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Abstract

We suggest a twisted version of the categorical McKay correspondence and prove several results related
to it.
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1. Introduction

The original McKay correspondence starts with a finite subgroup G ⊂ SL(2,C) and its natural
linear action on C

2. The singular quotient C
2/G can be resolved by a sequence of blowups of
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singular points. If we request that the canonical class of the resolution is trivial (which ensures
that no unnecessary blowups are performed), then such resolution X → C

2/G will be unique. It
was observed by McKay that the irreducible components of the exceptional divisor of X are in
one-to-one correspondence with nontrivial irreducible representations of G. One can reformulate
this as a bijection between all irreducible representations of G and a basis in cohomology of X.

A generalization of this statement assumes that a finite group G acts on a smooth irreducible
variety U over C in such a way that

(i) for any g ∈ G the codimension of the fixed point set Ug is � 2,
(ii) the G-action preserves the canonical bundle of U , and

(iii) the quotient U/G admits a crepant resolution X.

Then the cohomology of X has the same dimension as the orbifold cohomology groups

H •
orb(U ;G) =

⊕
g∈G

(
H •(Ug

))G
,

where Ug stands for the fixed point set and the action of h ∈ G sends Ug to Uhgh−1
. When U

is a vector space the above expression reduces to a sum of one-dimensional vector spaces over
the conjugacy classes, thus recovering the original McKay correspondence at least on the level of
dimensions. See [8] for details on orbifold cohomology and [16,20] for the proof of the assertion.

A more general categorical version of the McKay correspondence, still largely conjectural,
relates G-equivariant vector bundles (or sheaves) on U and usual vector bundles (or sheaves)
on X. To formulate the statement one actually needs to consider the corresponding bounded
derived categories of sheaves Db

G(U) and Db(X), since a vector bundle on X might correspond
to a complex of G-equivariant sheaves on U , and the other way around. The categorical McKay
correspondence conjectures that in this situation there is a derived equivalence

Db
G(U)

∼→ Db(X).

See [6] for related technical details (most of which will not be used in this paper).
As explained in [3], once such a derived equivalence is established, one can apply Keller’s

cyclic homology construction, cf. [15], and obtain an isomorphism of Z2-graded vector spaces

H •
orb(U ;G) � H •(X)

recovering the McKay correspondence for cohomology.
The goal of this paper is to describe a conjectural “twisted” version of the categorical McKay

correspondence. On one hand, given a class α ∈ H 2(G,C
∗) one can define the twisted equivari-

ant derived category Db
G,α(U) and the twisted orbifold cohomology H •

orb,α(U ;G), cf. [1,19] and
Section 2 of this paper. On the other hand, if A is an Azumaya algebra on X, cf. [12], then we
have the corresponding derived category Db(X,A) and its (co)homology theory H •(X,A).

By a result of Gabber, a proof of which was recently published by de Jong, cf. [13], any
class in the cohomological Brauer group Br(X) = H 2

ét(X,O∗)tors is represented by an Azumaya
algebra, and it follows easily that two Azumaya algebras with the same class in Br(X) lead to
equivalent derived categories. Therefore we will denote the above derived category by Db(X,β)

where β is the cohomological class of A. The derived category Db(X,β) can also be defined



V. Baranovsky, T. Petrov / Advances in Mathematics 209 (2007) 547–560 549
without the reference to Azumaya algebras by using β-twisted coherent sheaves, cf. Section 4
of [7]. One might therefore ask the following

Question. When are the twisted derived categories Db(X,β) and Db
G,α(U) equivalent (respec-

tively when are their homology groups isomorphic)?

Obviously, the classes α and β should be somehow related. It turns out that both Br(X) and
H 2(G,C

∗) can be identified with subgroups of Br(K), where K = C(X) is the field of rational
functions on X (cf. discussion after Theorem 2 in Section 3). Hence, for a class in

BG(U) := Br(X) ∩ H 2(G,C
∗)

one has a twist of Db
G(U) and a twist of Db(X).

After proving in Section 3 that Br(X) is the same for all resolutions of U/G, not neces-
sarily crepant, we explicitly describe BG(U) in terms of fixed point subvarieties of G on U ,
cf. Theorem 4. In the important case when U is a vector space with a linear G-action one has
BG(U) = Br(X). Our proof follows the projective case considered in [5]. The definition and
properties of BG(U) lead to the following

Conjecture (Twisted McKay correspondence). In the situation described above, let α ∈ BG(U).
Then there exists a derived equivalence

Db
G,α(U)

∼→ Db(X,α).

When the G-action is free, we have BG(U) = H 2(G,C
∗) and the above equivalence reduces

to definitions. In Section 4 we give an example of a less trivial case.
In Section 5 we consider the cohomological consequence of the twisted McKay correspon-

dence. It turns out that, in characteristic zero, the homology of Db(X,α) is simply H •(X). For
affine X this was proved essentially by Cortiñas and Weibel, cf. [9], and in Theorem 5 we de-
duce the general case from their result. On the other hand, generalizing [3], we also prove in
Theorem 6 that the periodic cyclic homology of Db

G,α(X) can be identified with the twisted orb-
ifold cohomology H •

α (U ;G) as defined in [19]. Since the computation of BG(U), cf. Theorem 4,
implies that for α ∈ BG(U) one has a vector space isomorphism

H •
α (U,G) � H •(U ;G),

the twisted McKay correspondence on homological level simply reduces to the untwisted version
(not very exciting, but it is hard to expect anything else since the Brauer group captures only
torsion information). It is quite possible that homology with finite coefficients can give something
different in the twisted case, but we do not pursue this topic here. Finally, in Section 6 we discuss
some related open problems.

Remark. Perhaps it is appropriate to mention here two more versions of the cohomological
Brauer group:

(i) the analytic Brauer group Bran(X) = H 2
an(X,O∗

an), and
(ii) the topological Brauer group Brtop(X) = H 3(X,Z)tors.
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One can show that Br(X) = Bran(X)tors for all X, and that Br(X) � Brtop(X) whenever
H 2

an(X,Oan) = 0.

2. Projective cocycles and twisted group algebras

A finite abelian group A which can be generated by (at most) two elements is called bicyclic.
Thus, either A is itself cyclic, or it is isomorphic to a product of two cyclic groups.

The next theorem deals with the Schur multiplier H 2(A,C
∗) of A in the second case. We

assume that 2-cocycles are normalized: c(1, g) = c(g,1) = 1.

Theorem 1. Let A � C1 × C2 with C1, C2 cyclic. Then:

(a) H 2(A,C∗) = Hom(C1 ⊗Z C2,C∗);
(b) A 2-cocycle c :A × A → C

∗ is a coboundary iff c(g,h) = c(h,g) for all g,h ∈ A.

Proof. Part (a) follows from the general results in [14]. The “only if” part in (b) follows from
the definition of a coboundary and the fact that A is abelian. To prove the “if” part note that the
symmetry condition is preserved if we adjust a cocycle by a coboundary, and by part (a) this
adjustment can be made in such a way that the value of c(g,h) will depend only on the image of
g in C1 and the image of h in C2. By symmetry such a cocycle is trivial. �

Let G be a finite group acting on an affine variety U = Spec(R). Fix a 2-cocycle c :G×G →
C

∗ representing a class in H 2(G,C
∗). The twisted group algebra Rc[G] is the set of all linear

combinations
∑

g∈G rg · g where rg ∈ R and multiplication is given by the rule

(r1 · g1) ∗ (r2 · g2) = c(g1, g2)
(
r1g1(r2) · g1g2

)
.

The cocycle condition for c is equivalent to associativity of Rc[G]. Up to isomorphism, Rc[G]
depends only on the class α of c in H 2(G,C

∗), hence we can (and will) denote it by Rα[G].
Since c is normalized, 1 ∈ R gives a unity in Rc[G].

Note further that Rc[G] is naturally an algebra over the ring of invariants RG. Moreover, if
the G-action is free, Rc[G] gives an Azumaya algebra over RG. Localizing this construction,
for any G acting freely on a quasiprojective variety U , and any class α ∈ H 2(G,C

∗) we get an
Azumaya algebra Aα on U/G (defined up to isomorphism).

In general, let U0 ⊂ U be the open subset on which the action is free. For any resolution of
singularities X → U/G denote by X0 the preimage of U0/G. Then by pullback our construction
gives an Azumaya algebra Aα on X0 for any α ∈ H 2(G,C

∗).

3. The Brauer group of a resolution

In this paper a valuation will always mean a discrete rank one valuation. All varieties are over
the field of complex numbers C. Let Y be a reduced irreducible variety with field of rational
functions K = C(Y ), and denote by Val(Y ) be set of those valuations of K which become divi-
sorial on some resolution Z → Y (i.e., the corresponding map ν :K∗ → Z simply computes the
order of a rational function along a fixed prime divisor on Z). The next result clarifies the role
of Val(Y ) in the computation of the cohomological Brauer group Br(X) = H 2

ét(X,O∗). We send
the interested reader to [12] for the relation of Br(X) and the group of equivalence classes of
Azumaya algebras. Note that in [12] our group Br(X) is denoted by Br′(X).
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Theorem 2. If X → Y is a resolution of singularities, then

Br(X) =
⋂

ν∈Val(Y )

Br(Oν) ⊂ Br(K).

In particular, the Brauer group does not depend on the choice of X. Moreover, once X is fixed,
in the above intersection it suffices to consider only the divisorial valuations of X.

Proof. Let α ∈ Br(X) and let D ⊂ Z be a prime divisor on some resolution Z, giving a valua-
tion ν. After removing a codimension 2 subset Z′ ⊂ Z we can construct a regular birational map
Z \ Z′ → X. The pullback of α gives a class in Br(Z \ Z′). Localizing at D we get α ∈ Br(Oν).

Now let α be a class in the right-hand side of the formula. There exists an affine U0 ⊂ X

such that α ⊂ Br(U0). Let D1, . . . ,Dr be the irreducible components of X \ U0 and ν1, . . . , νr

the corresponding valuations. Since α ∈ Br(Oνi
) for all i, there exist affine open subsets Ui such

that Ui ∩ Di �= ∅ and α ∈ Br(Ui). Therefore α ∈ Br(
⋃r

i=0 Ui) which is equal to Br(X) by the
Purity theorem, cf. [12], since X\(

⋃r
i=0 Ui) has codimension at most 2 in X. The same argument

shows that the divisorial valuations of X are sufficient to define Br(X). �
Let G be a finite group acting on a smooth variety U almost freely (i.e., the action is free

on some open dense subset U0 ⊂ U ). If L = C(U) is the field of rational functions on U , then
K = C(U/G) can be canonically identified with LG.

By Hilbert Theorem 90 we have an exact sequence

1 → H 2(G,C
∗) → Br(K) → Br(L).

In terms of the previous section, a class α ∈ H 2(G,C
∗) gives an Azumaya K-algebra Lα[G],

which belongs to a class in the cohomological Brauer group Br(K). Since the Brauer group of
U0/G (respectively U0) is a subgroup of Br(K) (respectively Br(L)) we actually have an exact
sequence

1 → H 2(G,C
∗) → Br(U0/G) → Br(U0).

Again, a class α maps to the class representing the Azumaya algebra Aα defined in the previous
section. By the previous result, the Brauer group Br(X) of a resolution X → U/G does not
depend on the choice of X. We can assume that X → U/G is an isomorphism over U0/G, then
Br(X) naturally becomes a subgroup of Br(U0/G). Denote

BG(U) := Br(X) ∩ H 2(G,C
∗).

We view BG(U) as a subgroup of H 2(G,C
∗).

The next theorem gives a direct computation of BG(U) in terms of valuations in Val(U/G).
First recall some definitions, cf. [18]. If ν ∈ Val(U/G) then G acts transitively on the set of
extensions of ν from LG to L and fixing one such extension μ we get a decomposition group
Dν ⊂ G (the stabilizer of μ) and the interia subgroup Iν ⊂ Dν (the kernel of the action on the
residue field kν of ν). In characteristic zero Iν is cyclic and central in Dν . We also need the
quotient Gν = Dν/Iν , isomorphic to the Galois group of the extension kν ⊂ kμ.

Theorem 3. Let α ∈ H 2(G,C
∗) be a class.
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(1) α ∈ BG(U) if and only if for all ν ∈ Val(U/G) the restriction α|Dν belongs to the image of
the map H 2(Gν,C

∗) → H 2(Dν,C
∗).

(2) α ∈ BG(U) if and only if α|A = 0 for any subgroup A ⊂ G, such that ∃ν ∈ Val(U/G) for
which A ⊂ Dν and the image of A in Gν is cyclic.

(3) α ∈ BG(U) if and only if α|A = 0 for any subgroup A ⊂ G, such that ∃η ∈ Val(U/A) for
which A = Dη and Gη is cyclic.

Proof. To prove (1) let Oν be the valuation ring of ν and LG, Oν be completions with respect
to ν. For the fixed extension μ to L we have similar objects Oμ, L, Oμ.

Recall, cf. Theorem 6.5 in [2], that the quotient map Oν → kν induces an isomorphism of
Brauer groups. Then (1) follows from the commutative diagrams:

Br(Oν) Br(LG) H 2(G,C
∗)

ResGDν

Br(Oν) Br(LG) H 2(Dν,C
∗)

and

H 2(Gν) Br(kν) Br(kμ)

H 2(Gν) Br(Oν) Br(Oμ)

H 2(Dν,C
∗) Br(LG) Br(L).

In fact, if α ∈ H 2(G,C
∗) ∩ Br(Oν) then by the first diagram α|Dν ∈ H 2(Dν,C

∗) ∩ Br(Oν).
Since α has zero image in Br(L), α|Dν has zero image in Br(L) and thus by the second diagram
it belongs to the image of the inflation map H 2(Gν,C

∗) → H 2(Dν,C
∗).

In the other direction, suppose we have class β ∈ H 2(Gν,C
∗) such that its image in

H 2(Dν,C∗) is a restriction of some α ∈ H 2(G,C∗). By the above β gives a class in Br(Oν)

which maps to the image of α in B(LG). Now if Gal(kν) stands for the Galois group of the
residue field of ν, then by Theorem III.2.20 and Case (a) in [17] one has the commutative dia-
gram with exact rows

0 Br(Oν) Br(LG) Hom(Gal(kν),C
∗)

0 Br(Oν) Br(LG) Hom(Gal(kν),C∗);

therefore α is in the image of Br(Oν).
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To prove (2) use the Hochschild–Serre spectral sequence. Since Iν is cyclic and central in Dν ,
we have H 2(Iν,C

∗) = 0 and the relevant part of E2 term boils down to

H 2(Gν,C
∗) → H 2(Dν,C

∗) → Hom
(
Gν,Hom(Iν,C

∗)
)
.

The second arrow can be described as follows. Let α ∈ H 2(G,C∗) be a class. It is easy to show
that α|Dν can be represented by a cocycle α :Dν × Dν → C

∗ which descends to a map α :Gν ×
Dν → C

∗. Moreover, the restriction α :Gν × Iν → C
∗ is uniquely determined by the class α and

it will be bilinear (multiplicativity in the first argument uses the fact that Iν is central in Dν ).
Comparing with (1) we see that α ∈ BG(U) if and only if for any ν ∈ Val(U/G) the ho-

momorphism α is trivial. If A is as in (2) then we have a similar spectral sequence for A

but now both A ∩ Iν and the image of A in Gv are cyclic, so H 2(A,C
∗) is a subgroup of

Hom(A ∩ Iν,Hom(A/A ∩ Iν,C
∗)) and in view of α = 1 we get α|A = 0.

In the other direction, take any g ∈ Gν and h ∈ Iν and lift g to an element ĝ in Dν . Then the
subgroup A ⊂ G generated by ĝ, h satisfies the conditions of (2) and by the preceding argument
α|A = 0 implies α(g,h) = 1. Since this holds for all g and h we conclude that α is trivial, i.e.
α|Dν comes from a class in H 2(Gν,C

∗). Since this holds for all ν, by part (1) we get α ∈ BG(U).
Finally we need to show that the conditions of (2) and (3) are equivalent. In general let A ⊂ G

be a subgroup and η the restriction of μ from L to LA. It follows from the definitions that
A∩Dν = Dη and A∩ Iν = Iη. The first equality implies that A ⊂ Dν iff A = Dη . Assuming this,
we see that Gη can be identified with the image of A in Gν , thus (2) and (3) are equivalent. �

Finally, we relate the algebraic property of A in the previous theorem to fixed point subva-
rieties of G in U . Note that A as in (3) is automatically bicyclic, i.e. abelian with at most two
generators, since both Iη and Gη = A/Iη are cyclic and Iη is central in A.

We say that a bicyclic subgroup A ⊂ G acts cyclically on a subvariety W ⊂ U if W is
A-invariant and A acts on W via some cyclic quotient of A.

Theorem 4. Let G be a finite with an almost free action on a smooth variety U

BG(U) =
⋂

A∈Cyc(G,U)

Ker
(
H 2(G,C

∗) → H 2(A,C
∗)

)
,

where the intersection is taken over the set Cyc(G,U) of all bicyclic subgroups A ⊂ G which act
cyclically on a closed irreducible subvariety W ⊂ U .

Proof. In view of the previous theorem it suffices to show that for a bicyclic subgroup A of G

the following conditions are equivalent:

(i) A acts cyclically on a closed irreducible subvariety W ⊂ U , and
(ii) for some η ∈ Val(U/A) we have A = Dη and Gη is cyclic.
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To prove (ii) ⇒ (i) choose a resolution Z → U/A and a prime divisor E corresponding to η.
There exists a A-equivariant birational map Y → U with smooth Y , and a commutative diagram

Y Z

U U/A.

Denote the map Y → Z by ρ. Those irreducible components of ρ−1(E) which dominate E

correspond to extensions of η from LA to L. The particular extension μ chosen to define Dη

and Iη, gives an irreducible component F ⊂ ρ−1(E). Since A = Dη, F is A-invariant and A acts
on F via a cyclic quotient (A/Iη = Gη is cyclic). The image W of F in U is a closed irreducible
subvariety on which A acts cyclically.

To prove (i) ⇒ (ii) write A = B ⊕ C where B , C are cyclic and B acts on W trivially (if A

itself is cyclic then B is trivial).
First we find a smooth A-variety Ũ , an A-equivariant birational map Ũ → U (not necessarily

proper) and an A-invariant divisor E ⊂ Ũ on which B acts trivially. To that end, let b be a
generator of B . We can replace W by an irreducible component of the fixed point set Ub and
assume that W = UB . Next, we can shrink U and assume that W is smooth, irreducible and
defined in U by vanishing of a regular sequence of A-eigenfunctions f1, . . . , fk . Fix a generator
ε in the group of characters B∨ and assume that B acts on fi via εmi where mi ∈ {1, . . . , n − 1}
(since W = UB the smooth case of Luna Slice Theorem implies that mi �= 0). To construct Ũ

and E we proceed by double induction on k = codimU W and max{m1, . . . ,mk}.
If codimU W = 1 set Ũ = U and E = W . Otherwise consider the blowup U ′ of U at the

regular sequence f1, . . . , fk . By definition U ′ ⊂ U × P
k−1 is given by equations fiξj = fj ξi

where [ξ1 : · · · : ξk] are homogeneous coordinates on P
k−1. Assume that m1 = min{m1, . . . ,mk}

and pass to the open subset U ′′ ⊂ U ′ given by ξ1 �= 0. Setting ui = ξi/ξ1 for i = 2, . . . , k we see
that U ′′ ⊂ U ×C

k−1 is given by fi = f1ui , with 2 � i � k. Then U ′′ has obvious A-action, all ui

are A-eigenfunctions and B acts on ui via the character εmi−m1 . Note that each m′′
i = mi − m1

is now in {0, . . . , n − 2}. Define W ′′ ⊂ U ′′ by the equations

f1 = ui = 0, for all i ∈ {2, . . . , k} such that m′′
i �= 0.

It is easy to see that W ′′ is an affine bundle over W , hence smooth and irreducible. Also,
W ′′ ⊂ U ′′ is A-invariant and B acts trivially on W ′′. Set m′′

1 = m1 and note that either
m′′

i ∈ {1, . . . , n − 2} for 1 � i � k and in this case max{m′′
1, . . . ,m

′′
k} < max{m1, . . . ,mk}; or

codimU ′′ W ′′ < codimU W . In both cases we can replace (U,W) by (U ′′,W ′′) and find (Ũ ,E)

by inductive assumption.
To finish the proof, note that X = Ũ/A is smooth at the generic point of E/A = E/C and

therefore E/A defines a valuation η of the field of rational functions on A. To see that η ∈
Val(U/A) note Ũ will be proper over U if we do not pass to open subsets but blow up the ideal
sheaves of (the closures of) subvarieties W in the inductive proof above. This may lead to a
singular Ũ but X is still smooth at the generic point of E/A hence resolving the singularities of
X we get η ∈ Val(U/A). Also, A = Dη since E is irreducible and A-invariant, and Gη is cyclic
since B acts trivially on E and therefore Gη is a quotient of the cyclic group C � A/B . This
finishes the proof. �
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4. An example

Consider an almost free action of G on a vector space V and assume that for all g ∈ G we have
codim(V g) � 2. Take U to be the complement of a G-invariant closed subset Z of codimension
� 2. Then Pic(U) = 0, Br(U) = 0; hence the Brauer group of any resolution X → U/G is equal
to the subgroup BG(U) ⊂ H 2(G,C

∗). The condition of Theorem 4 may be reformulated as
follows: α ∈ BG(U) iff α|A = 0 for all subgroups A generated by a pair of commuting elements
(h, g) such that Uh is nonempty and g preserves an irreducible component of Uh. In our case
Uh is an open subset of a linear subspace in V hence irreducible, therefore

BG(U) = {
α ∈ H 2(G,C

∗) | α(g,h) = α(h,g) whenever Uh �= ∅ and gh = hg
}
.

Note that the condition on the right-hand side is preserved when a cocycle is multiplied by a
coboundary. For instance, when U = U0 is the subset of all vectors in V with trivial stabilizers,
we have BG(U) = H 2(G,C

∗); when U = V we get the subgroup B0(G) of classes in H 2(G,C
∗)

which restrict to zero on any bicyclic abelian subgroup of G (all fixed point sets are nonempty
since they contain the origin of V ). This subgroup, known to coincide with unramified Brauer
group of G, was studied extensively in [4]. Observe, that B0(G) does not depend on the choice
of V .

Groups with B0(G) �= 0 are relatively rare and the condition that V/G admits a crepant reso-
lution puts a further restriction on the pair (V ,G) (see the last section of this paper). However, it
is possible to find a group G with B0(G) �= 0 and an open subset U in a representation V such that
U/G is not smooth but admits a crepant resolution (then automatically 0 �= B0(G) � BG(U)).
We now proceed to describe such an example.

Let p be a prime and consider a central extension of the form

1 → Z
3
p → G → Z

4
p → 1.

If (a, b, c) is a basis of Z
3
p and (x1, x2, x3, x4) a lift of a basis from Z

4
p to G, it was proved in [4]

(cf. Example 3 before Lemma 5.5) that the relations

[x1, x2] = [x3, x4] = a; [x1, x3] = [x1, x4] = 1; [x2, x4] = b; [x2, x3] = c

(where [x, y] = xyx−1y−1), imply that B0(G) � Zp . To describe an exact representation of G

let ε = exp(2πi/p) and choose a pair of p × p matrices P,Q such that [P,G] = εI . For p = 2
we can take the Pauli matrices

P =
(

0 1
−1 0

)
, Q =

(
0 i

i 0

)
;

and for odd p we can define P as a matrix of the cyclic permutation of basis vectors
(v1, . . . , vp) :vi �→ vi+1 for i = 1, . . . , p − 1, and vp �→ v1; then Q will be the diagonal ma-
trix diag(1, ε, ε2, . . . , εp−1).

Let V � C
p2+2p = (Cp ⊗ C

p) ⊕ C
p ⊕ C

p be the representation given by

x1 �→ (P ⊗ I ) ⊕ I ⊕ I ; x2 �→ (Q ⊗ I ) ⊕ P ⊕ P ;
x3 �→ (I ⊗ P) ⊕ I ⊕ Q; x4 �→ (1 ⊗ Q) ⊕ Q ⊕ I ;
a �→ ε(I ⊗ I ) ⊕ I ⊕ I ; b �→ (I ⊗ I ) ⊕ εI ⊕ I ; c �→ (I ⊗ I ) ⊕ I ⊕ εI.
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Let H1 be the subgroup of order p3 in GLp(C) generated by P and Q. One can check directly,
that non-scalar elements in H1 have p distinct eigenvectors with eigenvalues 1, ε, . . . , εp−1. For
each of these eigenvectors, the stabilizer in H1 is isomorphic to Zp . Similarly, all non-scalar
elements in the group H2 ⊂ GLp2(C) of order p5 generated by H1 ⊗ 1 and 1 ⊗ H1 have p

eigenspaces of dimension p, with the same eigenvalues. Again, for each of the eigenspaces its
stabilizer in H2 is isomorphic to Zp .

It follows that for each g ∈ G the fixed point subspace V g has codimension � p and for odd
p the fixed subspaces of codimension precisely p are

V b = (
C

p ⊗ C
p
) ⊕ C

p ⊕ 0 and V c = (
C

p ⊗ C
p
) ⊕ 0 ⊕ C

p.

For p = 2 in addition to V b and V c one also has the fixed point subspace V x1 = V ′ ⊕ C
2 ⊕ C

2

where V ′ is the (+1)-eigenspace of P ⊗ 1. Now define

Z :=
⋃

{g∈G|codim(V g)�(p+1)}
V g

and set U = V \ Z. Then the singularities of U/G are the images of V b , V c (and V x1 if p = 2).
A single canonical blowup gives a crepant resolution X → U/G. By the Purity Theorem, cf. [12],
and codim(Z) � 2 we conclude that Br(X) = BG(U) and this group is non-zero since it contains
the subgroup B0(G) � Zp .

Further similar examples can be obtained with other finite p-groups listed in [4].

5. Homology of categories

Even if the G-action on U is not free, for every G-invariant affine open subset U ′ ⊂ U with
algebra of functions R we can still consider Rα[G], cf. Section 2, and modules over this algebra.
Localizing at G-invariant affine open subsets of U we get the notion of an α-twisted equivariant
sheaf F : this is a sheaf of O-modules on U such that for any G-invariant open subset V ⊂ U ,
the O-module structure on F(V ) is extended to an O(V )α[G]-module structure, and for dif-
ferent invariant open subsets such structures agree with restriction of sections. Morphisms of
α-twisted equivariant sheaves are given by those morphisms of O-modules which commute with
the O(V )α[G]-action for every G-invariant V . Considering the bounded complexes of coherent
α-twisted equivariant sheaves and localizing at quasi-isomorphisms, we get the bounded derived
category Db

G,α(U) of α-twisted G-equivariant sheaves on U .
Alternatively, denote by the same letter α a cocycle representing the cohomology class. There

exists a central group extension

1 → Zn → G̃
π→ G → 1

and a character ψ : Zn → C
∗ such that α(g,h) = ψ(g̃h̃g̃h

−1
), where g̃, etc. denotes some lift of

g ∈ G to G̃. The group G̃ acts on U via its homomorphism to G. Since the subgroup Zn ⊂ G̃

acts trivially on U , the stalk of a G̃-equivariant sheaf on U at any point has a natural structure of
a Zn-module. The derived category of equivariant sheaves Db

G̃
(U) splits into orthogonal direct

sum of subcategories corresponding to different characters of Zn. It follows from the above defi-
nition that Db (U) is equivalent to the subcategory of Db˜(U) corresponding to the character ψ .
G,α G
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For affine U this reduces to the statement that Rα[G] is isomorphic to a quotient of R[G̃] by the
ideal J generated by (t − ψ(t)1) with t ∈ Zn.

If now α ∈ Br(X) and α corresponds to an Azumaya algebra A on X we define Db(X,α) to
be the bounded derived category of finitely generated modules over A.

Suppose that we have a derived equivalence

Db
G,α(U) � Db(X,α). (1)

By a construction explained in [15] both derived categories have a series of homology theories,
including Hochschild homology, cyclic homology and its variants. We fix any of these homology
theories and denote it by H . To simplify notation we disregard the grading on H as we will only
need the total dimension of this vector space. Since derived equivalences induce isomorphisms
on H , cf. [15], (this result requires an additional assumption, always satisfied in a geometric
situation such as ours), the above equivalence (1) should imply an isomorphism of homology.

Let Hα(X) be the homology of Db(X,α) and Hα
G(U) the homology of Db

G,α(U). For α = 0
we drop the superscript α. First, we show that the definition of Hα(X) does not give anything
new.

Theorem 5. The natural inclusion of algebras O ↪→ A induces an isomorphism H(X) �
Hα(X).

Proof. In suffices to prove the claim for Hochschild homology (H = HH∗), the other cases
being a consequence by Proposition 2.4 of [11].

In the affine case the derived category homology coincides with the usual Hochschild homol-
ogy of rings, hence the result is proved in [9].

In general, we cover X with affine open subsets {Ui}i∈I and recall that by a result of Gabber
α|Ui

does come from an Azumaya algebra. Therefore, applying the Mayer–Vietoris sequence
and Noetherian induction we finish as in Proposition 3.3 in [3]. �

The computation of Hα
G(U) is given by a theorem parallel to Theorem 7.4 in [1]. For any

g ∈ G denote by Zg the centralizer of g and observe that the fixed point subvariety Ug is Zg-
invariant. Following [1], we denote by Lα

g the one-dimensional representation of Zg on which
h ∈ Zg acts by α(g,h)α(h,g)−1.

Theorem 6. Let U be a smooth complex variety with an action of a finite group G and let
α ∈ H 2(G,C

∗). Then

Hα
G(U) =

⊕
(g)

(
H

(
Ug

) ⊗ Lα
g

)Zg

where the sum is taken over all conjugacy classes of G.

Proof. Let G̃, π and ψ be as in the beginning of this section. By the main result of [3] the
homology of Db

G̃
(U) can be identified with (

⊕
f ∈G̃ H(Uf ))G̃ where an element t ∈ G̃ sends

Uf �→ Utf t−1



558 V. Baranovsky, T. Petrov / Advances in Mathematics 209 (2007) 547–560
inducing an action on homology. Since the derived category Db

G̃
(U) splits into orthogonal direct

sum of subcategories labeled by characters of Zn ⊂ G̃, we just have to extract from the above
expression the component corresponding to ψ .

It follows from Step 2 after the proof of Proposition 3.2 in [3], that the induced Zn-action on⊕
f ∈G̃ H(Uf ) can be describe as follows: an element h ∈ Zn sends H(Uf ) to H(Uhf ) (both

fixed point spaces are the same, but h permutes different copies of the same homology group in
the direct sum). Since Zn is central in G̃ and acts trivially on U , this action commutes with the
earlier G̃-action.

To compute the component of ψ in (
⊕

f ∈G̃ H(Uf ))G̃ we split the direct sum by grouping
together those f which map to the same conjugacy class in G. For a conjugacy class C ⊂ G

consider

WC =
⊕

π(f )∈C

H
(
Uf

)
.

Denote Z̃g = π−1(Zg) ⊂ G̃, then the G̃-module WC is induced from the Z̃g-module

Wg =
⊕

π(f )=g

H
(
Uf

)
.

As a Zn-module the latter space is just a multiple of the regular representation of Zn. By defini-
tion of G̃ the component of ψ in the latter sum, viewed as a Zg-module, is simply H(Ug) ⊗ Lα

g .
Taking the invariants and summing over all conjugacy classes of G we obtain the right-hand side
of the formula stated in the theorem. �

In our last result we specialize to periodic cyclic homology, which is equal to the usual
topological cohomology by a result of Feigin–Tsygan, cf. [10]. This result provides an indirect
evidence for the twisted McKay correspondence conjectured in this paper.

Corollary 7. Let X → U/G be a crepant resolution. For any α ∈ BG(U) the derived categories
Db(X,α) and Db

G,α have periodic cyclic homology of the same dimension.

Proof. One one hand, any homology theory of Db(X,α) is isomorphic to that of Db(X). On the
other hand, by definition of BG(U) the character Lα

g vanishes whenever Ug is non-empty. There-

fore the previous theorem implies that also Db
G,α(U) and Db

G(U) have the same cyclic homology

theories. Applying periodic cyclic homology to Db
G(U) (respectively Db(X)) we get orbifold co-

homology of U (respectively usual cohomology of X). But these have the same dimension by
[16,20]. �
6. Open problems

In conclusion we state the following open problems:

(i) If would be interesting to construct an example of a finite group G with a linear action on
a vector space V , such that BG(V ) = B0(V ) �= 0 and V/G admits a crepant resolution.
Such examples should be relatively rare; for instance the standard symplectic example V =
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W ⊕ W ∗ will definitely not work, for in this case V/G admits a crepant resolution iff G

acts on W by complex reflections which implies B0(G) = 0 (this is because B0(G) does not
depend on the choice of V and W/G is isomorphic to an affine space).

(ii) The second problem refers to the subgroup BG(U) ⊂ H 2(G,C∗). Assume for simplicity
that Br(U) = 0 then Br(X) = BG(U) for any resolution X → U/G. Is it possible, how-
ever, to define a “derived Brauer group” purely in terms of the (enhanced) derived category
Db(X)? Such a group should contain the full Schur multiplier H 2(G,C

∗) in the simple
case above, and in general it should contain Br(X) as a subgroup. We ask this question
by analogy with the derived Picard group, which is a natural extension of the usual Picard
group. The Merkurjev–Suslin theorem suggests that some answer may perhaps be obtained
from K2, but for practical purposes it should be more computable than K2.

(iii) The third problem is related to the above two. Suppose we have an action of G on a vec-
tor space V and V/G admits a crepant resolution X. As we have seen in this paper, not
all Brauer classes of C(V )G extend to X. For example, when G = SN is the symmetric
group acting of V = (C2)⊕n, the Hilbert scheme Hilbn(C2) of points on C

2 provides a
crepant resolution of V/G and it is easy to check that Br(Hilbn(C2)) = 0. In general, if
α ∈ H 2(G,C∗) \ B0(G) it would be interesting to find an interpretation of the orbifold co-
homology H ∗

G,α(V ) in terms of X. To state the question differently: what type of geometric
objects on X will correspond to projective representations of G?
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