ξ = k1P1 + . . .+klPl an effective
zero cycle and F0 a rank n vector bundle on U0 = X0 \ {P1, . . . , Pl}. The pair (F0, ξ0) should define
a point Spec(K) → Uhln of the Uhlenbeck functor. Assume that (F, ξ) : Spec(A) → Uhln extends
(F0, ξ0). Then it is expected that Coker(i∗F → i∗F0) can be supported only at the points P1, . . . , Pl,
with multiplicities bounded by k1, . . . , kl, respectively (in the differential geometry picture, cf. [DK],
ξ0 represents the singular part of a connection which may be smoothed out by F but may not acquire
any negative coefficients; since the multiplicities of Coker(i∗F → i∗F0) measure the local change of
c2 one obtains the bound mentioned). But the proof of Proposition 7 shows that the multulplicities
of Coker(i∗F → i∗F0) give an upper bound for the total sum, over all p, of similar multiplicites for
Coker((ip)∗Fp|Xp−1 → (ip−1)∗Fp−1). Hence the condition of Corollary 8(i) is rather natural from
the point of view of Uhlenbeck spaces.

3 Algebraization of principal bundles.

Let G be an affine algebraic group over k. We keep the notation of Section 2.1. and consider left
principal G-bundles which are locally trivial in fppf topology. For such a G-bundle P (over Û or an
open subset U ⊂ X) and any scheme Y over k with left G-action, denote by PY = G \ (Y ×k P )
the associated fiber bundle, i.e. the quotient by the left diagonal action of G. For instance, when
ρ : G → H is a homomorphism of linear algebraic groups over k, we can consider a left G-action on
H given by g · h = hρ(g)−1 and then PH is simply the principal H-bundle induced via ρ.
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Theorem 9 Assume that the identity component G◦ is reductive. Then a principal G-bundle P
over the formal scheme Û admits an algebraization if and only if for a fixed exact representation
G ↪→ GL(V ) the associated vector bundle PV admits an algebraization, i.e. satisfies the conditions
of Corollary 8.

The “only if” part is obvious. Since by a result of Haboush, cf. Theorem 3.3 in [Ha1], the quotient
GL(V )/G is affine, the “if” part follows from the following general statement.

Proposition 10 Let H an affine algebraic group over k and G its closed subgroup such that H/G
is affine. Suppose that P is a principal G-bundle over Û such that the associated principal H-bundle
Q = PH admits an algebraization. Then P admits an algebraization.

First we establish a preparatory result. As before, U ⊂ X is an open subset satisfying U ∩X0 = U0.

Lemma 11 Let H be a linear algebraic group overe k, Q be a principal H-bundle on U and Q̂ its
completion. Let also Y be an affine H-variety. Then for any section ŝ : Û → Q̂Y there exists a
section s : W → QY on an open subset W ⊂ U containing U0, with completion equal to ŝ. If (W, s)
and (W ′, s′) are two such algebraizations, then s = s′ on W ∩W ′.

Proof. One can find a H-invariant linear subspace V ∨ ⊂ k[Y ] containing a set of generators of k[Y ]
as a k-algebra. Then the surjection Sym∗

k(V
∨) → k[Y ] gives an H-equivariant closed embedding

Y ↪→ V into the dual space V . This induces closed embeddings QY ↪→ QV and Q̂Y ↪→ Q̂V .
Therefore ŝ becomes a section of the vector bundle Q̂V . By Proposition 7(ii) the completion

of the coherent sheaf i∗QV is isomorphic to î∗Q̂V and therefore by Proposition 3(i) there exists a
unique section s̃ of i∗QV with completion given by î∗ŝ. Set s = s̃|U .

It remains to show that s(W ) ⊂ QV on some W as above. Let A = Sym∗(Q∨
V ) be the sheaf of

symmetric algebras on U corresponding to QV and I ⊂ A the ideal sheaf of QY . The section s gives
the evaluation morphism ρ : A → OU . The sheaf G = ρ(I) is coherent, being a subsheaf of OU .
Since ŝ takes values in Q̂Y , the completion Ĝ is zero. By Corollary 10.8.12 in [EGAI] this implies
Supp(G) ∩ U0 = ∅ hence W = U \ Supp(G) satisfies the conditions of the lemma. The uniqueness
of s follows from the uniqueness of s̃. ¤

Proof of Proposition 10. Let (U,Q) be an algebraization of Q. In general, giving a principal G-
bundle is equivalent to giving a principal H-bundle R together with a reduction to G, i.e. a section
of the associated bundle RH/G with the fiber H/G. Since Q is induced from P, we get a section
ŝ : Û → QH/G and by the above lemma there exists s : W → QH/G such that ŝ is equal to
its completion. Then P admits an algebraization (W,P ) where P is the pullback of the principal
G-bundle Q → QH/G via s : W → QH/G. ¤

4 Categorical formulations.

Proposition 12 The functor F 7→ F̂ |bU induces and eqivalence between the full subcategory of all
coherent sheaves E on X which are locally free at the points of U0 ⊂ X and have depthxE ≥ 2 at
the points where E is not locally free, and the full subcategory of locally free sheaves on Û admitting
algebraization.

Proof. Let (U,F ) be an algebraization of F . Then the sheaf E = i∗F satisfies E ' i∗i∗E hence
by Proposition 3(iii) depthxE ≥ 2 for all x ∈ Z = X \ U . We also observe that E is uniquely
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determined by F , since by Propositions 3(i) and 7(ii) it is the unique coherent sheaf on X such that
Ê ' î∗F . Thus the functor described is essentially surjective on objects. For the morphisms, let
F1,F2 be a pair of vector bundles on Û with algebraizations (U,F1) and (U,F2), respectively, which
we may assume to be defined on the same U . Denote by E1 = i∗F1, E2 = i∗F2 the corresponding
coherent sheaves on X. Then HombU (F1,F2) = Hom bX (̂i∗F1, î∗F2) = HomX(E1, E2) where the first
equality is by adjunction of i∗ and i∗ and the second by Propositions 3(i) and 7(ii). ¤

To formulate a result for principal bundles, let B(G,U0) be the groupoid category in which the
objects are given by pairs (U,P ) where U ⊂ X is an open subset with U ∩ X0 = U0, and P is a
principal G-bundle on U . Morphisms from (U,P ) to (U ′, P ′) are given by the set of equivalence
classes of pairs (W,ψ) where W ⊂ U ∩U ′ is an open subset with W ∩X0 = U0 and ψ : P |W → P ′|W
an isomorphism of G-bundles. Two such pairs (W,ψ) and (W,ψ′) are equivalent if ψ = ψ′ on W∩W ′.
Also denote by Bun(G, Û) the groupoid category of G-bundles on the formal scheme Û . Completion
along U0 defines a functor Ψ : B(G,U0) → Bun(G, Û). The following statement summarizes our
results on algebraization of principal bundles

Theorem 13 With the notation of Section 2.1,

(i). For any affine algebraic group G over k, Ψ : B(G,U0) → Bun(G, Û) is full and strict.

(ii). For G = GLn(k) the essential image of Ψ is the full subcategory of rank n vector bundles
F = lim←− Fp on Û which satisfy the equivalent conditions (i)-(iii) of Corollary 8.

(iii). Let G ↪→ H be a closed embedding of affine algebraic groups over k such that H/G is affine.
Then the natural functor from G-bundles to H-bundles induces an equivalence of categories

B(G,U0) ' Bun(G, Û)×
Bun(H,bU)

B(H, U0)

Proof. To prove (i) suppose that P,P ′ are two principal bundles on Û admitting algebraizations
P, P ′, respectively, which we may assume to be defined on the same U ⊂ X. Let ψ̂ : P → P ′ be an
isomorphism. We need to prove that there exists (perhaps after shrinking U) a unique isomorphism
ψ : P → P ′ with completion given by ψ̂. Let Isom(P, P ′) be the bundle of isomorphisms P → P ′.
Considering graphs of isomorphisms, we can identify Isom(P, P ′) ' G \ (P ×U P ′). On the other
hand, P ×U P ′ is a principal bundle over G×k G. Define a left action of G×k G on G by (g, h) · f =
gfh−1, then G\(P ×U P ′) ' (P ×U P ′)G. Since ψ̂ gives a section ŝ of Isom(P,P ′), applying Lemma
11 to H = G×kG and Y = G, we get a unique algebraization s : W → (P×U P ′)G ' Isom(P, P ′)|W ,
which corresponds to the required isomorphism ψ. This proves (i).

The statement of (ii) for objects holds by Corollary 8 and for morphisms by (i).
For (iii) first observe that the compositions B(G,U0) → B(H, U0) → Bun(H, Û) and B(G,U0) →

Bun(G, Û) → Bun(H, Û) are canonically isomorphic, therefore one does get a functor

B(G,U0) → Bun(G, Û)×
Bun(H,bU)

B(H,U0)

On objects, this functor is an equivalence if for a G-bundle P on Û , an H-bundle Q on U ⊂ X and
an isomorphism φ : PH ' Q̂, there exists an open subset W ⊂ U with W ∩X0 = U0, a G-bundle P
on W and isomorphisms P̂ ' P and PH ' Q|W which induce φ in a natural way. This is equivalent
to finding an algebraization of the section ŝ : Û → Q̂H/G induced by φ, which was done in the proof
of Proposition 10. On morphisms, without loss of generality it suffices to consider two G-bundles
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P, P ′ defined on the same open set U , and isomorphisms ψ : PH ' P ′
H , φ̂ : P̂ → P̂ ′ which have the

same image in Bun(H, Û). We need to show that there exists a unique isomorphism φ : P → P ′

inducing φ̂ and ψ in the natural sense. But by (i) there exists a unique φ with completion equal
to φ̂. Since by assumption the isomorphisms ψ′ = φH and ψ are equal after completion, ψ′ = ψ by
part (i). This finishes the proof. ¤
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No. 4 1960.
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