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Abstract

We prove a BGG-type correspondence describing coherent sheaves on complete intersections
in toric varieties, and a similar assertion for the stable categories of related complete intersection
singularities.

1 Introduction

This paper is a continuation of the earlier article on complete intersections in projective spaces, cf.
[Ba]. We consider here the case of a complete intersection Y in a toric variety XΣ over a field k
of characteristic zero. In the case when XΣ has singularities, we actually study the corresponding
stacks Y ⊂ XΣ (this point of view is also used, for instance, when toric complete intersections are
considered in Mirror Symmetry). Our goal is to give an alternative description for the category
of sheaves on such a Y in the spirit of the one given by Bernstein-Gelfand-Gelfand in [BGG] for
projective spaces and by Kapranov in [Ka1] for intersections of projective quadrics. The general
approach is modeled on the Koszul duality of Beilinson-Ginzburg-Schechtman, cf. [BGS], but in
our case we deal with the higher products on the “Koszul dual” which arise from the fact that the
original algebra had non-quadratic relations.

Now we describe the contents in more detail. In the above setting XΣ has a “homogenous
coordinate ring” S isomorphic to a polynomial algebra graded by a finitely generated abelian group
A, cf. [C]. If W1, . . . ,Wm are the defining equations of Y and J is the ideal of S generated by these
equations, then the category Coh(Y) of coherent sheaves on Y is obtained from the category of
finitely generated A-graded modules over SW = S/J by passing to a certain categorical quotient,
see Section 4 for details.

We first study A-graded modules over SW . In Section 2 we use the polynomials W1, . . . ,Wm

to define, more or less tautologically, an L∞-algebra L. We further construct an A∞-algebra EW

which should be viewed as the “universal enveloping” of L. When W1, . . . ,Wm have no linear
terms (which one can alsways assume replacing S by a quotient polynomial algebra), EW has zero
differential. In the case when all Wj are quadratic EW becomes the associative graded Clifford
algebra considered by Kapranov in [Ka1]. The proof proceeds differently from [Ba] since we do
not assume that W1, . . . ,Wm are homogeneous with respect to the usual grading on S (which
is necessary for toric applications). Ideally, one would like to characterize EW as the unique
“homotopy bialgebra” of some special sort, such that the restriction of A∞-products to L ⊂ EW is
given by the homogeneous components of W1, . . . ,Wm. However, we leave the task of writing the
agreement conditions between the A∞-products and the natural coproduct on EW , to a forthcoming
paper.
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In Section 3 we prove, see Theorem 7, an equivalence between A∞-modules over EW and L∞-
modules over L (the latter are viewed as modules over the standard Cartan-Eilenberg-Chevalley
coalgebra C of L). The proof follows the general formalizm developed in [Le] which we expand
slightly to the A∞-case. When SW is graded by A as above and all graded components are finite-
dimensional, we obtain an equivalence between A-graded modules over SW and EW , see Theorem 8.
This result is applied in Section 4 to the derived category of sheaves on a toric complete intersection
Y and to the stable category of the affine complete intersection defined byW1, . . . ,Wm. When Y has
trivial canonical class (with an additional technical assumption always satisfied for intersections in
weighted projective spaces) an easy application of a result due to Orlov, cf. [O2], gives an alternative
description of the derived category of Y, cf. Corollary 12.

Acknowledgements. This work was supported by the Sloan Research Fellowship.

2 A universal enveloping algebra

2.1 Differential operators and corrected partial derivatives

Fix a finite dimensional vector space V over k. The symmetric algebras Sym•(V ) and Sym•(V ∗)
may be viewed as algebras of differential operators (with constant coefficients) over each other.
For any f ∈ Sym•(V ) let ∂f be the corresponding operator on Sym(V ∗), and similarly for g ∈
Sym•(V ∗). There is a pairing 〈·, ·〉 : Sym•(V ) × Sym•(V ∗) → k given by

〈f, g〉 := ∂f (g)(0) = ∂g(f)(0)

With respect to this pairing, ∂g is adjoint to multiplication by g on Sym•(V ∗).
We will also need “corrected partial derivatives”’: for v ∈ V let ∂̂v be the operator which sends

g ∈ Symk(V ∗) to 1
k∂v(g) for k ≥ 1 and satisfies ∂̂v(1) = 0.

For a vector space U we view Sym•(V ) as differential operators on Sym•(V ∗) ⊗ U extending
derivatives (usual or “corrected”) by linearity in the second factor.

2.2 Koszul complex and an L∞-algebra.

Choose and fix a regular sequence W1, . . . ,Wm ∈ Sym≥1(V ∗). Introducing new variables z1, . . . , zm
which span a vector space U we can encode the above sequence in a single “total potential”

W = W1z1 + . . .+Wmzm ∈ Sym•(V ∗) ⊗ U

Unlike in [Ba], we do not make the assumption that Wj are homogeneous.
Due to the regularity, the quotient SW = Sym•(V ∗)/J by the ideal generated J by Wj , j =

1, . . . ,m, admits a Koszul resolution B = Sym•(V ∗)⊗Λ•(U∗) where the differential δB is given by
W , if we agree that zj act on Λ•(U∗) by contraction and Wj on Sym•(V ∗) by multiplication.

The differential δC of the dual coalgebra C = Sym•(V )⊗Λ(U) is also given by W but now we
think of Wj as differential operators and zj act by multiplication (in the natural algebra structure
on C). The assumption that the sequence W1, . . . ,Wm is regular will not be needed in this Section.

Introduce an L∞-algebra L =
{
0 → V → U

}
, cf. [LM2], placing V in homological degree 1, U

in homological degree 2 and defining the L∞-operations as follows. We set

lk(v1, . . . , vk) := ∂v1...vk
(W )(0) = k! ∂̂v1 . . . ∂̂vk

(W )(0)
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whenever all arguments v1 . . . , vk are in V , and let lk = 0 otherwise. The L∞-identities for L will
hold trivially, since every double composition involved in them vanishes. Note that the coproduct of
C is independent of W , but its differential contains full information about it. Also, L is isomorphic
as a vector space to the space of primitive elements in C. In fact, one has the following lemma
which is immediate from definitions

Lemma 1 The coalgebra C is isomorphic to the cocommutative coalgebra C(L) of L, cf. [LM2].

2.3 A standard resolution of L

We now describe a resolution L → L in which the bracket does not depend on W . Let L be
the graded vector space with L1 =

[
Sym≥1(V ∗) ⊗ U

]
⊕ V in homological degree 1 and L2 =

Sym•(V ∗) ⊗ U in homological degree 2. Define the differential

δL(f ⊕ v) = ∂̂v(W ) − [f ] (1)

where for f ∈ Sym≥1(V ∗)⊗U ⊂ L1 we denote by [f ] its copy in L2. The bracket { , } : L1×L1 → L2

is defined by
{f1 ⊕ v1, f2 ⊕ v2} = ∂̂v1(f2) + ∂̂v2(f1) (2)

For any w ∈ Sym•(V ∗) ⊗ U denote by w ∈ Sym≥1(V ∗) ⊗ U its image with respect to the natural
projection which has k ⊗ U as its kernel. Then the morphism of complexes G1 : L→ L

G1(v) = ∂v(W ) + v ∈
[
Sym≥1(V ∗) ⊗ U

]
⊕ V, G1(u) = u ∈ U ⊂ L2; v ∈ V = L1, u ∈ U = L2

is a quasi-isomorphism, but not a morphism of DG Lie algebras. However, introducing morphisms

Gk : Lk → L, (v1, . . . , vk) 
→ k! ∂̂v1 . . . ∂̂vk
(W )

whenever all vi are in V , and zero otherwise; we extend G1 to an L∞-morphism {Gk}k≥1, cf. [LM1].
The L∞-morphism condition of loc. cit. in our case reduces to

G1(lk(v1, . . . , vk)) + δL(Gk(v1, . . . , vk)) =
k∑

i=1

{Gk−1(v1, . . . , v̂i, . . . , vk), G1(vi)} (3)

when k ≥ 3; while for k = 2 one has

G1(l2(v1, v2)) + δL(G2(v1, v2)) = {G1(v1), G1(v2)}
We note here that it is precisely (3) why we use “corrected partial derivatives” in the definitions
of lk and Gk.

The individual maps Gk, k ≥ 1 can be organized into a single map G∞ : C → Sym≥1(V ) → L.
Since C is a cocommutative coalgebra, by Lemma 22.1 in [FHT] there is a unique comultiplicative
extension τ : C → Sym•c(L) into the symmetric coalgebra of L. We further use Poincare-Birkhoff-
Witt to identify Sym•c(L) with the universal enveloping U(L) of L (as DG coalgebras).

The following lemma deals the multiplicative behavior of τ with respect to the standard universal
enveloping product m2 in of U(L) and the product in the reduced cobar construction Ω(C). See
e.g. [FHT] and [Ka2] regarding the definitions and properties of the cobar construction.
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Lemma 2 The unique comultiplicative extension τ : C → Sym•c(L) � U(L) satisfies the twisted
cochain condition

τ ◦ δC + δU(L) ◦ τ +m2 ◦ τ⊗2 ◦ Δ = 0.

Its own canonical multiplicative extension Ω(τ) : Ω(C) → U(L) is a quasi-isomorphsim of DG
algebras.

Proof. By (3) above the map G∞ : C → L extends to a morphism of DG-coalgebras C → C(L),
where C(·) stands for the Cartan-Eilenberg-Chevalley coalgebra of a DG Lie algebra, cf. [FHT]. It
is an easy computation that the composition of natural maps C(L) → L → U(L) does satisfy the
twisted cochain condition. Since τ : C → U(L) factors as C → C(L) → U(L), the first assertion
follows.

For the second assertion note that Ω(C) → U(L) commutes with differentials due to the twisted
cocycle property of τ .

For any DG coalgebra C ′ let L(C ′) be Quillen’s free DG Lie algebra of C ′, cf. Section 22(e)
of [FHT]. Then Ω(C ′) � UL(C ′) by the universal properties of the three objects involved. Now
decompose Ω(τ) as Ω(C) → Ω(C(L)) = UL(C(L)) → U(L). The first arrow is a quasi-isomorphism
because the L∞ map G∞ : C = C(L) → L extends to a quasi-isomorphism of DG coalgebras (this
follows from the fact that G1 is a quasi-isomorphism of complexes). The second arrow is a quasi-
isomorphism since it is induced by a quasi-isomorphism of DG Lie algebras L(C(L)) → L, cf.
Theorem 22.9 in [FHT]. �.

2.4 The universal enveloping A∞-algebra EW

By Theorem 22.9 in [FHT] for a DG Lie algebra L′ one has a quasi-isomorphism of DG algebras
Ω(C(L′)) → U(L′). We want to use this fact to define an A∞-structure on the symmetric coalgebra
Symc(L) which should be viewed as the “universal enveloping” algebra of L. An ideal strategy
would be as follows: first replace W in the definition of L with the potential W (2) obtained from
W by erasing the terms of degree ≥ 3 in the usual homogeneous grading of Sym•(V ∗). In other
words, we forget all higher brackets on L which in our case leads to a DG Lie algebra L2 and
a quasi-isomorphism Ω(C(L2)) → U(L2). Bringing back the degree ≥ 3 terms of W amounts to
perturbing the differential on Ω(C(L2)) and the “sum over binary trees” formula of [KS] tells us
that this perturbation induces an A∞-structure on U(L2).

However, this formula involves an explicit contracting homotopy on Ω(C(L2)) which we are
not able to write down at the moment. Therefore we replace Ω(C) by a smaller DG algebra U(L)
which is quasi-isomorphic to it by Lemma 2. Moreover, we do not apply the “sum over binary
trees” formula but rather the results of [GLS] which, in a sense, stand behind it. In more detail:
replacing W by W (2) gives a DG Lie algebra L2 and a quasi-isomorphism of DG Lie algebras
G1 : L2 → L2 (all higher Gk vanish in for W (2)). We also denote by L1 and L1 the same objects
viewed as complexes with trivial Lie bracket. First we construct a canonical contracting homotopy
on U(L1) and then take into account the Lie brackets and use [GLS] to define an A∞-map {Fk}k≥1 of
associative algebras U(L2) → U(L2) and a system of higher homotopies {Hk}k≥1 on U(L2). Finally,
we replace W (2) by W and then the constructed system of homotopies gives an A∞-structure on
EW .

The advantage of this approach, which is more complicated than fixing a non-canonical ho-
motopy on U(L2), is that the resulting A∞ structure on U(L2) only depends on the resolution L
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and, in addition, it has some compatibility with the coproduct (see the remark at the end of this
section).

So replace W by W (2) as above and consider the complexes L1,L1. The map G1 : L1 → L1

of the previous section admits a left inverse F : L1 → L1 which projects
[
Sym≥1(V ∗) ⊗ U

]
⊕

V = (L1)1 onto V = (L1)1 in an obvious way (the superscripts denote homological grading), and
sends Sym•(V ∗) ⊗ U = (L1)2 to U = (L1)2 by evaluating the constant term. Define a homotopy
H : L2

1 → L1
1 by sending w to {w} (we use braces to emphasize that an even element w was

converted into an odd element). The “side conditions”

HG1 = 0, HH = 0, FH = 0

follow immediately from the definitions.
Now we consider the symmetric DG bialgebras (in the graded sense) Sym•(L1) and Sym•(L1)

and the natural extensions of F and G1 given by multiplicative and comultiplicative maps Fsym :
Sym•(L1) → Sym•(L1), and Gsym : Sym•(L1) → Sym•(L1). To define a homotopy Hsym we
first set S = Sym≥1(V ∗ ⊗ U) and denote by {S}, [S] its copies in L1

1 and L2
1, respectively. Since

L1 = G1(L1) ⊕
({S} → [S]

)
as complexes, we have an isomorphism of DG bialgebras

Sym•(L1) � Sym•({S} → [S]) ⊗ Sym•(L1).

The graded symmetric bialgebra Sym•({S} → [S]) � Λ•(S) ⊗ Sym•(S) has standard Koszul
differential, and therefore a standard homotopy

Hsym

(
{f1} . . . {fm}[g1] . . . [gk]

)
=

−1
k +m

k∑
t=1

{f1} . . . {fm}{gt}[g1] . . . [̂gt] . . . [gk]. (4)

This we extend to Sym•(L1) as Hsym ⊗ 1 denoting the extension again by Hsym.
The contraction (Fsym, Gsym,Hsym) induces a similar contraction (F ′B , G

′
B ,H

′
B) on the reduced

bar constructions (see Section 19 of [FHT] and [Ka2] for definitions and properties). Here F ′B , G
′
B

are defined in an obvious way and

H ′B|(Sym≥1(L1))⊗k =
k−1∑
s=0

1⊗s ⊗Hsym ⊗ (GsymFsym)⊗(k−s−1)

Then F ′B and G′B are maps of DG coalgebras and H ′B is a coalgebra homotopy:

ΔH ′B = (1 ⊗H ′B +H ′B ⊗G′BF
′
B)Δ (5)

The side conditions for (Fsym, Gsym,Hsym) and (F ′B , G
′
B ,H

′
B) follow from those for (F,G1,H).

Next we replace (L1, L1) by (L2, L2), taking into account the Lie structures. The symmetric DG
bialgebras of L1 and L1 turn into the universal enveloping DG bialgebras U(L2), U(L2), respectively.
Denote by ρ : Sym•(·) → U(·) the Poincare-Birkhoff-Witt isomorphism which identifies the two
spaces as DG coalgebras, cf. Propositions 21.2 and 22.6 in [FHT]. Denote by ∗ the product in the
universal enveloping and by · the product in the symmetric bialgebra.
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Since both L2 and L2 are 2-step nilpotent (i.e. all double brackets vanish) it is easy to track
the multiplicative behavior of ρ. In fact, let K be a general graded Lie algebra with bracket l2 such
that l2(l2(a, b), c) = 0 for all a, b, c ∈ K. Then for odd elements vi, wj ∈ K

ρ(v1 · . . . · vn) ∗ ρ(w1 · . . . · wm) = (6)

∑
k≥0

∑
I={i1,...,ik}⊂{1,...,n}
J={j1,...,jk}⊂{1,...,m}

(−1)(I,J)det
∣∣∣1
2
l2(vip , wjq)

∣∣∣
p,q=1,...,k

∗ ρ(vr1 · . . . · vrn−k
· wl1 · . . . · wlm−k

)
rt /∈I, ls /∈J

where I, J are subsets of equal cardinality with the induced natural ordering and (−1)(I,J) is defined
by the equality in Sym•(K):

v1 · . . . · vn · w1 · . . . · wm = (−1)(I,J)vr1 · . . . · vrn−k
· vik · . . . · vi1 · wj1 · . . . · wjk

· wl1 · . . . · wlm−k

This formula is proved by first considering the case n = 1 where it reduces to an easy computation,
and then iterating and (anti)symmetrizing in v1, . . . , vn.

Using the PBW isomorphism we can view (Fsym, Gsym,Hsym) as a contracting homotopy be-
tween U(L2) and U(L2) but now Fsym will not be multiplicative since F : L2 → L2 is not a Lie
map. To “repair” this we adjust the homotopy on the bar construction.

Let DB , dB be the canonical differentials of BU(L2), BU(L2) and denote by D′B , d
′
B another

pair of differentials on the same spaces, arising from their PBW isomorphism with BSym•(L2) and
BSym•(L2), respectively. The contracting homotopy (F ′B , G

′
B ,H

′
B) may be viewed as a homotopy

between (BU(L2),D′B) and (BU(L2), d′B). Using the Basic Perturbation Lemma we can adjust it
to work with DB , dB as follows.

Let δB = DB −D′B . Explicitly, δB is obtained by considering the map

δU : U(L2) ⊗ U(L2) → U(L2), ρ(a) ⊗ ρ(b) 
→ ρ(a) ∗ ρ(b) − ρ(a · b)
and then extending to BU(L2) as a coderivation. Now set

X = δB − δBH
′
BδB + δBH

′
BδBH

′
BδB − . . . .

This infinite expression is well defined since δB decreases the tensor degree in BU(L2) by 1 and
H ′B preserves this degree. By Basic Perturbation Lemma, cf. e.g. [GLS], the formulas

FB = F ′B(1 −XH ′B); HB = H ′B(1 −XH ′B); GB = (1 −H ′BX)G′B

define a contracting homotopy between complexes (BU(L2),DB) and (BU(L2), d′B + F ′BXG
′
B)

Proposition 3 The following properties hold

1. δBG′B = G′B(dB − d′B), GB = G′B, dB = d′B + F ′BXG
′
B ;

2. FB is a coalgebra map and HB is a coalgebra homotopy, see (5);

3. FB and HB are uniquely determined by the compositions

FB,k : (U≥1(L2))⊗k → BU(L2) → BU(L2) → U≥1(L2);

HB,k : (U≥1(L2))⊗k → BU(L2) → BU(L2) → U≥1(L2).
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Proof. The identity δBG′B = G′B(dB − d′B) follows from the fact that G1 : L2 → L2 commutes with
brackets. The other two identities follow from it and a side condition H ′BG

′
B = 0.

Part (2) is proved in [GLS]. Part (3) is an easy consequence: for FB it is well-known, cf. e.g.
[Ka2], while for HB one has an explicit formula

HB|(U≥1(L2))⊗k =
∑

s+p+q=k

1⊗s ⊗HB,p ⊗ (GBFB)⊗q. �

To summarize the above: we have defined a map of DG bialgebras Gsym : U(L2) → U(L2), an A∞-
map of associative algebras {FB,k : U(L2)⊗k → U(L2)}k≥1, and a system of “higher homotopies”
{HB,k : U(L2)⊗k → U(L2)}k≥1 which are encoded in a coalgebra contraction (FB , GB ,HB) from
BU(L2) to BU(L2).

It is easy to see that FB,k and HB,k are given by (restrictions of) (−1)k−1Fsym(δBH ′B)k−1 and
(−1)k−1Hsym(δBH ′B)k−1, respectively.

Now we want to pass from W (2) to the full potential W . This means that the differential DB on
BU(L2) will be replaced by D̂B = DB + δ̃B . To describe δ̃B we first define a differential δ̃L on
L2 which sends v ∈ V ⊂ L2 to ∂̂v(W −W (2)) (and vanishes on the natural complement to V );
then exend δ̃L to a derivation δ̃U on U(L2); and finally extend δ̃U to a coderivation δ̃B on BU(L2).
Using the Basic Perturbation Lemma again, we set

X̃ = δ̃B − δ̃BHB δ̃B + δ̃BHB δ̃BHB δ̃B − . . . ;

which is well-defined since δ̃B decreases by 1 the number of occurences of elements in V ⊂ L2 ⊂
U(L2); and define

F̃B = FB(1 − X̃HB); HB = HB(1 − X̃HB); G̃B = (1 −HBX̃)GB ; d̃B = dB + FBX̃GB .

Then (F̃B , G̃B , H̃B) is a contraction of (BU(L2), D̃B) to (BU(L2), d̃B). As in the previous Propo-
sition we conclude that F̃B and G̃B and maps of DG coalgebras, H̃B is a coalgebra homotopy and
d̃B is a coderivation.

In particular, the coderivation d̃B defines an A∞-structure on U(L2), cf. [Le], i.e a series of
higher products μn : U(L2)⊗n → U(L2) given by the composition of natural maps

U(L2)⊗n → U≥1(L2)⊗n ↪→ BU(L2)
�dB−→ BU(L2) → U≥1(L2) ↪→ U(L2).

Writing out the definitions and using F ′B δ̃B = 0, H ′BδBG
′
B = 0 we see that for n ≥ 3, μn is given

by the expression
∑

k≥(n−2);a1,...,ak

(−1)k−1FsymδUH
′
B(a1H

′
B) . . . (akH

′
B)δ̃BG⊗n

sym (7)

where each ai is either δB or δ̃B and the first possibility occurs precisely (n− 2) times.
Alternatively, one can write a formula in the spirit of [KS]: μn is given by the sum over all

planar trees with n leaves, one root and internal vertices of valency 2 or 3. Similarly to loc. cit
we place Gsym on each leaf, Fsym on the root, δB on each internal vertex of valency 3, δ̃B on each
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internal vertex of valency 2, and Hsym in the middle of each internal edge. A tree marked in this
way is viewed as a “flowchart” of operations applied to the arguments of μn. Note that due to
the valency 2 vertices each μn becomes an infinite sum over trees, but on each particular set of n
arguments only finitely many give nonzero contributions.

Proposition 4 The product μ2 is the usual unversal enveloping algebra product in U(L2). The
higher products μn for n ≥ 3 have the following properties:

(1) Each μn is multilinear in R = Sym•(U) ⊂ U(L2).
(2) μn(a1, . . . , an) = 0 if ai = 1 for some i. Thus, the A∞-structure is strictly unital.
(3) μn(v1, . . . , vn) = 1

n! ln(v1, . . . , vn) if vi ∈ V ⊂ L ⊂ U(L) for all i.

Proof. To prove the assertion about μ2 first note that the “correction” to the product on U(L2)
introduced by d̃B − dB is given by the formula similar to as above expression for μn, n ≥ 3:∑

k≥1

(−1)kFsymδU (H ′B δ̃B)kG⊗2
sym

but a single application of H ′B δ̃B will produce terms in Sym≥1({S}) ⊂ U(L2). Since such terms
are central in U(L2), δU is multilinear with respect to them. But Fsym vanishes on Sym≥1({S})
therefore the correction to the product on U(L2) vanishes.

Part (1) follows from (7) (or better, the sum over trees presentation) and the fact that the
operators Fsym, Hsym and Gsym involved in it, are all R-linear. Part (2) follows from the fact that
we are using the reduced bar construction hence by definition all higher products factor through
U≥1(L2)⊗n. To prove part (3) use the formula (7) to compute μ(v1, . . . , vn). The only non-zero
contributions come from the terms with k = (n − 2), i.e. for which all ai = δB . In fact, if a term
in (7) contains δ̃B at least twice, its evaluation at v1 ⊗ . . . vn will necessarily contain δU (a⊗ b) with
a, b ∈ {S} ⊂ U(L2). To explain that in terms of trees: if we connect the two occurences of δ̃B on
a tree with its root by shortest paths, the point at which the two paths merge will correspond to
the δU (a⊗ b) above. Since {S} is central, δU (a⊗ b) = 0. Therefore

μn(v1, . . . , vn) = (−1)n−1Fsym(δBH ′B)n−1δ̃BG
⊗n
sym(v1 ⊗ . . .⊗ vn)

Now an easy induction involving (6) finishes the proof. �

Remark. The properties stated in the previous proposition do not determine the A∞-structure
uniquely. In the case of projective complete intersections, cf. [Ba], an additional formula allows to
compute all higher operations recursively. Such a formula can be proved in this case as well but
this will not be done here.

By a recent work of Merkulov, cf. [Me], the L∞-structure on L deforms the commutative and
cocommutative bialgebra structure of U(L1) to a structure of a homotopy bialgebra. However, this
structure depends on the choice of a minimal model of the bialgebra PROP, and a certain lift of a
morphism of PROPs (see [Me] for more detail).

Comparing our construction with the standard bialgebra ΩC(L), one can show that in the
situation of this paper the higher products on U(L2) extend to a homotopy bialgebra structure and
in fact determine it uniquely. We plan to return to this matter in a forthcoming work.

Notation. From now on we denote by EW the universal enveloping U(L2) equipped with the
A∞-algebra structure of this section.
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3 An equivalence of categories

3.1 A generalized twisted cochain.

Let CW = Ker(δC)∩Sym•(V ) ⊂ C be the “dual coalgebra” of the polynomial quotient SW defined
in Section 2.2. Write CW = k⊕C where C = Ker(δC)∩Sym≥1(V ). If Δ : C → C⊗C is the reduced
coproduct (Δ− Id⊗ 1− 1⊗ Id), and Δ(k) : C → C

⊗k are its iterations, then C = ∪Ker(Δ(k)), i.e.
CW is cocomplete. In fact, this property holds for the free cocommutative coalgebra C and CW is
its subcoalgebra.

Denote by Δ(k) : C → C⊗k similar iterations for k ≥ 2 and set Δ(1) to identity. Consider the
composition τW : CW ↪→ C → L ↪→ U(L) = EW . In other words, we compose the projection
CW → CW ∩ V with the embedding V ⊂ L ⊂ EW .

Lemma 5 The map τW satisfies the generalized twisted cochain condition, cf. Section 4.1 of [Le],
which reads in our case: ∑

s≥1

μs ◦ τ⊗s
W ◦ Δ(s) = 0

Proof. Note that the infinite sum is well defined since τW |k = 0 and CW is cocomplete. First
consider C → L ↪→ EW . Then by the last part of Proposition 4 one has

τ ◦ δC +
∑
s≥1

μs ◦ τ⊗s ◦ Δ(s) = 0.

Since CW ↪→ C is a morphism of coalgebras, the assertion for CW follows trivially. �

3.2 A pair of adjoint functors.

The previous lemma allows to apply the general formalizm outlined in Sections 2.2.1 and 4.3.1 of
[Le]. Since some of the formulas are given in [Le] only for DG-algebras we give the definitions here
for reader’s convenience. See [Le] for definitions and properties of A∞-algebras and modules over
them.

Consider a general cocomplete coaugmented DG-coalgebra (C, δC ), a strictly unital A∞-algebra
E with δE = μE

1 and a generalized twisted cochain τ : C → E satisfying

δC ◦ τ + τ ◦ δE +
∑
s≥2

μs ◦ τ⊗s ◦ Δ(s) = 0

Let (N, δN ) be a counital DG comodule over C with the reduced coaction map ΔN : N → N ⊗C.
We assume that N is also cocomplete, i.e. N =

⋃
s≥1KerΔ

(s)
N , where Δ(s)

N : N → N ⊗ C
⊗(s−1)

is the reduction of the iterated coaction map Δ(s)
N : N → N ⊗ C⊗(s−1). Whenever we speak of a

filtered morphism of cocomplete comodules, we always have in mind the filtration by KerΔ(s)
N .

Denote by F(N) the tensor product N ⊗ E with the differential

δF(N) = δN ⊗ 1 + 1 ⊗ δE +
∑
s≥2

(1 ⊗ μE
s )(1 ⊗ τ⊗(s−1) ⊗ 1)(Δ(s)

N ⊗ 1)
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which is well-defined since N is cocomplete and E is strictly unital. Then δ2F(N) = 0 by the
generalized twisted cochain condition. Also, F(N) is an A∞-module over E with the action maps

μ
F(N)
k : F(N) ⊗ E⊗(k−1) → F(N); (n⊗ a) ⊗ a1 ⊗ . . .⊗ ak−1 
→ n⊗ μE

k (a, a1, . . . , ak−1)

for k ≥ 2. This module structure is strictly unital : μF(N)
2 (x, 1E) = x and μF(N)

k (x, a1, . . . , ak−1) = 0
if k ≥ 3 and ai = 1E for some i, since the same property was assumed about E. If ψ : N1 → N2

is a morphism of CW -comodules then F(ψ) = ψ ⊗ 1 : N1 ⊗ E → N2 ⊗ E is a strict morphism of
E-modules (i.e. commutes with all higher products).

In the other direction, take a strictly unital A∞-module (M, δM , μM
k ) over E, where μM

k : M ⊗
E⊗(k−1) → M are the action maps for k ≥ 2, and consider the C-comodule G(M) = M ⊗ C, with
the differential

δG(M) = δM ⊗ 1 + 1 ⊗ δC +
∑
k≥2

(μM
k ⊗ 1)(1 ⊗ τ

⊗(k−1)
W ⊗ 1)(1 ⊗ Δ(k)).

Again the differential is well-defined since C is cocomplete and E is strictly unital. A morphism of
A∞-modules M1, M2 is given by degree (1 − k) maps fk : M1 ⊗ E⊗(k−1) → M2 for k ≥ 1, which
satisfy some quadratic identities, cf. Chapter 2 of [Le]. Such a morphism f· = {fk} is called strictly
unital if fk(m,a1, . . . ak−1) = 0 whenever k ≥ 2 and ai = 1E for some i. For every such morphism
define a morphism of C-comodules G(f·) : M1 ⊗ C →M2 ⊗ C by the formula

G(f·) =
∑
k≥1

(fk ⊗ 1)(1 ⊗ τ⊗(k−1) ⊗ 1)(1 ⊗ Δ(k)).

This is well-defined for the same reason as before.

Thus we obtain a pair of functors F , G between the category Comodc(C) of cocomplete counital
DG-comodules over C and the category Mod∞(E) of strictly unital A∞-modules over EW and
strictly unital morphisms. These functors are adjoint:

HomMod∞(E)(F(N),M) = HomComodc(C)(N,G(M))

since both spaces may be identified with

{
φ ∈ Homk(N,M) | φδN − δMφ =

∑
k≥2

μM
k (φ⊗ τ⊗(k−1))Δ(k)

}
.

More explicitly, given such φ one defines a morphism of C-comodules Φ : N ΔN−→ N ⊗C φ⊗1−→M ⊗C,
and a morphism of A∞-modules Ψ· : N ⊗ E →M

Ψk =
∑
s≥1

μM
k+s(φ⊗ τ⊗(s−1) ⊗ 1⊗k)(Δ(s)

N ⊗ 1⊗k) : N ⊗ E⊗k →M.

The map φ may be recovered from Ψ· as Ψ1|N⊗1, or from Φ as its composition with the projection
ηM : M ⊗C →M ⊗ k = M coming from the counit of C. The fact that the above formulas indeed
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define morphisms, and that every Φ, Ψ· is given by a certain φ, is proved by a straightforward (but
tedious) induction using the filtration of N by Ker(Δ(k) : N → N ⊗ C

⊗(k−1)).
Below we need an explicit formula for the adjunction morphism Ψ· : FG(M) → M . The

component Ψk : M ⊗ C ⊗ E⊗k →M is given by
∑
s≥1

μk+s(ηM ⊗ τ⊗(s−1) ⊗ 1)(1 ⊗ Δ(s) ⊗ 1)

3.3 A coalgebra equivalence.

The generalized twisted cochain τW : CW → EW extends to a coalgebra map CW → B(EW ) by
the standard formula

∑
k τ
⊗k
W Δ(k), cf. [Ka2]. The condition of Lemma 5 is equivalent to the fact

that this extension commutes with differentials.

Lemma 6 The canonical coalgebra extension CW → B(EW ) defined by τW , is a weak equivalence
of coalgebras, i.e. induces a quasi-isomorpism of DG algebras Ω(CW ) → ΩB(EW ).

Proof. Recall that the A∞-structure on EW is encoded in the differential dB on B(EW ). In the
previous section we have also constructed a quasi-isomorphism of DG coalgebras F̃B : BU(L) →
BEW which naturally induces a quasi-isomorphism of DG algebras ΩBU(L) → ΩB(EW ). It follows
from the definitions that the algebra homomorphism Ω(CW ) → ΩB(EW ) factors as

Ω(CW ) → Ω(C) → ΩBU(L) → ΩB(EW )

where the first and the last arrows are quasi-isomorphisms. Therefore it suffices to check that
Ω(C) → ΩBU(L) is a quasi-isomorphism. To that end, we note that the composition

Ω(C) → ΩBU(L) → U(L),

is a quasi-isomorphism by Lemma 3, and the second arrow is a quasi-isomorphism by a standard
result in homotopical algebra (see e.g. page 272 of [FHT]). Therefore the first arrow is also a
quasi-isomorphism, which finishes the proof. �

Let D(EW ) be the localization Mod∞(EW ) at quasi-isomorphisms. To get a derived category
D(CW ) we must localize Comodc(CW ) at weak equivalences, i.e. such maps that induce quasi-
isomorphism on cobar construction, cf. [Le]. In general, a weak equivalence of comodules is a
stronger condition than quasi-isomorphism.

Corollary 7 The functors F , G induce mutually inverse derived equivalences D(CW ) � D(EW )
between the derived category D(CW ) of cocomplete comodules over CW and the derived category
D(EW ) of strictly unital A∞-modules over EW .

Proof. We factorize F and G as follows

F1−→ F0−→
Comodc(CW ) Comodc(B(EW )) Mod∞(EW )

←−
G1

←−
G0

11



Here F0 and G0 are induced by the universal generalized twisted cochain B(EW ) → EW ↪→ EW ,
where EW is the kernel of the augmentation map. The functor F1 is given by corestriction (i.e.
every CW -comodule is automatically a B(EW )-comodule); and G1 by coinduction:

G1(N) = Ker
{
ΔN ⊗ 1 − (1 ⊗ τ ⊗ 1)(1 ⊗ ΔCW

) : N ⊗ CW → N ⊗B(EW ) ⊗ CW

}
.

It follows from definitions that F = F0F1 and G = G1G0. Therefore, to prove that for any object
M of Mod∞(EW ) the first component of the canonical A∞-morphism FG(M) → M is a quasi-
isomorphism, one needs to show that

1) For any object L of Comodc(B(EW )) the canonical morphism F1G1(L) → L is a weak
equivalence;

2) For any M as above the canonical morphism F0G0(M) →M is a quasi-isomorphism;
3) F0 sends weak equivalences to quasi-isomorphisms.

Similarly, to prove that for any object N of Comodc(CW ) the canonical morphism N → GF(N) is
a weak equivalence, one needs to show that

1’) For any N as above the canonical morphism N → G1F1(N) is a weak equivalence;
2’) For any L as above L→ G0F0(L) is a weak equialence;
3’) G1 sends weak equivalences to weak equivalences.

In addition, to prove that the functors descend to derived categories one needs to show that
4) G0 sends quasi-isomorphisms to weak equivalences;
5) F1 sends weak equivalences to weak equivalences.

The assertions 1), 1’), 3’) and 5) follow from the previous Lemma, since the morphism Ω(CW ) →
ΩB(EW ) gives restriction-induction functors which descend to equivalences of derived categories;
and ΩF1(N) is canonically isomorphic to the Ω(B(EW ))-module induced from the Ω(CW )-module
Ω(N), while for ΩG1(N ′) there is a canonical quasi-isomorphism to the restriction of Ω(N ′) from
Ω(C ′) to Ω(C).

Statements 2) and 2’) are proved by first setting formally W = 0 where they both reduce to
standard facts about the bar construction of an associative algebra, and then applying the Basic
Perturbation Lemma to derive the case of general W (recall, cf. Chapter 2 of [Le], that in 2’) it
suffices to prove a filtered quasi-isomorphism).

Finally, to prove 3) and 4) we first note that by defition G0 sends quasi-isomorphisms to filtered
quasi-isomorphisms, which are automatically weak-equivalences (the prooof is as in Lemma 1.3.2.2
of [Le]). To prove the assertion for F0 observe that the adjunction morphism B(EW ) → BΩB(EW )
defines an A∞-morphism H· : EW → ΩB(EW ). Therefore, every module M over ΩB(EW ) becomes
an A∞-module over EW if we set μM

k : M ⊗ E
⊗(k−1)
W → M to be the obvious composition M ⊗

E
⊗(k−1)
W

1⊗Hk−1−→ M ⊗ ΩB(EW ) →M .
In particular, for any L as in 1) the cobar construction Ω(L) is an A∞-module over EW . Now

the maps 1L⊗Hi for i ≥ 1 give an A∞ morphism F0(L) → Ω(L) of modules over EW which is easily
seen to be a quasi-isomorphism (since H· is a quasi-isomorphism). If L→ L′ is a weak equivalence
in Comodc(B(EW )) then Ω(L) → Ω(L′) is a quasi-isomorphism of modules over ΩB(EW ) (and also
over EW ), therefore F0(L) → F0(L′) is also a quasi-isomorphism. �
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3.4 The graded case.

Now suppose that A is an abelian group (not necessarily torsion-free) generated by elements
α1, . . . , αn where n = dimk V . We fix a basis x1, . . . , xn in V ∗ and consider the A-grading
Sym•(V ∗) = ⊕α∈ASym

•
α(V ∗) such that degA(xi) = αi. Assume that all Sym•α(V ∗) are finite dimen-

sional. In this case, if A+ denotes the semigroup generated in A by α1, . . . , αn then A+∩(−A+) = ∅
since otherwise there is a non-trivial monomial xI with degA(xI) = 0 and all its powers will satisfy
the same condition too.

Assume further that polynomials W1, . . . ,Wm are A-homogeneous of degrees β1, . . . , βm (see the
next section for examples) and that neither of them has terms linear in x1, . . . , xn (this is mostly
to simplify notation; if this condition is not satisfied, in the argument below one can either pass
to a smaller polynomial quotient of Sym•(V ∗) or adjust some definitions). The last assumption
implies that L and EW have zero differentials.

Under these assumptions the quotient ring SW is also A-graded with finite dimensional compo-
nents, and the same holds for Sym•(V ) (since the space V will have the dual basis with A-degrees
−α1, . . . ,−αn). The action of Sym•(V ∗) by differential operators on Sym•(V ) agrees with the
A-grading and by assumption on W1, . . . ,Wm the coalgebra CW will inherit the A-grading as well.
It follows immediately from the definitions that the pairing 〈 , 〉 : Sym•(V ∗) × Sym•(V ) → k
descends to 〈 , 〉 : SW × CW → k.

The A∞-algebra EW � Λ•(V ) ⊗ Sym•(U) has A-grading in which z1, . . . , zm have degrees
−β1, . . . ,−βm, respectively, (this ensures that degA μk = 0 for k ≥ 1). Assuming that the upper
indices refer to homological grading and lower indices to A-grading we see that (EW )iα = 0 unless
(α, i) is in

A = {subsemigroup of A× Z generated by (−A+, 1), (−A+, 0) and 0}.
Here we use the assumption that W1, . . . ,Wm have no linear terms.

Let C♣(SW ) be the category of complexes N = (. . . → N−1 → N0 → N1 → . . .) of A-graded
modules N i = ⊕α∈AN

i
α over SW , such that N i

α = 0 unless (α, i) ∈ α + A for some α ∈ A × Z

depending on N . Note that objects in the category Cb(SW ) of finite complexes of finitely generated
SW -modules will not in general satisfy this condition. However, the opposite category (Cb(SW ))opp

(with inverted arrows) can embedded into C♣(SW ) if for any N ∈ Ob(Cb(SW )) we consider the
graded dual N∗ with

(
N∗

)−i

−α
= (N i

α)∗.

Similarly we define C♣(EW ) as the category of strictly unital A-graded A∞-modules M over EW

which satisfy M i
α = 0 unless (α, i) ∈ γ + A for some γ ∈ A× Z depending on M .

Any SW -module N ∈ Ob(C♣(SW )) is also a CW -comodule with the reduced coaction map

ΔN : N → N ⊗ CW ; n 
→
∑

α∈A+,yα,i

(nyα,i) ⊗ xα,i

where the sum is taken over dual bases {xα,i}1≤i≤dim(CW )α
and {yα,i}1≤i≤dim(SW )α

of (CW )α and
(SW )α, respectively. The condition imposed on the grading of N , together with (−A+) ∩A+ = ∅,
ensure that the sum in the defintion of ΔN is finite on every n ∈ N .

Thus we can still define a functor F : C♣(SW ) → C♣(EW ) sending N to N ⊗ EW . As for
G : C♣(EW ) → C♣(SW ), note that G(M) = M ⊗ CW is not only a CW -comodule but also an
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SW -module (since CW itself is a graded dual to the free rank one module over SW ). These functors
descend to the corresponding derived categories D♣(SW ), D♣(EW ).

To formulate the next theorem we define the “bounded” derived category Db(EW ) as the full
triangulated subcategory of D♣(EW ) formed by all objects for which the total cohomology (=
direct sum of all cohomology groups) is a finitely generated module over the associative algebra
(EW , μ2). Note that the EW itself is only bounded from the left, so many objects in Db(EW ) will be
unbounded in the usual sense. Let also Db(SW ) be the usual bounded derived category of finitely
generated A-graded SW -modules, embedded contravariantly into D♣(SW ) by the above.

Theorem 8 The functors F , G give mutually inverse derived equivalences

D♣(SW ) → D♣(EW )

Moreover, their restrictions induce a derived equivalence

Db(SW )opp � Db(EW )

Proof. From the proof of Corollary 7 we already know that the adjunction morphisms FG(M) →M
and N → GF(N) are quasi-isomorphisms. To establish the first claim it remains to show that
F and G send quasi-isomorphisms to quasi-isomorphisms. This is obvious for G since it sends
quasi-isomorphisms to weak equivalences of CW -comodules (again by proof of Corollary 7) and
every weak equivalence is a quasi-isomorphism. To prove the assertion for F first assume that
N → N ′ is a quasi-isomorphism in C♣(SW ). Then by the above GF(N) → GF(N ′) is also a
quasi-isomorphism. It follows from the definitions that the last map can be viewed as filtered
quasi-isomorphism (hence a weak equivalence) of CW -comodules. Apply the proof of Corollary 7
again we see that FGF(N) → FGF(N ′) is a quasi-isomorphism and therefore F(N) → F(N ′) is a
quasi-isomorphism.

The proof of the second assertion proceeds exactly as in of Proposition 4.1 in [Ba]: first we note
that for an object N in Db(SW ) the cohomology of F(N) is simply Ext•(N, k) therefore by Section
3 of [G] it is finitely generated over (EW , μ2) � ExtSW

(k, k). Therefore, F sends Db(SW )opp to
Db(EW ). In the other direction, if M is an object of Db(EW ) we can first replace it by FG(M)
which is a complex of free EW -modules. It suffices to check that GFG(M) gives a finitely generated
module over S = Sym•(V ∗) but that module may be computed using the equivalence functors F0

and G0 for S and E = Λ•(V ), respectively. Note that E is a quotient of EW (the quotient map
sends all zj ∈ U to zero). Inspecting the definitions of the functors involved we see that GFG(M)
is isomorphic to G0

(FG(M)⊗EW
E), as objects of Db(S)opp. Therefore the finite generation of the

graded dual follows from the original BGG correspondence for S and E (adjusted to the case of
A-graded modules). �

Remark. When A = Z and all Wi are quadratic one can adjust the grading to ensure that EW is
in homological degree zero. In the general case this will not be possible since by Proposition 4 the
higher products μk, k ≥ 3 on EW will be nontrivial and they have homological degree 2 − k.
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4 Toric complete intersections and Landau-Ginzburg models.

4.1 Homogeneous coordinates on toric varieties

We fix notation by recalling some facts about toric varities. Let T � (k∗)n be an algebraic torus
over k. Associated to T are the character lattice M = Homalg(T, k∗) and the dual lattice of one-
parametric subgroups N = Homalg(k∗, T ) (the subscript alg means homorphisms in the category of
algebraic groups over k). Set also NR = N ⊗Z R and consider a fan Σ ⊂ NR defining a toric variety
XΣ, cf. [F]. We assume that the support of Σ is equal to NR, i.e. the variety XΣ is complete. If
Σ(1) is the set of all 1-dimensional cones in Σ let S be the polynomial algebra over k generated by
variables xρ, ρ ∈ Σ(1).

Recall, cf. [F], that Σ(1) is in bijective correspondence with the codimension 1 orbits of the
T -action on XΣ. For any ρ ∈ Σ(1) let Dρ be the closure of the corresponding orbit. Define the
group A by the exact sequence

0 →M
α→

⊕
ρ∈Σ(1)

ZDρ
β→ A→ 0

where α(m) =
∑

ρ〈m,nρ〉Dρ, β is the quotient map and nρ ∈ N is the primitive generator of
ρ ⊂ NR. If we view the elements of M as rational functions on XΣ ⊃ T then α computes the orders
of poles and zeros along the divisors Dρ. One can show that A is isomorphic to the Chow group
An−1(XΣ). In general A will have torsion.

Note that the map β gives an A-grading on S. For projective spaces this reduces to the usual
Z-grading on polynomials. Denoting

G = HomZ(A, k∗)

we get a G-action on the space V = kΣ(1) dual to the vector space spanned by xρ, ρ ∈ Σ(1). To
obtain XΣ from this action first denote by Σ(max) the set of maximal cones in Σ (i.e. those which
are not contained in a larger cone) and then for σ ∈ Σ(max) define x�σ ∈ S as

∏
ρ∈Σ(1)\σ(1) xρ.

The monomials x�σ, σ ∈ Σ(max) generate an ideal B ⊂ S which corresponds to a closed subvariety
V (B) ⊂ V . To describe V (B) more explicitly, let Γ ⊂ Σ(1) be a subset and V (Γ) the coordinate
subspace of V defined by vanishing of the coordinates in Γ. Then V (Γ) ⊂ V (B) iff Γ is not contained
in the closure of any maximal cone σ ∈ Σ(max). It is easy to see that V (B) is the union of all
such V (Γ) and we can restrict this union to those Γ which are minimal (with respect to inclusion)
among all subsets with the above property.

Since the support of Σ is NR, every Γ which is not in the closure of a maximal cone must contain
at least 2 elements. Therefore codimV V (B) ≥ 2.

According to the main result of [C] we have

XΣ =
[
V \ V (B)

]
/G

The right hand side is usually understood as the universal categorical quotient or geometric quotient,
if Σ is simiplicial (i.e. all cones in Σ are simplices). However, in this paper we will view it as a
stack and use the above equality to define the quotient stack XΣ. Thus, in general XΣ will be an
Artin stack; when Σ is simplicial, a Deligne-Mumford stack, cf. [LM2], [F].
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4.2 BGG correspondence for toric complete intersections

Since XΣ was explicitly defined as a global quotients it is easy to deal with bundles and sheaves on
XΣ: these are just G-equivariant objects on V ◦ = V \ V (B). For instance, line bundles on XΣ are
just G-equivariant line bundles on V ◦.

Since V (B) has codimension at least two, Pic(V ◦) is trivial and H0(V ◦,O) = k. It follows that
the Picard group of XΣ may be identified with Homalg(G, k∗) = A. Note that for XΣ the Picard
group is in general only a subgroup of A (some line bundles on XΣ give only torsion-free sheaves on
XΣ). Thus, for any α ∈ A we have a line bundle O(α) on XΣ. If Sα ⊂ S is the graded component
corresponding to α then

H0(XΣ,O(α)) = Sα

and dimk Sα <∞, cf. [C].
Now let W1, . . . ,Wm be a regular sequence of elements in S which are A-homogeneous of A-

degrees β1, . . . , βm, respectively. Since these can be viewed as sections of line bundles O(β1), . . .,
O(βm), respectively, they define a complete intersection substack Y ⊂ XΣ. In other words,

Y = [V ◦ ∩ Z(J)]/G,

where J stands for the ideal generated in S by W1, . . . ,Wm and Z(J) is the zero set. Denote S/J
by SW (note that the notation for J, SW and αi, βj is consistent with that of Sections 2 and 3,
respectively).

Recall that a full triangulated subcategory I of a triangulated category D is called thick if it is
closed with respect to the operation of taking direct summands.

Lemma 9 The category Coh(XΣ) of coherent sheaves on XΣ is equivalent to the quotient of the
category modA(S) of A-graded finitely generated modules over S, by the subcategory of modules
supported on V (B).

Similarly, the category Coh(Y) of coherent sheaves on Y is equivalent the quotient of the category
modA(SW ) of A-graded finitely generated modules over CW , by the subcategory of modules supported
on V (B) ∩ Z(J). The derived category Db(Coh(Y)) is equivalent to the quotient Db(SW )/I where
I is the thick subcategory of all complexes with cohomology supported on V (B) ∩ Z(J).

Proof. For Coh(XΣ),Coh(Y everything follows easily from definitions since a coherent sheaf on XΣ,
resp. Y, is simply a G-equivariant coherent sheaf on V ◦, resp. V ◦ ∩ Z(J) which can always be
extended to V , resp Z(J). Thus, Coh(Y) is a quotient of modA(S/J) and the kernel is easily seen
to be the subcategory of modules supported on V (B) ∩ Z(J). The derived category statement is
similar. �

Since the graded components of S are finite-dimensional, by Theorem 8, the derived category Db(Y)
is equivalent to a quotient of the Db(EW )opp. To describe this quotient, suppose that Γ ⊂ Σ(1)
defines an irreducible component of V (B), i.e. that Γ is a minimal subset of Σ(1) which is not
contained in the closure of a maximal cone of Σ. Set LΓ to be the subspace of V ∗ spanned by xσ

with σ ∈ Γ. Let also VΓ be the annihilator of LΓ in V . Obviously, L∗Γ � V/VΓ.
Recalling the quotient EW → E = Λ•(V ) from the proof of Theorem 8 we see that every

E-module automatically becomes an EW -module (with vanishing higher products).
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Proposition 10 The derived category Db(Y) is equivalent to the (Db(EW )/T )opp where T is the
thick subcategory generated by the A-shifts of EW -modules Λ•(V/VΓ) and Γ runs through the col-
lection of all minimal subsets in Σ(1) which are not contained in the closure of any maximal cone
of Σ.

Proof. Fix a Γ as above and consider the Koszul complex (Λ•(LΓ)⊗SW , dKos) of the (not necessarily
regular) sequence of elements in SW given by the images of xσ, σ ∈ Γ. Since it is exact on
Z(J)\(Z(J)∩V (B)) and its zero cohomology is the algebra of functions on the scheme intersection
ZJ ∩ V (B), by Lemma 1.2 in [N] the thick subcategory of Db(SW ) generated by the A-shifts of
(Λ•(LΓ) ⊗ SW , dKos) is precisely the category formed by objects with cohomology supported on
Z(J) ∩ V (B).

By Theorem 1.5 in [N] the thick subcategory I of the previous lemma is generated by the
A-shifts of (Λ•(LΓ) ⊗ SW , dKos) for all Γ as in the statement of the proposition.

It remains to prove that the functor F of Theorem 8 takes (Λ•(LΓ) ⊗ SW , dKos) to the EW -
module Λ(V/VΓ). By the same Theorem 8 it suffices to show instead that G takes Λ(V/VΓ) to
(Λ•(LΓ) ⊗ SW , dKos) but that follows from the definitions. �

4.3 Categories of singularities and BGG correspondence

Let Z = Z(J) be the complete intersection in V as before and Dperf(Z) ⊂ Db(Z) the triangulated
subcategory of perfect complexes (in this case, complexes quasi-isomorphic to finite complexes of
finitely generated A-graded projective SW -modules). The quotient Dsg(Z) = Db(Z)/Dperf (Z) has
been studied in [O1] and [O2] in relation to Landau-Ginzburg models. See loc. cit. for more details
and motivation. The following proposition is a direct consequence of Theorem 8.

Proposition 11 The A-graded category Dsg(Z) of singularities on Z is equivalent to the quotient
Db(EW )/R where R is the thick subcategory generated by the A-shifts of k.

Proof. Recall, that the functor F simply sends an SW -module M to Ext•(M,k) (viewed as an
A∞-module over the Yoneda algebra Ext•(k, k)). Therefore, if M is projective, F is a direct sum
of several copies of k with their A-grading shifted. The assertion folows. �

4.4 The Calabi-Yau case

Suppose that Y has trivial canonical class. By the canonical class formula in Section 4.3 of [F]
combined with the adjunction formula, this condition is equivalent to

β1 + . . . + βm = α1 + . . . + αn

Suppose further that the set-theoretic intersection Z(J)∩ V (B) consists only of the origin. This is
automatically the case when XΣ is a weighted projective space (since then V (B) itself reduces to
the origin). In this case we have an alternative description of Db(Y) as Dsg(SW ), cf. Theorem 2.5
in [O2].

Corollary 12 If Y has trivial canonical class and Z(J) ∩ V (B) is supported at the origin, there
exists a derived equivalence

Db(Y) � Db(EW )/R

where R is the thick subcategory generated by k. �
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When Y is a complete intersection of quadrics in a projective space, after a slight adjustment of
grading on EW (see the Remark at the end of Section 3) this reduces to the result of Bondal and
Orlov, [BO].
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Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 39. Springer-Verlag,
Berlin, 2000.

[Me] Merkulov S.A.: Quantization of strongly homotopy Lie bialgebras, preprint
math.AG/0612431.

[N] Neeman, A.: The chromatic tower for D(R). With an appendix by Marcel Bökstedt.
Topology 31 (1992), no. 3, 519–532.

[O1] Orlov, D.: Triangulated categories of singularities and equivalences between Landau-
Ginzburg models, preprint math.AG/0503630.

[O2] Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singular-
ities, preprint math.AG/0503632.

Department of Mathematics, 103 MSTB
University of California, Irvine
Irvine, CA 92697, USA
email: vbaranov@math.uci.edu

19


