BGG Correspondence for Projective Complete Intersections

Vladimir Baranovsky

1 Introduction

Let k be a field of characteristic zero and $\mathbb{P}(V)$ a projective space over k with homogeneous coordinate ring $\operatorname{Sym}^{\bullet}\left(\mathrm{V}^{*}\right)$. The classical Bernstein-Gelfand-Gelfand correspondence (cf. [3]) interprets the derived category of coherent sheaves on \mathbb{P}^{n} in terms of modules over the exterior algebra $\Lambda^{\bullet}(\mathrm{V})$. This result was later generalized by Kapranov [8], who considered a complete intersection $X \subset \mathbb{P}^{n}$ of quadrics given by polynomials $W_{1}, \ldots, W_{m} \in$ $\operatorname{Sym}^{2}\left(\mathrm{~V}^{*}\right)$. By a theorem of Serre, coherent sheaves on such X can be described in terms of graded modules over $S_{W}=\operatorname{Sym}^{\bullet}\left(\mathrm{V}^{*}\right) /\left\langle\mathrm{W}_{1}, \ldots, W_{m}\right\rangle$, where $\left\langle W_{1}, \ldots, W_{m}\right\rangle$ is the homogenous ideal generated by W_{1}, \ldots, W_{m}. In this situation, the exterior algebra $\Lambda^{\bullet}(V)$ is replaced by the graded Clifford algebra $\mathrm{Cl}\left(\mathrm{W}_{1}, \ldots, W_{m}\right)$ generated by elements $\widehat{y}_{0}, \ldots, \widehat{y}_{n}$ of degree 1 and central elements z_{1}, \ldots, z_{m} of degree 2 , subject to relations

$$
\begin{equation*}
\widehat{y}_{k} \widehat{y}_{i}+\widehat{y}_{i} \widehat{y}_{k}=2 \sum_{j=1}^{m} \bar{w}_{j}\left(\widehat{y}_{k}, \widehat{y}_{i}\right) z_{j} \tag{1.1}
\end{equation*}
$$

where $\bar{W}_{j}: V \otimes V \rightarrow k$ is the polarization of $W_{j}: \operatorname{Sym}^{2}(\mathrm{~V}) \rightarrow \mathrm{k}$. We denote this algebra by E_{W} emphasizing its dependence on the "potential" $W=\sum W_{j} z_{j} \in \operatorname{Sym}^{2}\left(V^{*}\right) \otimes U$, where U is the vector space spanned by z_{1}, \ldots, z_{m}.

In some situations (e.g., those considered in mirror symmetry), one deals with the derived category on a general complete intersection defined by polynomials W_{j} of
arbitrary degrees greater than or equal to 2 . The goal of this paper is to describe the analogue of the above algebra E_{W} in this case and establish the corresponding equivalence of categories. In general, E_{W} is an A_{∞}-algebra, rather than an associative algebra. This means that E_{W} is equipped with "higher-order" products, besides the usual multiplication, and this system of products satisfies a sequence of generalized associativity identities, see Appendix A.1. For such objects the notions of modules and derived categories generalize nicely, see [9, 12], and one obtains a description of (the dual to) the derived category of sheaves on X as a quotient of the derived category of the A_{∞}-algebra E_{W}. Forgetting all "higher-order" operations on E_{W} gives an associative algebra isomorphic to the graded Clifford algebra built from the quadratic parts Q_{j} of W_{j}. Thus, $Q_{j}=W_{j}$ if $\operatorname{deg} W_{j}=2$ and $Q_{j}=0$ otherwise. In particular, if all W_{j} have degree greater than or equal to 3 , the associative algebra of E_{W} contains no information about X at all. Thus, A_{∞}-structures (or something of the sort) are essential in generalizing the BGG correspondence to arbitrary complete intersections.

As in the quadratic case, set $\mathrm{S}_{\mathrm{W}}=\operatorname{Sym}^{\bullet}\left(\mathrm{V}^{*}\right) /\left\langle\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{m}}\right\rangle$. Also, let $(\cdots)^{\text {op }}$ stand for the dual category (with arrows reversed).

Theorem 1.1. The derived category $\mathcal{D}^{\mathrm{b}}\left(S_{W}\right)^{\mathrm{op}}$ is equivalent to the derived category $\mathcal{D}^{\mathrm{b}}\left(\mathrm{E}_{W}\right)$ of a minimal A_{∞}-algebra E_{W} with the following properties:
(a) as a vector space, E_{W} is isomorphic to $\Lambda^{\bullet}(\mathrm{V}) \otimes \mathrm{k}\left[z_{1}, \ldots, z_{\mathrm{m}}\right]$;
(b) the associative algebra (E_{W}, μ_{2}) is isomorphic to the graded Clifford algebra $\mathrm{Cl}\left(\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathfrak{m}}\right)$ constructed from the above quadratic polynomials Q_{j}. In particular, if all W_{j} have degree greater than or equal to 3 , the isomorphism of part (a) holds on the level of algebras;
(c) for $k \geq 3$, the operations μ_{k} have the following properties:
(i) μ_{k} is multilinear with respect to variables $z_{1}, \ldots, z_{\mathrm{m}}$;
(ii) $\mu_{k}\left(v_{1}, \ldots, v_{k}\right)=0$ if $v_{i}=1$ for some i, that is, E_{W} is strictly unital;
(iii) if ξ_{1}, \ldots, ξ_{k} are arbitrary vectors in $V \subset E_{W}$, then

$$
\begin{equation*}
\mu_{k}\left(\xi_{1}, \ldots, \xi_{k}\right)=\sum_{\operatorname{deg} W_{j}=k} \bar{W}_{j}\left(\xi_{1}, \ldots, \xi_{k}\right) z_{j} \tag{1.2}
\end{equation*}
$$

where $\bar{W}_{j}:(V)^{\otimes k} \rightarrow \mathbb{C}$ is the polarization of $W_{j}: \operatorname{Sym}^{k}(V) \rightarrow k$.
Moreover, this induces the equivalence between $\mathcal{D}^{\mathfrak{b}}(\operatorname{Coh}(X))^{\text {op }}$ and the quotient $\mathcal{D}^{\mathfrak{b}}\left(\mathrm{E}_{W}\right)$ / I, where $\operatorname{Coh}(X)$ is the category of coherent sheaves on X, and I is the full subcategory consisting of the objects isomorphic to finite complexes of free E_{W}-modules.

See Section 4 for the definitions of the categories involved. We only note here that $\mathcal{D}^{\mathfrak{b}}\left(\mathrm{E}_{W}\right)$ is a slight abuse of notation, in fact, it stands for a subcategory of a larger
derived category obtained by imposing conditions on cohomology. For a Noetherian associative algebra A such construction gives a subcategory equivalent to $\mathcal{D}^{b}(\mathcal{A})$. When X is smooth, $\mathcal{D}^{\mathrm{b}}(\operatorname{Coh}(\mathrm{X}))^{\mathrm{op}} \simeq \mathcal{D}^{\mathrm{b}}(\operatorname{Coh}(\mathrm{X}))$.

Remark 1.2. The properties stated in Theorem 1.1 do not determine the A_{∞}-structure on E_{W}-uniquely. On one hand, for many purposes one only needs to know the A_{∞}-structure up to homotopy. On the other hand, it turns out that our particular A_{∞}-structure is obtained by specialization of a family of A_{∞}-structures on E_{W} parametrized by V^{*}. The products in this family have an interesting recursive property, see Proposition 3.2 in Section 4, allowing to determine them uniquely. This phenomenon does not manifest itself in the quadratic case.

Another approach to E_{W}, not considered here, is to look at the standard cocommutative coproduct on E_{W}. In fact, the polynomials W_{1}, \ldots, W_{m} define an L_{∞}-structure (cf. [11]) on the super vector space $L=s V \oplus s^{2} U$ (V in homological degree 1 and U in degree 2). All identities of an L_{∞}-algebra are satisfied since every term in them vanishes (e.g., the Jacobi identity holds since L is 2-step nilpotent). Applying the standard constructions of differential homological algebra (cf. [5, Chapter 22]) one considers the DGcoalgebra $C=C(L)$ (also used in this paper) and then the free Lie algebra $\mathcal{L}(C(L))$. If all polynomials W_{j} with $\operatorname{deg} W_{j} \geq 3$ are set to zero, all higher Lie brackets vanish and there is a quasi-isomorphism of DG-Lie algebras $\mathcal{L}(C(L)) \rightarrow L$, see [5 , Theorem 22.9]. The universal enveloping algebra functor gives a quasi-isomorphism of DG-Hopf algebras $\Omega(C(L)) \rightarrow E_{W}$, where Ω stands for the cobar construction and E_{W} is considered with the Clifford algebra structure arising from Q_{j}. Bringing back all nonquadratic W_{j} perturbs the differential on $\Omega\left(\mathrm{C}(\mathrm{L})\right.$), leading to a transferred A_{∞}-structure E_{W} (cf. Appendix A.3). However, since the perturbed differential agrees again with the Hopf algebra structure on $\Omega(C(L))$, by a result stated in [14, Theorem 2$], E_{W}$ has a much richer "homotopy bialgebra" structure. At this moment we are not able to identify it explicitly.

This paper is organized as follows. In Section 2, we introduce a DG-algebra A which is quasi-isomorphic to a standard DG-algebra computing Ext ${ }_{S_{w}}(k, k)$, and related to S_{W} by a Koszul-type equivalence. In Section 3, we compute an A_{∞}-structure on $E_{W}=$ $H^{*}(A)$. Section 4 contains the proofs of the equivalences stated above. Finally, the appendix states some standard definitions and results used in this paper.

2 A Koszul-equivalent DG-algebra

We fix our notations here. Assume that all tensor products are over k, unless stated otherwise. Fix a vector space V over k with a basis (y_{0}, \ldots, y_{n}), another vector space U with
a basis $\left(z_{1}, \ldots, z_{\mathfrak{m}}\right)$ and denote by $\left(x_{0}, \ldots, x_{n}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$ the dual bases of V^{*} and U^{*}, respectively.

While V and U are placed in homological degree zero, later we consider vector spaces with nontrivial homological grading (denoted by upper indices). We also use the suspension operation $V \mapsto s V$, where $(s V)^{\mathfrak{p}}=V^{p-1}$. Odd copies of variables (y_{0}, \ldots, y_{n}) will be denoted by $\left(\hat{y}_{0}, \ldots, \widehat{y}_{n}\right)$ and similarly with other bases. We write $S(X)$ for the graded symmetric (co)algebra of the graded vector space X. For instance, $S(s V)$ may be identified with the exterior (co)algebra $\Lambda^{\bullet}(\mathrm{V})$ if we forget about the gradings.

Eventually we will use internal grading denoted by lower indices. The graded dual of $M=\oplus M_{p}$ is defined as $M^{*}=\oplus M_{p}^{*}$, where $M_{p}^{*}=\operatorname{Hom}_{k}\left(M_{-p}, k\right)$. Similarly, the bigraded dual of $M=\oplus M_{q}^{p}$ is defined as $M^{*}=\oplus\left(M^{*}\right)_{q}^{p}$, where $\left(M^{*}\right)_{q}^{p}=\operatorname{Hom}_{k}\left(M_{-q}^{-p}, k\right)$.

Consider a regular sequence of homogeneous polynomials $\left(W_{1}, \ldots, W_{m}\right) \in S\left(V^{*}\right)$ of degrees $d_{j} \geq 2, j=1, \ldots, m$, and define the "total potential" $W=\sum_{j=1}^{m} W_{j} z_{j} \in S\left(V^{*}\right) \otimes$ U. Most formulas in this paper will be written in terms of W rather than individual W_{j} 's.

One of the goals of this paper is to reinterpret the category of graded modules over the graded ring S_{W} defined in Section 1. In this section, construct a "small" DGalgebra A which is derived equivalent to S_{W} (when we consider derived categories with appropriate finiteness conditons). The definition of this algebra was originally obtained by studying endomorphisms of the Koszul complex of an S_{W}-module k. As an algebra,

$$
\begin{equation*}
A=S\left(V^{*} \oplus s^{2} U\right) \otimes C l\left(s^{-1} V^{*}, s V\right) \simeq k\left[x_{0}, \ldots, x_{n}, z_{1}, \ldots, z_{m}\right] \otimes C l\left(s^{-1} V^{*}, s V\right), \tag{2.1}
\end{equation*}
$$

where the Clifford algebra $\mathrm{Cl}\left(\mathrm{s}^{-1} \mathrm{~V}^{*}, \mathrm{~s} V^{*}\right)$ is isomorphic to $\Lambda^{\bullet}\left(\widehat{x}_{0}, \ldots, \widehat{x}_{n}, \widehat{y}_{0}, \ldots, \widehat{y}_{n}\right)$ as a vector space and has commutation relations $\widehat{y}_{p} \widehat{x}_{p}+\widehat{x}_{p} \widehat{y}_{p}=1, p=0, \ldots, n$ (other pairs of variables anticommute).

Before we define the differential of A, denote by $\widehat{\partial}_{i}$ the "corrected partial derivative" on $S\left(V^{*}\right)$, which satisfies $\widehat{\partial}_{i}(1)=0$, takes a homogeneous degree n polynomial $f(x)$ to $(1 / n) \partial_{i} f(x)$ and extends to nonhomogeneous polynomials by linearity. Later, for any multi-index P, the operator $\widehat{\partial}_{P}$ will denote the obvious composition of corrected partial derivatives. We extend these operators to $k\left[x_{0}, \ldots, x_{n}, z_{1}, \ldots, z_{m}\right]$ by linearity with respect to z-variables. The differential δ_{A} on A is a derivation with only nonzero values on generators given by

$$
\begin{equation*}
\delta_{A}\left(\widehat{x}_{p}\right)=x_{p}, \quad \delta_{A}\left(\widehat{y}_{p}\right)=-\widehat{\partial}_{p}(W) \tag{2.2}
\end{equation*}
$$

To relate S_{W} and A, first consider the Koszul resolution B of S_{W}, that is, the supercommutative algebra $S\left(\mathrm{~V}^{*} \oplus \mathrm{~s}^{-1} \mathrm{U}^{*}\right)$ with its Koszul differential δ_{B}, that is, a derivation satisfying $\delta_{B}\left(\widehat{w}_{j}\right)=W_{j}$ and equal to zero on the generators x_{i}. One can view δ_{B} as given by the "half-suspension" potential $\widehat{W}=\Sigma W_{j} \widehat{z}_{j}$, where $\widehat{z}_{j} \in \operatorname{sU}$ acts on $\Lambda^{\bullet}\left(U^{*}\right)=S\left(s^{-1} U^{*}\right)$ by contraction. Since $\left(W_{1}, \ldots, W_{m}\right)$ is a regular sequence, the natural algebra map $B \rightarrow S_{W}$ sending \widehat{w}_{j} to zero is a quasi-isomorphism.

Next, consider the graded dual coalgebra $C=B^{*}=S(V \oplus s U) \simeq k\left[y_{0}, \ldots, y_{n}\right] \otimes$ $\Lambda\left(\widehat{z}_{1}, \ldots, \widehat{z}_{m}\right)$. Note that $S(V)$ acts on $S\left(V^{*}\right)$ by differential operators with constant coefficients and we can write the pairing $S(V) \otimes S\left(V^{*}\right) \rightarrow k$ as $\left(y^{p}, g(x)\right)=\partial_{p} g(0)$. Similarly, $S\left(V^{*}\right)$ acts on $S(V)$ by differential operators with constant coefficients and the same pairing may be written as $\left(f(y), x^{Q}\right)=\partial_{Q} f(0)$ (both P and Q are multi-indices). The same applies to $S\left(s^{-1} U^{*}\right)$ and $S(s U)$, which act on each other by contractions. It is immediate that the differential δ_{C} of C is given again by $\widehat{W}=\sum W_{j} \widehat{z}_{j}$, if now we interpret W_{j} as differential operators on $S(V)$ and \widehat{z}_{j} as scalars in $S(s U)$.

Now consider a linear map $\tau=\tau_{1}+\tau_{2}: C \rightarrow A$ of degree +1 , where τ_{1} is the suspension operator identifying $V \oplus s U \subset C$ with $s V \oplus s^{2} U \subset A$, extended by zero to the rest of C , and

$$
\begin{equation*}
\tau_{2}: S(V) \geq 1 \longrightarrow A, \quad y^{P} \longmapsto|\mathrm{P}|!\widehat{d}\left(\widehat{\partial}_{P} W\right), \quad|\mathrm{P}| \geq 1 \tag{2.3}
\end{equation*}
$$

(again, τ_{2} is extended by zero from $S(V)_{\geq 1}$ to C). Here, \widehat{d} is the "corrected exterior derivative," $\sum_{i=0}^{n} \widehat{\partial}_{i}(\cdots) \cdot \widehat{x}_{i}$, which satisfies $\delta_{A} \hat{d}(f(x) g(z))=f(x) g(z)-f(0) g(z)$. Below, $\Omega(\cdots)$ stands for the reduced cobar construction (cf. [5, Chapter 19]).

Lemma 2.1. The linear map $\tau: C \rightarrow A$ satisfies the twisted cochain condition of Appendix A.4. Moreover, the natural multiplicative extension $\Omega(\mathrm{C}) \rightarrow \mathcal{A}$ is a quasiisomorphism of DG-algebras.

Proof. Since $z_{1}, \ldots, z_{\mathrm{m}}$ are central in A, the nontrivial case is when the twisted cochain condition is applied to $y^{\mathrm{P}},|\mathrm{P}| \geq 2$. Then everything follows from the identities:

$$
\begin{align*}
& \tau_{2}\left(y^{P}\right) \tau_{2}\left(y^{Q}\right)+\tau_{2}\left(y^{Q}\right) \tau_{2}\left(y^{P}\right)=0 ; \\
& \delta_{A} \tau_{2}\left(y^{P}\right)=|P|!\widehat{\partial}_{P} W-\tau_{1} \delta_{C}\left(y^{P}\right) ; \tag{2.4}\\
& \widehat{y}_{p} \widehat{x}_{p}+\widehat{x}_{p} \widehat{y}_{p}=1 .
\end{align*}
$$

To prove the quasi-isomorphism $\Omega(C) \rightarrow A$ by [12, Proposition 2.2.1.4], it suffices to establish that the natural map $F_{0}: k \rightarrow A \otimes C$ is a quasi-isomorphism (the differential on $A \otimes C=\mathcal{F}_{\tau}(A)$ is as in Appendix A.4). To that end, first set formally all W_{j} to zero.

Then $A \otimes C$ becomes a tensor product of classical Koszul complexes with a standard contracting homotopy H_{0} and projection $\mathrm{G}_{0}: A \otimes \mathrm{C} \rightarrow \mathrm{k}$, satisfying the side conditions $H_{0}^{2}=0, H_{0} F_{0}=0, G_{0} H_{0}=0$. Returning to the original W_{j} amounts to perturbing the differential on $A \otimes C$, and the quasi-isomorphism follows from the basic pertubation lemma.

Corollary 2.2. If C_{W} is the graded dual coalgebra of S_{W} and $\tau_{W}: C_{W} \rightarrow C \rightarrow A$ is the composition of the adjoint to $B \rightarrow S_{W}$ and τ, then its canonical multiplicative extension $\Omega\left(C_{W}\right) \rightarrow A$ is a quasi-isomorphism of DG-algebras.

3 A transferred A_{∞}-structure

In this section, we provide an explicit contraction identifying the cohomology of A with the graded vector space $\mathrm{E}_{W}=\mathrm{k}\left[z_{1}, \ldots, z_{\mathrm{m}}\right] \otimes \Lambda\left(\widehat{y}_{0}, \ldots, \widehat{y}_{\mathrm{m}}\right)$. Using the obvious supercommutative product $\widehat{y}_{i} \wedge \widehat{y}_{j}$ in E_{W}, define $G: E_{W} \rightarrow A$ by

$$
\begin{equation*}
G\left(\left(\widehat{y}_{i_{1}} \wedge \cdots \wedge \widehat{y}_{i_{s}}\right) z^{\mathrm{P}}\right)=\frac{1}{s!} \sum_{\sigma \in \Sigma_{s}}(-1)^{\sigma}\left(\widehat{y}_{i_{\sigma(1)}}+\widehat{d}_{\mathrm{d}_{i_{\sigma(1)}}} w\right) \cdots\left(\widehat{y}_{i_{\sigma(s)}}+\widehat{d}_{i_{i_{\sigma(s)}}} w\right) z^{\mathrm{P}}, \tag{3.1}
\end{equation*}
$$

where Σ_{s} is the symmetric group and P is a multi-index. Then, G is a map of complexes (if E_{W} has zero differential) since individual factors on the right-hand side are annihilated by δ_{A}.

Let $F: A \rightarrow E_{W}$ be the quotient map by the right ideal generated by x_{i}, \widehat{x}_{i}. To establish $\mathrm{FG}=1_{E_{W}}$ for any subset $\mathrm{I}=\left\{i_{1}, \ldots, i_{s}\right\}$, denote $\widehat{y}_{i_{1}} \wedge \cdots \wedge \widehat{y}_{i_{s}}$ by \widehat{y}^{I}, and for $\mathrm{I}_{1} \subset \mathrm{I}$ let $\left[\hat{y}^{\mathrm{I}_{1}} \backslash \widehat{y}^{\mathrm{I}}\right]= \pm \widehat{y}^{\mathrm{I} \backslash \mathrm{I}_{1}}$ with the sign determined by the formula $\widehat{y}^{\mathrm{I}_{1}} \wedge\left[\hat{y}^{\mathrm{I}_{1}} \backslash \widehat{y}^{\mathrm{I}}\right]=\widehat{y}^{\mathrm{I}}$. Then

$$
\begin{equation*}
G\left(\widehat{y}^{I}\right)=\sum_{I_{1}=\left\{i_{1}, \ldots, i_{p}\right\} \subset I} \widehat{d} \widehat{\partial}_{i_{1}}(W) \cdots \widehat{d} \widehat{\partial}_{i_{p}}(W)\left[\widehat{y}^{I_{1}} \backslash \widehat{y}^{I}\right] \tag{3.2}
\end{equation*}
$$

which implies $\mathrm{FG}=1_{\mathrm{E}_{w}}$. To define a homotopy, split A into a tensor product of complexes

$$
\begin{equation*}
\left(A, \delta_{A}\right) \simeq\left(S\left(V^{*} \oplus s V^{*}\right), \delta_{x}\right) \otimes\left(G\left(E_{W}\right), 0\right), \tag{3.3}
\end{equation*}
$$

where δ_{x} is the restriction of δ_{A} to the subalgebra $S\left(V^{*} \oplus s V^{*}\right)$ generated by the x - and \widehat{x}-variables. Define $H: A \rightarrow A$ as $\widehat{d} \otimes 1_{G\left(E_{W}\right)}$, where the corrected exterior derivative \widehat{d} is defined before Lemma 2.1. It follows immediately that $\delta_{A} H+H \delta_{A}=1_{A}-G F$ and $F(H(a) b)=0$, for all $a, b \in A$.

Following the procedure of Appendix A.3, one uses H to compute the "kernels" $p_{n}: A^{\otimes n} \rightarrow A$ and then defines an A_{∞}-structure on E_{W} by $\mu_{k}=F \circ p_{k} \circ G^{\otimes k}$. The next
proposition computes $\mu_{2}(v, u)=F(G(v) G(u))$ (which is associative since E_{W} has zero differential) and states some properties of the higher products. To unload notation, from now on we set

$$
\begin{equation*}
W^{\left(i_{1}, \ldots, i_{k}\right)}:=\widehat{\partial}_{i_{1}} \cdots \hat{\partial}_{i_{k}}(W) \tag{3.4}
\end{equation*}
$$

Proposition 3.1. The associative algebra (E_{W}, μ_{2}) is isomorphic to $\mathrm{Cl}\left(\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{m}}\right)$, the graded Clifford algebra built from the quadratic parts Q_{j} of the homogeneous polynomials W_{j}. Moreover, the higher products $\mu_{k}, k \geq 3$ have the following properties:
(a) $\mu_{k}\left(v_{1}, \ldots, v_{k}\right)=0$ if $v_{i}=1$, for some i. Thus, E_{W} is a strictly unital A_{∞}-algebra;
(b) $\mu_{k}\left(v_{1}, \ldots, v_{k}\right)$ are multilinear with respect to the z-variables.

Proof. Since the maps F, G are linear with respect to the z-variables which also belong to the center of A, it suffices to compute $\mu_{2}\left(\widehat{y}^{I}, \widehat{y}^{J}\right)$. Since F annihilates elements of the form $\widehat{x}_{i} b$,

$$
\begin{equation*}
\mu_{2}\left(\widehat{y}^{I}, \widehat{y}^{I}\right)=F\left(\widehat{y}_{J_{1}=\left\{j_{1}, \ldots, j_{s}\right\} \subset J} \widehat{d} W^{\left(j_{1}\right)} \cdots \hat{d} W^{\left(j_{s}\right)}\left[\widehat{y}^{I_{1}} \backslash \hat{y}^{I}\right]\right) . \tag{3.5}
\end{equation*}
$$

Taking into account $\widehat{y}_{i} \widehat{d}=-\widehat{d} \widehat{y}_{i}+\partial_{i}$, one gets

$$
\begin{align*}
& G\left(\hat{y}^{I}\right) \cdot G\left(\widehat{y}^{I}\right) \\
& \quad=\sum_{\substack{k \geq 0}} \sum_{\substack{I_{1}=\left\{i_{1}, \ldots, i_{k}\right\} \backslash I \\
J_{1}=\left\{j_{1}, \ldots, j_{k}\right\} \in J}}(-1)^{(|I|-k) k} \operatorname{det}\left(W^{\left(i_{p}, j_{q}\right)}\right)_{p, q=1, \ldots, k} G\left(\left[\hat{y}^{I_{1}} \backslash \hat{y}^{I}\right] \wedge\left[\widehat{y}^{I^{I}} \backslash \hat{y}^{I}\right]\right) . \tag{3.6}
\end{align*}
$$

Applying F to the expression on the right-hand side amounts to evaluating the determinant at $\left(x_{0}, \ldots, x_{n}\right)=(0, \ldots, 0)$ and removing G. Thus, only the quadratic defining equations W_{j} will give a nonzero contribution to μ_{2}. For quadratic polynomials, one has $\widehat{\partial}_{i} \widehat{\partial}_{j}(Q)=(1 / 2)\left(\partial^{2} Q / \partial x_{i} \partial x_{j}\right)$. In particular, this gives a formula

$$
\begin{equation*}
\mu_{2}\left(\widehat{y}_{p}, \widehat{y}_{q}\right)=\widehat{y}_{p} \widehat{y}_{q}+\frac{1}{2} \sum_{j=1}^{m} \frac{\partial^{2} Q_{j}}{\partial x_{p} \partial x_{q}} z_{j} . \tag{3.7}
\end{equation*}
$$

In particular, $\mu_{2}\left(\hat{y}_{p}, \hat{y}_{q}\right)+\mu_{2}\left(\hat{y}_{q}, \hat{y}_{p}\right)=\sum_{j=1}^{m}\left(\partial^{2} Q_{j} / \partial x_{p} \partial x_{q}\right) z_{j}$. Therefore, the homomorphism

$$
\begin{equation*}
\rho: \mathrm{T}\left(\mathrm{~V}^{*}\right) \otimes \mathrm{k}\left[z_{1}, \ldots, z_{\mathrm{m}}\right] \longrightarrow\left(\mathrm{E}_{W}, \mu_{2}\right), \quad \widehat{y}_{\mathrm{p}} \longmapsto \widehat{y}_{\mathrm{p}}, \quad z_{\mathrm{j}} \longmapsto z_{\mathrm{j}}, \tag{3.8}
\end{equation*}
$$

descends to an algebra map $\mathrm{Cl}\left(\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathfrak{m}}\right) \rightarrow\left(\mathrm{E}_{\boldsymbol{W}}, \mu_{2}\right)$. By a standard argument involving filtration by monomials of degree less than or equal to k in \widehat{y}_{p}, the map $\rho: \operatorname{Cl}\left(Q_{1}, \ldots\right.$, $\left.Q_{m}\right) \rightarrow\left(E_{W}, \mu_{2}\right)$ is an isomorphism.

Part (a) follows by an easy induction from the definition of \mathbf{p}_{n} and the side conditions $\mathrm{H}^{2}=0, \mathrm{FH}=0, \mathrm{HG}=0$, which hold in our case. Part (b) is a consequence of linearity of F, G, and H with respect to the central z-variables.

The easiest way to describe the A_{∞}-structure on E_{W} completely is to include it in a family of A_{∞}-structures which we now proceed to describe. Add extra central variables $\left(x_{0}, \ldots, x_{n}\right)$ to A and E_{W} to obtain a $k\left[x_{0}, \ldots, x_{n}\right]$-algebra $A[x]$ and a free $k\left[x_{0}, \ldots, x_{n}\right]$ module $E_{W}[x]$, respectively. Consider a new potential $W(x, x) \in \mathcal{A}[x]$ obtained from W by replacing every x_{i} by $\left(x_{i}+x_{i}\right)$. Define the differential $\delta_{A[x]}$ and the contraction F_{x}, G_{x}, H_{x} from $A[x]$ to $E_{W}[x]$ by the same formulas as before, but using $W(x, x)$ instead of $W(x)$. In particular, all operators just introduced are linear with respect to the x-variables, and the corrected partial and exterior derivatives $\widehat{\partial}_{i}, \widehat{d}$ act only on x_{i}, not x_{i}. The corrected partial derivatives which do act on x_{i} will be denoted by $\widehat{d} / \mathrm{d} x_{i}$ to avoid confusion.

By Appendix A.3, $\mathrm{E}_{W}[\mathbf{x}]$ acquires a transferred A_{∞}-structure $\left\{\eta_{k}\right\}_{k \geq 2}$ from $A[\mathbf{x}]$. For example, repeating the arguments leading to (3.6), we obtain the following expression for the product η_{2} in $E_{W}[x]$:

$$
\begin{align*}
& \eta_{2}\left(\widehat{y}^{I}, \widehat{y}^{J}\right) \\
& \quad=\sum_{k \geq 0} \sum_{\substack{I_{1}=\left\{i_{1}, \ldots, i_{k}\right\} \subset 1 \\
J_{1}=\left\{j_{1}, \ldots, j_{k}\right\} \subset J}}(-1)^{(|I|-k) k} \operatorname{det}\left(W^{\left(i_{p}, j_{q}\right)}[x]\right)_{p, q=1, \ldots, k}\left[\widehat{y}^{I_{1}} \backslash \widehat{y}^{I}\right] \wedge\left[\widehat{y}^{I_{1}} \backslash \widehat{y}^{J}\right], \tag{3.9}
\end{align*}
$$

where $W[x]$ is obtained from W by substitution $x_{i} \mapsto x_{i}$ and

$$
\begin{equation*}
W^{\left(i_{p}, j_{\mathrm{q}}\right)}[x]=\frac{\widehat{\mathrm{d}}}{\mathrm{~d} x_{i_{\mathrm{p}}}} \frac{\widehat{\mathrm{~d}}}{\mathrm{~d} x_{i_{\mathrm{q}}}} W[x] . \tag{3.10}
\end{equation*}
$$

In other words, $\left(E_{W}[x], \eta_{2}\right)$ is a Clifford algebra of a symmetric quadratic form $V \otimes V \rightarrow$ $\operatorname{Sym}^{\bullet}\left(\mathrm{V}^{*}\right) \otimes \mathrm{U}$, a partial polarization of W.

There is a natural surjective map $\pi_{E}: \mathrm{E}_{W}[\mathrm{x}] \rightarrow \mathrm{E}_{W}$ obtained by sending x_{i} to zero.
Proposition 3.2. The A_{∞}-structure $\left\{\eta_{k}\right\}$ on $E_{W}[x]$ has the following properties:
(a) $\mu_{\mathrm{k}}\left(\pi_{\mathrm{E}}\left(v_{1}\right), \ldots, \pi_{\mathrm{E}}\left(v_{\mathrm{k}}\right)\right)=\pi_{\mathrm{E}} \eta_{\mathrm{k}}\left(v_{1}, \ldots, v_{\mathrm{k}}\right)$ for $\mathrm{k} \geq 2$;
(b) the generators z_{1}, \ldots, z_{m} and x_{0}, \ldots, x_{n} are central for the associative product η_{2}, while for $k \geq 3$, the higher products η_{k} are linear with respect to these generators;
(c) the following recursive formula determines uniquely the A_{∞}-structure $\left\{\eta_{k}\right\}$ (and hence by (a) the A_{∞}-structure $\left\{\mu_{k}\right\}$):

$$
\begin{equation*}
\eta_{k}\left(\widehat{y}_{i}, \widehat{y}^{I_{2}}, \ldots, \widehat{y}^{I_{k}}\right)=\frac{\widehat{d}}{d x_{i}} \eta_{k-1}\left(\widehat{y}^{I_{2}}, \ldots, \widehat{y}^{I_{k}}\right) . \tag{3.11}
\end{equation*}
$$

Proof. Let $\pi_{\mathrm{A}}: \mathrm{A}[\mathrm{x}] \rightarrow \mathrm{A}$ be the quotient map with respect to the DG-ideal generated by x_{0}, \ldots, x_{n}. Then, π_{A} is multiplicative and $\pi_{A} H_{x}=H \pi_{A}, \pi_{E} F_{x}=F \pi_{A}, \pi_{A} G_{x}=G \pi_{E}$. The definitions of the corresponding "kernels" $\boldsymbol{p}_{\mathrm{n}}[\boldsymbol{x}]$ on $\mathrm{A}[\mathbf{x}]$ (cf. Appendix A.3) give (a) immediately.

Part (b) follows from the fact that F_{x}, G_{x}, and H_{x} commute with multiplication by x_{i}.

To prove (c), one first shows $F_{x}\left(H_{x}(a) b\right)=0$ for all $a, b \in A[x]$, hence only the first term in the inductive formula for $\boldsymbol{p}_{\mathrm{k}}[\boldsymbol{x}]$ (cf. Appendix A.3) gives a nonzero contribution to $F_{x} \circ \boldsymbol{p}_{k}[\boldsymbol{x}] \circ G_{x}^{\otimes k}$. Therefore, setting $v_{i}^{\prime}=G_{x}\left(v_{i}\right)$, we get

$$
\begin{align*}
\eta_{k}\left(\widehat{y}_{i}, v_{2}, \ldots, v_{k}\right) & =F_{x}\left(G_{x}\left(\widehat{y}_{i}\right) H_{x} p_{k-1}[x]\left(v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right)\right) \\
& =F_{x}\left(\widehat{y}_{i} H_{x} p_{k-1}[x]\left(v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right)\right) \\
& =F_{x}\left(-H_{x} \widehat{y}_{i} \mathbf{p}_{k-1}[\mathbf{x}]\left(v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right)+\widehat{\partial}_{i} \mathbf{p}_{k-1}[\mathbf{x}]\left(v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right)\right) \tag{3.12}\\
& =F_{x}\left(\widehat{\partial}_{\hat{o}_{i}} \mathbf{p}_{k-1}[x]\left(v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right)\right) .
\end{align*}
$$

Inspecting the definition of $\boldsymbol{p}_{k}[\boldsymbol{x}]$, we see that $\boldsymbol{p}_{k-1}[\boldsymbol{x}]\left(G_{\chi}\left(\widehat{\boldsymbol{y}}^{I_{2}}\right), \ldots, G_{\chi}\left(\widehat{\boldsymbol{y}}^{I_{k}}\right)\right)$ is a sum of products involving $\widehat{d} W^{P}(x, x), W^{P}(x, x)$, and \widehat{y}_{i}. We can assume that all factors \widehat{y}_{i} stand to the right of $\widehat{d} W^{P}(x, x)$ and then disregard those terms which contain $\widehat{d} W^{P}(x, x)$ since they are annihilated by F_{x}. All other terms can be reduced to the form $R\left(x_{0}+x_{0}, \ldots, x_{n}+x_{n}\right)$, where R is a polynomial with coefficients in $k\left[z_{1}, \ldots, z_{m}\right] \otimes \Lambda\left(y_{0}, \ldots, y_{n}\right)$. Applying F_{x} just amounts to setting $x_{i}=0$, for $i=0, \ldots, n$. Now (c) follows from the formula

$$
\begin{equation*}
\left.\left(\widehat{\partial}_{i} R\left(x_{0}+x_{0}, \ldots, x_{n}+x_{n}\right)\right)\right|_{x=0}=\frac{\widehat{d}}{d x_{i}}\left(\left.R\left(x_{0}+x_{0}, \ldots, x_{n}+x_{n}\right)\right|_{x=0}\right) . \tag{3.13}
\end{equation*}
$$

Finally, to show that the above formula allows to recover the general values of η_{k}, we note that $E_{W}[x]$ is generated by \widehat{y}_{i} as a $k\left[z_{1}, \ldots, z_{m}, x_{0}, \ldots, x_{n}\right]$-algebra and that by A_{∞}-identities, one has

$$
\begin{align*}
\eta_{k}\left(\widehat{y}_{i} * \widehat{y}^{I}, v_{2}, \ldots, v_{k}\right)= & \pm \eta_{k}\left(\widehat{y}_{i}, \widehat{y}^{I} * v_{2}, \ldots, v_{k}\right) \pm \eta_{k}\left(\widehat{y}_{i}, \widehat{y}^{I}, v_{2} * v_{3}, \ldots, v_{k}\right) \\
& \pm \eta_{k}\left(\widehat{y}_{i}, \widehat{y}^{I}, v_{2}, \ldots, v_{k-1} * v_{k}\right)+(\text { smth }), \tag{3.14}
\end{align*}
$$

where $*$ denotes the product η_{2} and (smth) is an expression which depends on $\eta_{k^{\prime}}$ with $k^{\prime}<k$. Hence, using induction on k and cardinality of I, as well as explicit formula for $\widehat{y}_{i} * \widehat{y}^{I}$, we see that the associative product $\eta_{2}=*$ and property (c) determine the A_{∞} structure uniquely.

Corollary 3.3.

$$
\begin{equation*}
\mu_{k}\left(\widehat{y}_{i_{1}}, \ldots, \widehat{y}_{i_{k}}\right)=\left.W^{\left(i_{1}, \ldots, i_{k}\right)}\right|_{x=0}=\frac{1}{k!} \sum_{\left\{j \mid \operatorname{deg} W_{j}=k\right\}} \frac{\partial^{k} W_{j}}{\partial x_{i_{1}} \cdots \partial x_{i_{k}}} z_{j} . \tag{3.15}
\end{equation*}
$$

4 Derived equivalences

Recall that C_{W} is the graded dual coalgebra of S_{W}. Let $\tau_{W}: C_{W} \rightarrow E_{W}$ be a linear map, which sends y_{i} to \widehat{y}_{i}, extended by zero to the natural complement of the subspace spanned by y_{i}. Then, τ_{W} is a generalized twisted cochain (cf. Appendix A.4). The two functors related to it may be modified to give a functor \mathcal{F} from graded S_{W}-modules to graded E_{W}-modules and the adjoint functor \mathcal{G} in the opposite direction. Explicitly,

$$
\begin{equation*}
\mathcal{F}(N)_{\mathbf{q}^{\prime}}^{p^{\prime}}=\bigoplus_{\substack{p^{\prime}=\mathfrak{p}+\mathbf{q}+\mathrm{s} \\ \mathrm{q}^{\prime}=\mathrm{t}-\mathrm{q}}} \mathrm{~N}_{\mathrm{q}}^{\mathrm{p}} \otimes\left(\mathrm{E}_{W}\right)_{\mathrm{t}}^{s}, \quad \mathcal{G}(M)_{\mathbf{q}^{\prime}}^{p^{\prime}}=\bigoplus_{\substack{p^{\prime}=\mathrm{p}+\mathrm{q} \\ \mathbf{q}^{\prime}=\mathrm{t}-\mathrm{q}}} M_{\mathrm{q}}^{p} \otimes\left(\mathrm{C}_{W}\right)_{\mathrm{t}} \tag{4.1}
\end{equation*}
$$

where the upper index denotes the homological grading and the lower index internal grading, and the A_{∞}-module structure on $\mathcal{F}(N)$ is given by

$$
\begin{equation*}
\mu_{k}^{\mathcal{F}(N)}\left((m \otimes a) \otimes a_{1} \otimes \cdots \otimes a_{n-1}\right)=m \otimes \mu_{k}\left(a \otimes a_{1} \otimes \cdots \otimes a_{n-1}\right) . \tag{4.2}
\end{equation*}
$$

Now that C_{W} is viewed above as S_{W}-module. The differentials are induced by τ_{W} via formulas (A.8) and (A.9) of Appendix A.4, respectively. We want to show that \mathcal{F} and \mathcal{G} give mutually inverse equivalences and we begin by defining the categories in which these functors take values a priori.

The algebra S_{W} is considered with its standard grading in which all generators $x_{i} \in S_{W}$ have internal degree 1 and homological degree 0 . Let Mof $-S_{W}$ be the category of finitely generated graded S_{W}-modules and $\mathcal{D}^{b}\left(S_{W}\right)$ its bounded derived category. Following [2] define $C^{\downarrow}\left(S_{W}\right)$ as the category of complexes $M_{\text {: }}$ of S_{W}-modules such that $M_{q}^{p}=0$ if $\mathrm{p} \ll 0$ or $\mathrm{p}+\mathrm{q} \gg 0$. Its localization at quasi-isomorphisms is denoted by $\mathcal{D}^{\downarrow}\left(S_{W}\right)$. The dual category $\left(C^{b}\left(\operatorname{Mof}-S_{W}\right)\right)^{\text {op }}$ may be identified with a subcategory of $C^{\downarrow}\left(S_{W}\right)$ by sending a finitely generated module $M=\oplus M_{q}$ to its graded dual $M^{*}=\oplus \operatorname{Hom}_{k}\left(M_{-q}, k\right)(d u-$ alization inverts grading). Define $\mathcal{D}_{\mathrm{b}}^{\downarrow}\left(\mathrm{S}_{W}\right) \subset \mathcal{D}^{\downarrow}\left(S_{W}\right)$ as the full subcategory formed by
all objects M, for which the bigraded dual $\left(H^{\bullet}(N)\right)^{*}$ of total cohomology is a finitely generated S_{W}-module (since S_{W} has homological degree zero, this implies that N has only finitely many nonzero cohomology groups). By taking graded duals in [2, Lemma 2.12.8], we obtain an equivalence $\mathcal{D}^{\mathrm{b}}\left(S_{W}\right)^{\mathrm{op}} \simeq \mathcal{D}_{\mathrm{b}}^{\perp}\left(S_{W}\right)$.

As for E_{W}, let \widehat{y}_{p} have homological degree 0 and internal degree 1 , while z_{j} have homological degree $2-d_{j}$ and internal degree d_{j}. Note that $\left(E_{W}\right)_{q}^{p}=0$, for $p>0$ or $p+q<$ 0 . Define $\operatorname{Mod}-E_{W}$ as the category of all strictly unital right A_{∞}-modules equipped with internal grading preserved by μ_{k}^{M} (see Appendix A.1). The morphisms in Mod $-\mathrm{E}_{W}$ are strictly unital A_{∞}-module homomorphisms preserving the internal grading, see Appendix A.1. Let $C^{\uparrow}\left(E_{W}\right)$ be the full subcategory of $\operatorname{Mod}-E_{W}$ formed by modules $M=\oplus M_{q}^{p}$ with $M_{q}^{p}=0$, if $p \gg 0$ or $p+q \ll 0$. Let $\mathcal{D}^{\uparrow}\left(E_{W}\right)$ denote the localizations of $C^{\uparrow}\left(E_{W}\right)$ at quasi-isomorphisms (those maps $f=\left\{f_{n}\right\}$ for which $f_{1}: M \rightarrow N$ is a quasi-isomorphism of complexes). Since E_{W} has trivial differential, the total cohomology $H^{\bullet}(M)$ of any $A_{\infty}-$ module M is naturally a module over the associative algebra $\left(E, \mu_{2}\right)$. Define $\mathcal{D}_{b}^{\uparrow}\left(E_{W}\right) \subset$ $\mathcal{D}^{\uparrow}\left(E_{W}\right)$ as the full subcategory of all objects M for which $H^{\bullet}(M)$ is finitely generated over $\left(E_{W}, \mu_{2}\right)$. By a slight abuse of notation, we also denote $\mathcal{D}_{b}^{\uparrow}\left(E_{W}\right)$ by $\mathcal{D}^{b}\left(E_{W}\right)$.

Proposition 4.1. The above functors \mathcal{F} and \mathcal{G} induce mutually inverse equivalences between $\mathcal{D}^{\downarrow}\left(S_{W}\right)$ and $\mathcal{D}^{\uparrow}\left(E_{W}\right)$. Moreover, they restrict to mutually inverse equivalences between $\mathcal{D}_{\mathfrak{b}}^{\perp}\left(S_{W}\right)$ and $\mathcal{D}_{\mathfrak{b}}^{\uparrow}\left(E_{W}\right)$.

Proof. It follows from definitions that \mathcal{F} sends $C^{\downarrow}\left(S_{W}\right)$ to $C^{\uparrow}\left(E_{W}\right)$ and \mathcal{G} sends $C^{\uparrow}\left(E_{W}\right)$ to $C^{\downarrow}\left(S_{W}\right)$. As in [2], using a spectral sequence one can show that the functors descend to derived categories.

To show that it is an equivalence, we use intermediate algebras $\Omega\left(C_{W}\right)$ and A. First, note that by [13] the quasi-isomorphism of complexes $G=G_{1}: E_{W} \rightarrow A$ can be completed to a quasi-isomorphism $\left\{G_{i}\right\}_{i \geq 1}: E_{W} \rightarrow A$ of A_{∞}-algebras. Firstly, this gives a twisted cochain $B\left(E_{W}\right) \rightarrow A$, where $B(\cdots)$ is the reduced bar construction (cf. [9]) and secondly, any A-module Q becomes an E_{W}-module by composing $E_{W} \rightarrow A$ with the DGalgebra map $A \rightarrow \operatorname{End}(Q)^{\text {op }}$ (cf. [9, Sections 3.4 and 4.2]).

Consider the natural functors $\mathcal{F}^{\prime \prime \prime}, \mathcal{F}^{\prime \prime}$, and \mathcal{F}^{\prime} taking S_{W}-modules to $\Omega\left(C_{W}\right)$ modules, $\Omega\left(\mathrm{C}_{W}\right)$-modules to A -modules and A -modules to E_{W}-modules, respectively. On the level of vector spaces, we have $\mathcal{F}^{\prime \prime \prime}(N)=N \otimes \Omega\left(C_{W}\right), \mathcal{F}^{\prime \prime}(P)=P \otimes_{\Omega\left(C_{w}\right)} A, \mathcal{F}^{\prime}(Q)=Q$. Since for any S_{W}-module N the maps $G_{i}: E_{W}^{\otimes i} \rightarrow A$ give a quasi-isomorphism $N \otimes E_{W} \rightarrow$ $\mathrm{N} \otimes A$ of E_{W}-modules, we have a canonical quasi-isomorphism of functors $\mathcal{F} \rightarrow \mathcal{F}^{\prime} \circ \mathcal{F}^{\prime \prime} \circ$ $\mathcal{F}^{\prime \prime \prime}$.

Similarly, a canonical quasi-isomorphism of complexes $B\left(E_{W}\right) \otimes A \rightarrow k$ gives rise to a canonical quasi-isomorphism $\mathcal{G}^{\prime \prime \prime} \circ \mathcal{G}^{\prime \prime} \circ \mathcal{G}^{\prime} \rightarrow \mathcal{G}$, where \mathcal{G} s act in the direction opposite
to $\mathcal{F} s$, and on the level of vector spaces we have $\mathcal{G}^{\prime}(M)=M \otimes B\left(E_{W}\right) \otimes A, \mathcal{G}^{\prime \prime}(Q)=Q$, and $\mathcal{G}^{\prime \prime \prime}(\mathrm{P})=\mathrm{P} \otimes \mathrm{C}_{\mathrm{W}}$.

By [1], the compositions $\mathcal{F}^{\prime \prime \prime} \circ \mathcal{G}^{\prime \prime \prime}$ and $\mathcal{G}^{\prime \prime \prime} \circ \mathcal{F}^{\prime \prime \prime}$ are canonically quasi-isomorphic to identity. Since $\Omega\left(C_{W}\right) \rightarrow A$ and $E_{W} \rightarrow A$ are quasi-isomorphisms of DG- or A_{∞}-algebras, the same holds for pairs $\left(\mathcal{F}^{\prime \prime}, \mathcal{G}^{\prime \prime}\right),\left(\mathcal{F}^{\prime}, \mathcal{G}^{\prime}\right)$. Therefore, \mathcal{F} and \mathcal{G} are mutually inverse equivalences.

Since the cohomology of $\mathcal{F}(\mathrm{N})$ is simply $\operatorname{Ext}^{\bullet}(\mathrm{N}, \mathrm{k})$, the fact that \mathcal{F} perserves the finiteness condition follows from [6, Section 3].

To prove $\mathcal{G}\left(\mathcal{D}_{\mathfrak{b}}^{\uparrow}\left(\mathrm{E}_{W}\right)\right) \subset \mathcal{D}_{\mathfrak{b}}^{\downarrow}\left(S_{W}\right)$, use the original BGG correspondence between the symmetric algebra $S=\operatorname{Sym}^{\bullet}\left(\mathrm{V}^{*}\right)$ and the exterior algebra $\Lambda=\Lambda^{\bullet}(\mathrm{V})$. Let N be an $\mathrm{E}_{W^{-}}$ module with finitely generated total cohomology. We have seen before that $\mathcal{F} \mathcal{G}(N)=N \otimes$ $C_{W} \otimes E_{W}$ is quasi-isomorphic to N. Since $N \otimes C_{W} \otimes E_{W}$ is also a complex of free modules over the associative algebra (E_{W}, μ_{2}), we can apply $\otimes_{\left(E_{w}, \mu_{2}\right)} \wedge$ and obtain a complex of free Λ-modules $\mathrm{N} \otimes \mathrm{C}_{W} \otimes \Lambda$ with finitely generated total cohomology. Then, by the original BGG-correspondence $N \otimes C_{W} \otimes \Lambda \otimes S$ is a complex of S-modules with finitely generated bigraded dual of total cohomology. But $N \otimes C_{W}$ and $N \otimes C_{W} \otimes \Lambda \otimes S$ are quasi-isomorphic as S-modules, hence the cohomology of $N \otimes C_{W}$ satisfies the required finiteness condition over S and therefore over S_{W}, since the S-module structure on $N \otimes C_{W}$ is obtained by restriction of scalars from $S \rightarrow S_{W}$.

Proof of Theorem 1.1. The properties (a)-(c) of E_{W} are established in Proposition 3.1. Equivalence $\left(\mathcal{D}^{\mathrm{b}}\left(S_{W}\right)\right)^{\mathrm{op}} \simeq \mathcal{D}^{\mathrm{b}}\left(\mathrm{E}_{W}\right)$ follows from Proposition 4.1 since $\left(\mathcal{D}^{\mathrm{b}}\left(S_{W}\right)\right)^{\mathrm{op}} \simeq$ $\mathcal{D}_{b}^{\downarrow}\left(S_{W}\right)$ and $\mathcal{D}^{\mathfrak{b}}\left(\mathrm{E}_{W}\right)=\mathcal{D}_{\mathfrak{b}}^{\uparrow}\left(\mathrm{E}_{W}\right)$ by definition. Equivalence $\mathcal{D}^{\mathfrak{b}}(\operatorname{Coh}(\mathrm{X}))^{\mathrm{op}} \simeq \mathcal{D}^{\mathfrak{b}}\left(\mathrm{E}_{W}\right) / \mathrm{I}$ follows as in [8].

Remark 4.2. Alternatively, we could define $\mathcal{D}^{\mathfrak{b}}\left(\mathrm{E}_{W}\right)$ by considering the category $\mathrm{C}^{\mathrm{b}}\left(\mathrm{E}_{W}\right)$ of all strictly unital A_{∞}-modules N over E_{W}, which are also modules over the associative algebra (E_{W}, μ_{2}) (this happens precisely when $\mu_{3}^{N}\left(\cdot, a_{1}, a_{2}\right)$ commutes with the differential on N, for all $\left.a_{1}, a_{2} \in E_{W}\right)$. The morphisms in $C^{b}\left(E_{W}\right)$ are still strictly unital A_{∞}-module homomorphisms. Then we can set $\mathcal{D}^{b}\left(E_{W}\right)$ to be the localization at quasiisomorphisms, which leads to a category equivalent to the one used above. Note that both notations \mathcal{D}^{b} and C^{b} are somewhat deceptive here, since E_{W} itself has nontrivial homological grading and even free E_{W}-modules are only bounded above as complexes of abelian groups. For a different homological grading on E_{W} in which $\operatorname{deg}_{h}\left(\widehat{y}_{i}\right)=1$, $\operatorname{deg}_{h}\left(z_{j}\right)=2$, free E_{W}-modules will be bounded below. However, one cannot work with complexes which are bounded above and below since the (generally nonzero) operations μ_{k} have degrees $(2-k)$.

Appendix

Some differential homological algebra

A. $1 \quad A_{\infty}$-algebras, modules, and derived categories $[9,12]$

An A_{∞}-algebra is a graded vector space E equipped with a system of products $\mu_{k}: E^{\otimes k} \rightarrow$ E of degrees $(2-k)$, which satisfy "higher associativity identities" for $m \geq 1$,

$$
\begin{equation*}
\sum_{j+k+l=m}(-1)^{j k+l} \mu_{j+1+l}\left(1^{\otimes j} \otimes \mu_{k} \otimes 1^{\otimes l}\right)=0 \tag{A.1}
\end{equation*}
$$

The first identity simply says that $\delta_{\mathrm{E}}=\mu_{1}$ is a differential. If $\mu_{1}=0$ (i.e., E is minimal, as is the algebra E_{W} in this paper), the first two identities become trivial while the third states that μ_{2} is an associative product. However, the higher operations μ_{k} can still be nontrivial.

A (right) A_{∞}-module over an A_{∞}-algebra E is a graded vector space M together with a system of operations $\mu_{k}^{M}: M \otimes A^{\otimes k-1} \rightarrow M$, satisfying essentially similar identities (terms with $\mathfrak{j} \geq 0$ are interpreted as $\mu_{j+1+l}^{M}\left(1^{\otimes j} \otimes \mu_{k} \otimes 1^{\otimes l}\right)$, and terms with $\mathfrak{j}=0$ as $\left.\mu_{j+1+l}^{M}\left(\mu_{k}^{M} \otimes 1^{\otimes l}\right)\right)$. An A_{∞}-morphism between E-modules M, N is a family of maps $f_{k}: M \otimes A^{\otimes k-1} \rightarrow N$, such that

$$
\begin{equation*}
\sum_{j+k+l=m}(-1)^{j k+l} \mu_{j+1+l}^{M}\left(1^{\otimes j} \otimes \mu_{k} \otimes 1^{\otimes l}\right)=\sum_{r+s=m} \mu_{s+1}^{N}\left(f_{r} \otimes 1^{\otimes s}\right) \tag{A.2}
\end{equation*}
$$

(for $j=0$, one uses μ_{k}^{M} instead of μ_{k}). For $g: N \rightarrow T$ and $f: M \rightarrow N$, define the composition $\mathrm{f} \circ \mathrm{g}$ by setting $(\mathrm{f} \circ \mathrm{g})_{i}=\sum_{k+l=\mathrm{i}} \mathrm{f}_{1+\mathrm{l}}\left(\mathrm{g}_{\mathrm{k}} \otimes 1^{\otimes \mathrm{l}}\right)$.

A strictly unital A_{∞}-algebra E is equipped with a unit morphism $\eta: k \rightarrow E$ such that $\mu_{i}(1 \cdots 1 \otimes \eta \otimes 1 \cdots 1)=0$, for $i \neq 2$ and $\mu_{2}(1 \otimes \eta)=\mu_{2}(\eta \otimes 1)=1$. A module M over such E is strictly unital if $\mu_{i}^{M}\left(1_{M} \otimes 1 \cdots 1 \otimes \eta \otimes 1 \cdots 1\right)=0$, for $i \geq 3$ and $\mu_{2}^{M}\left(1_{M} \otimes \eta\right)=1_{M}$. Finally, a morphism $f: M \rightarrow N$ of two such modules is called strictly unital if $f_{i}\left(1_{M} \otimes\right.$ $1 \cdots 1 \otimes \eta \otimes 1 \cdots 1)=0$, for $i \geq 2$.

A. 2 Basic perturbation lemma [4]

Lemma A.1. Let $\left(C_{1}, \delta_{1}\right)$ and $\left(C_{2}, \delta_{2}\right)$ and $F_{0}: C_{1} \rightarrow C_{2}, G_{0}: C_{2} \rightarrow C_{1}$ be maps of complexes such that $F_{0} G_{0}=1_{C_{2}}$ and $1_{C_{1}}-G_{0} F_{0}=\delta_{1} H_{0}+H_{0} \delta_{1}$, where $H_{0}: C_{1} \rightarrow C_{1}$ is a homotopy. Suppose further that the following "side conditions" are satisfied:

$$
\begin{equation*}
\mathrm{F}_{0} \mathrm{H}_{0}=0, \quad \mathrm{H}_{0} \mathrm{G}_{0}=0, \quad \mathrm{H}_{0}^{2}=0 \tag{A.3}
\end{equation*}
$$

Then, given a "perturbation" $\widehat{\delta}_{1}=\delta_{1}+\partial$ of the differential δ_{1} (i.e., $\widehat{\delta}_{1}^{2}=0$) such that the operator $\partial \mathrm{H}_{0}$ is locally nilpotent, there exist a new differential $\widehat{\delta}_{2}=\delta_{2}+\widehat{\partial}$ on C_{2}, maps of complexes $\mathrm{F}:\left(\mathrm{C}_{1}, \widehat{\delta}_{1}\right) \rightarrow\left(\mathrm{C}_{2}, \widehat{\delta}_{2}\right), \mathrm{G}:\left(\mathrm{C}_{2}, \widehat{\delta}_{2}\right) \rightarrow\left(\mathrm{C}_{1}, \widehat{\delta}_{1}\right)$, and a homotopy $\mathrm{H}: \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}$ such that

$$
\begin{equation*}
\mathrm{FG}=1_{\mathrm{C}_{2}}, \quad 1_{\mathrm{C}_{1}}-\mathrm{GF}=\widehat{\delta}_{1} \mathrm{H}+\mathrm{H} \widehat{\delta}_{1}, \quad \mathrm{FH}=0, \quad \mathrm{HG}=0, \quad \mathrm{H}^{2}=0 . \tag{A.4}
\end{equation*}
$$

Explicitly, setting $X=\left(\partial-\partial H_{0} \partial+\partial H_{0} \partial H_{0} \partial-\cdots\right)$, one can choose

$$
\begin{equation*}
F=F_{0}\left(1-X H_{0}\right), \quad G=\left(1-H_{0} X\right) G_{0}, \quad H=H_{0}-H_{0} X H_{0} ; \quad \widehat{\partial}=F_{0} X G_{0} . \tag{A.5}
\end{equation*}
$$

A. 3 Transferred A_{∞}-structures [7, 13]

Let A be a DG-algebra and E a complex. Consider maps of complexes $F: A \rightarrow E, G: E \rightarrow A$, and a homotopy $H: A \rightarrow A$ such that $1_{A}-G F=d_{A} H+H d_{A}$. This data defines an $A_{\infty}-$ structure on E as follows. First, define degree ($n-2$) "p-kernels" $p_{n}: A^{\otimes n} \rightarrow A, n \geq 2$ with $\mathbf{p}_{2}=\mathrm{m}_{2}$, and

$$
\begin{align*}
\boldsymbol{p}_{\mathrm{n}}= & (-1)^{n} \mathfrak{m}_{2}\left(1 \otimes H \boldsymbol{p}_{n-1}\right)+\sum_{k=2}^{n-2}(-1)^{\mathrm{kn}} \mathfrak{m}_{2}\left(H \boldsymbol{p}_{k} \otimes H \boldsymbol{p}_{n-k}\right) \tag{A.6}\\
& +\mathfrak{m}_{2}\left(H \boldsymbol{p}_{n-1} \otimes 1\right), \quad n \geq 3 .
\end{align*}
$$

Then compositions $\mu_{n}=F \circ \boldsymbol{p}_{n} \circ G^{\otimes n}: E^{n} \rightarrow E$ give an A_{∞}-structure on E.

A. 4 Twisted cochains and functors between (co)modules [10, 12]

Let $\mathrm{C}=\mathrm{k} \oplus \overline{\mathrm{C}}$ be a coaugmented DG-coalgebra, N a comodule over it, and $\mathrm{A}=\mathrm{k} \oplus \overline{\mathrm{A}}$ an augmented DG-algebra. Let $\Delta^{(k)}: C \rightarrow C^{\otimes k}$ be the iteration of the coproduct, and $\Delta_{\mathrm{N}}^{(\mathrm{k})}: \mathrm{N} \rightarrow \mathrm{N} \otimes \mathrm{C}^{\otimes(k-1)}$ the iteration of the comodule structure map. Then, C (resp., N) is called cocomplete if $\mathrm{C}=\bigcup_{n \geq 2} \operatorname{ker}\left(\Delta^{(k)}\right)$ (resp., $\mathrm{N}=\bigcup_{\mathrm{n} \geq 2} \operatorname{ker}\left(\Delta_{\mathrm{N}}^{(\mathrm{k})}\right)$). Assume that both hold for C, N.

Let E be an augmented A_{∞}, algebra, then a degree +1 linear map $\tau: C \rightarrow E$ is called a generalized twisted cochain if τ vanishes on the coaugmentation of C , takes values in \bar{A}, and satisfies

$$
\begin{equation*}
\tau \circ \delta_{C}+\delta_{E} \circ \tau+\sum_{k \geq 2} \mu_{k} \circ \tau^{\otimes k} \circ \Delta^{(k)}=0, \tag{A.7}
\end{equation*}
$$

where μ_{k} are the products on E. Note that the sum is finite on each particular element since C is cocomplete. If $E=A$ is an associative algebra, the sum on the left has only one term corresponding to μ_{2}, and then τ is called a twisted cochain.

If E is strictly unital, a generalized twisted cochain τ gives rise to functors $\mathcal{G}_{\tau}, \mathcal{F}_{\tau}$ between the categories of cocomplete C -comodules and strictly unital E -modules, respectively, see [10] and [12, Section 2.2.1]. For a strictly unital A_{∞}-module M over E, let $\mathcal{G}_{\tau}(M)=M \otimes C$ with the differential

$$
\begin{equation*}
\delta_{\mathcal{G}_{\tau}(M)}:=1 \otimes \delta_{C}+\delta_{M} \otimes 1+\sum_{k \geq 2}\left(\mu_{k}^{M} \otimes 1\right)\left(1 \otimes \tau^{\otimes(k-1)} \otimes 1\right)\left(1 \otimes \Delta^{(k)}\right) . \tag{A.8}
\end{equation*}
$$

Similarly, for a right DG-comodule N over C, let $\mathcal{F}_{\tau}(N)=N \otimes E$ with the differential

$$
\begin{equation*}
\delta_{\mathcal{F}_{\tau}(\mathrm{N})}:=1 \otimes \delta_{\mathrm{E}}+\delta_{\mathrm{N}} \otimes 1-\sum_{\mathrm{k} \geq 2}\left(1 \otimes \mu_{\mathrm{k}}\right)\left(1 \otimes \tau^{\otimes(\mathrm{k}-1)} \otimes 1\right)\left(\Delta_{\mathrm{N}}^{(\mathrm{k})} \otimes 1\right) . \tag{A.9}
\end{equation*}
$$

This is well defined by cocompleteness. Then, \mathcal{F}_{τ} and \mathcal{G}_{τ} are adjoint: both $\operatorname{Hom}_{E}\left(\mathcal{F}_{\tau}(\mathrm{N})\right.$, $M)$ and $\operatorname{Hom}_{C}\left(N, \mathcal{G}_{\tau}(M)\right)$ are isomorphic to the space of graded k-linear maps $\phi: N \rightarrow M$, satisfying

$$
\begin{equation*}
\delta_{M} \phi-\phi \delta_{N}+\sum_{k \geq 2} \mu_{k, M}\left(\phi \otimes \tau^{\otimes(k-1)}\right) \Delta_{N}^{(k)}=0 . \tag{A.10}
\end{equation*}
$$

Acknowledgments

The author wants to express his gratitude to Anton Kapustin, Martin Markl, and Jim Stasheff for the useful discussions.

References

[1] A. A. Beĭlinson, V. Ginzburg, and V. V. Schechtman, Koszul duality, J. Geom. Phys. 5 (1988), no. 3, 317-350.
[2] A. A. Beĭlinson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473-527.
[3] I. N. Bernšteĭn, I. M. Gel'fand, and S. I. Gel'fand, Algebraic vector bundles on P^{n} and problems of linear algebra, Funct. Anal. Appl. 12 (1978), no. 3, 212-214.
[4] R. Brown, The twisted Eilenberg-Zilber theorem, Simposio di Topologia (Messina, 1964), Edizioni Oderisi, Gubbio, 1965, pp. 33-37.
[5] Y. Félix, S. Halperin, and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics, vol. 205, Springer, New York, 2001.
[6] T. H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183.
[7] L. Johansson and L. Lambe, Transferring algebra structures up to homology equivalence, Math. Scand. 89 (2001), no. 2, 181-200.
[8] M. M. Kapranov, On the derived category and K-functor of coherent sheaves on intersections of quadrics, Math. USSR-Izv. 32 (1989), no. 1, 191-204.
[9] B. Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), no. 1, 1-35.
[10] —, Koszul duality and coderived categories (after K. Lefèvre), preprint, 2003, http://www.math.jussieu.fr/~keller/publ.
[11] T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), no. 6, 21472161.
[12] K. Lefèvre-Hasegawa, Sur les A_{∞}-Catégories, preprint, 2003, http://arxiv.org./abs/math.CT/ 0310337.
[13] M. Markl, Transferring A_{∞} (strongly homotopy associative) structures, preprint, 2004, http://arxiv.org./abs/math.AT/0401007.
[14] S. Saneblidze and R. Umble, The Biderivative and A_{∞}-bialgebras, preprint, 2004, http://arxiv. org./abs/math.AT/0406270.

Vladimir Baranovsky: Department of Mathematics, 103 MSTB, University of California, Irvine, CA 92697, USA
E-mail address: vbaranov@uci.edu

