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1 Introduction

Let k be a field of characteristic zero and P(V) a projective space over k with homogeneous

coordinate ring Sym•(V∗). The classical Bernstein-Gelfand-Gelfand correspondence (cf.

[3]) interprets the derived category of coherent sheaves on P
n in terms of modules over

the exterior algebra Λ•(V). This result was later generalized by Kapranov [8], who con-

sidered a complete intersection X ⊂ P
n of quadrics given by polynomials W1, . . . ,Wm ∈

Sym2(V∗). By a theorem of Serre, coherent sheaves on such X can be described in terms

of graded modules over SW = Sym•(V∗)/〈W1, . . . ,Wm〉, where 〈W1, . . . ,Wm〉 is the ho-

mogenous ideal generated by W1, . . . ,Wm. In this situation, the exterior algebra Λ•(V) is

replaced by the graded Clifford algebra Cl(W1, . . . ,Wm) generated by elements ŷ0, . . . , ŷn

of degree 1 and central elements z1, . . . , zm of degree 2, subject to relations

ŷkŷi + ŷiŷk = 2

m∑
j=1

Wj

(
ŷk, ŷi

)
zj, (1.1)

where Wj : V ⊗ V → k is the polarization of Wj : Sym2(V) → k. We denote this algebra by

EW emphasizing its dependence on the “potential” W =
∑

Wjzj ∈ Sym2(V∗)⊗U, where U

is the vector space spanned by z1, . . . , zm.

In some situations (e.g., those considered in mirror symmetry), one deals with

the derived category on a general complete intersection defined by polynomials Wj of
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arbitrary degrees greater than or equal to 2. The goal of this paper is to describe the ana-

logue of the above algebra EW in this case and establish the corresponding equivalence

of categories. In general, EW is an A∞ -algebra, rather than an associative algebra. This

means that EW is equipped with “higher-order” products, besides the usual multiplica-

tion, and this system of products satisfies a sequence of generalized associativity iden-

tities, see Appendix A.1. For such objects the notions of modules and derived categories

generalize nicely, see [9, 12], and one obtains a description of (the dual to) the derived

category of sheaves on X as a quotient of the derived category of the A∞ -algebra EW .

Forgetting all “higher-order” operations on EW gives an associative algebra isomorphic

to the graded Clifford algebra built from the quadratic parts Qj of Wj. Thus, Qj = Wj

if deg Wj = 2 and Qj = 0 otherwise. In particular, if all Wj have degree greater than or

equal to 3, the associative algebra of EW contains no information about X at all. Thus,

A∞ -structures (or something of the sort) are essential in generalizing the BGG corre-

spondence to arbitrary complete intersections.

As in the quadratic case, set SW = Sym•(V∗)/〈W1, . . . ,Wm〉. Also, let (· · · )op stand

for the dual category (with arrows reversed).

Theorem 1.1. The derived category Db(SW)op is equivalent to the derived category

Db(EW) of a minimal A∞ -algebra EW with the following properties:

(a) as a vector space, EW is isomorphic to Λ•(V) ⊗ k[z1, . . . , zm];

(b) the associative algebra (EW , µ2) is isomorphic to the graded Clifford algebra

Cl(Q1, . . . , Qm) constructed from the above quadratic polynomials Qj. In

particular, if all Wj have degree greater than or equal to 3, the isomor-

phism of part (a) holds on the level of algebras;

(c) for k ≥ 3, the operations µk have the following properties:

(i) µk is multilinear with respect to variables z1, . . . , zm;

(ii) µk(v1, . . . , vk) = 0 if vi = 1 for some i, that is, EW is strictly unital;

(iii) if ξ1, . . . , ξk are arbitrary vectors in V ⊂ EW , then

µk

(
ξ1, . . . , ξk

)
=

∑
deg Wj=k

Wj

(
ξ1, . . . , ξk

)
zj, (1.2)

where Wj : (V)⊗k → C is the polarization of Wj : Symk(V) → k.

Moreover, this induces the equivalence between Db(Coh(X))op and the quotient Db(EW)/

I, where Coh(X) is the category of coherent sheaves on X, and I is the full subcategory

consisting of the objects isomorphic to finite complexes of free EW-modules. �

See Section 4 for the definitions of the categories involved. We only note here

that Db(EW) is a slight abuse of notation, in fact, it stands for a subcategory of a larger
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derived category obtained by imposing conditions on cohomology. For a Noetherian as-

sociative algebra A such construction gives a subcategory equivalent to Db(A). When X

is smooth, Db(Coh(X))op � Db(Coh(X)).

Remark 1.2. The properties stated in Theorem 1.1 do not determine the A∞ -structure on

EW-uniquely. On one hand, for many purposes one only needs to know the A∞ -structure

up to homotopy. On the other hand, it turns out that our particular A∞ -structure is ob-

tained by specialization of a family of A∞ -structures on EW parametrized by V∗. The

products in this family have an interesting recursive property, see Proposition 3.2 in

Section 4, allowing to determine them uniquely. This phenomenon does not manifest it-

self in the quadratic case.

Another approach to EW , not considered here, is to look at the standard cocom-

mutative coproduct on EW . In fact, the polynomials W1, . . . ,Wm define an L∞ -structure

(cf. [11]) on the super vector space L = sV ⊕ s2U (V in homological degree 1 and U in

degree 2). All identities of an L∞ -algebra are satisfied since every term in them vanishes

(e.g., the Jacobi identity holds since L is 2-step nilpotent). Applying the standard con-

structions of differential homological algebra (cf. [5, Chapter 22]) one considers the DG-

coalgebra C = C(L) (also used in this paper) and then the free Lie algebra L(C(L)). If

all polynomials Wj with deg Wj ≥ 3 are set to zero, all higher Lie brackets vanish and

there is a quasi-isomorphism of DG-Lie algebras L(C(L)) → L, see [5, Theorem 22.9]. The

universal enveloping algebra functor gives a quasi-isomorphism of DG-Hopf algebras

Ω(C(L)) → EW , where Ω stands for the cobar construction and EW is considered with the

Clifford algebra structure arising from Qj. Bringing back all nonquadratic Wj perturbs

the differential on Ω(C(L)), leading to a transferred A∞ -structure EW (cf. Appendix A.3).

However, since the perturbed differential agrees again with the Hopf algebra structure

on Ω(C(L)), by a result stated in [14, Theorem 2], EW has a much richer “homotopy bial-

gebra” structure. At this moment we are not able to identify it explicitly.

This paper is organized as follows. In Section 2, we introduce a DG-algebra A

which is quasi-isomorphic to a standard DG-algebra computing Ext•SW
(k, k), and related

to SW by a Koszul-type equivalence. In Section 3, we compute an A∞ -structure on EW =

H∗(A). Section 4 contains the proofs of the equivalences stated above. Finally, the appen-

dix states some standard definitions and results used in this paper.

2 A Koszul-equivalent DG-algebra

We fix our notations here. Assume that all tensor products are over k, unless stated oth-

erwise. Fix a vector space V over k with a basis (y0, . . . , yn), another vector space U with
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a basis (z1, . . . , zm) and denote by (x0, . . . , xn) and (w1, . . . , wm) the dual bases of V∗ and

U∗, respectively.

While V and U are placed in homological degree zero, later we consider vector

spaces with nontrivial homological grading (denoted by upper indices). We also use the

suspension operation V 	→ sV, where (sV)p = Vp−1. Odd copies of variables (y0, . . . , yn)

will be denoted by (ŷ0, . . . , ŷn) and similarly with other bases. We write S(X) for the

graded symmetric (co)algebra of the graded vector space X. For instance, S(sV) may be

identified with the exterior (co)algebra Λ•(V) if we forget about the gradings.

Eventually we will use internal grading denoted by lower indices. The graded

dual of M = ⊕Mp is defined as M∗ = ⊕M∗
p, where M∗

p = Homk(M−p, k). Similarly, the

bigraded dual of M = ⊕M
p
q is defined as M∗ = ⊕(M∗)p

q, where (M∗)p
q = Homk(M−p

−q, k).

Consider a regular sequence of homogeneous polynomials (W1, . . . ,Wm) ∈ S(V∗)

of degrees dj ≥ 2, j = 1, . . . ,m, and define the “total potential” W =
∑m

j=1 Wjzj ∈ S(V∗) ⊗
U. Most formulas in this paper will be written in terms of W rather than individual

Wj’s.

One of the goals of this paper is to reinterpret the category of graded modules

over the graded ring SW defined in Section 1. In this section, construct a “small” DG-

algebra A which is derived equivalent to SW (when we consider derived categories with

appropriate finiteness conditons). The definition of this algebra was originally obtained

by studying endomorphisms of the Koszul complex of an SW-module k. As an algebra,

A = S
(
V∗ ⊕ s2U

)⊗ Cl
(
s−1V∗, sV

) � k
[
x0, . . . , xn, z1, . . . , zm

]⊗ Cl
(
s−1V∗, sV

)
,

(2.1)

where the Clifford algebra Cl(s−1V∗, sV∗) is isomorphic to Λ•(x̂0, . . . , x̂n, ŷ0, . . . , ŷn) as a

vector space and has commutation relations ŷpx̂p + x̂pŷp = 1, p = 0, . . . , n (other pairs of

variables anticommute).

Before we define the differential of A, denote by ∂̂i the “corrected partial deriva-

tive” on S(V∗), which satisfies ∂̂i(1) = 0, takes a homogeneous degree n polynomial f(x)

to (1/n)∂if(x) and extends to nonhomogeneous polynomials by linearity. Later, for any

multi-index P, the operator ∂̂P will denote the obvious composition of corrected partial

derivatives. We extend these operators to k[x0, . . . , xn, z1, . . . , zm] by linearity with respect

to z-variables. The differential δA on A is a derivation with only nonzero values on gen-

erators given by

δA

(
x̂p

)
= xp, δA

(
ŷp

)
= −∂̂p(W). (2.2)
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To relate SW and A, first consider the Koszul resolution B of SW , that is, the supercom-

mutative algebra S(V∗ ⊕ s−1U∗) with its Koszul differential δB, that is, a derivation sat-

isfying δB(ŵj) = Wj and equal to zero on the generators xi. One can view δB as given by

the “half-suspension” potential Ŵ =
∑

Wjẑj, where ẑj ∈ sU acts on Λ•(U∗) = S(s−1U∗) by

contraction. Since (W1, . . . ,Wm) is a regular sequence, the natural algebra map B → SW

sending ŵj to zero is a quasi-isomorphism.

Next, consider the graded dual coalgebra C = B∗ = S(V ⊕ sU) � k[y0, . . . , yn] ⊗
Λ(ẑ1, . . . , ẑm). Note that S(V) acts on S(V∗) by differential operators with constant coef-

ficients and we can write the pairing S(V) ⊗ S(V∗) → k as (yP, g(x)) = ∂Pg(0). Similarly,

S(V∗) acts on S(V) by differential operators with constant coefficients and the same pair-

ing may be written as (f(y), xQ) = ∂Qf(0) (both P and Q are multi-indices). The same

applies to S(s−1U∗) and S(sU), which act on each other by contractions. It is immediate

that the differential δC of C is given again by Ŵ =
∑

Wjẑj, if now we interpret Wj as

differential operators on S(V) and ẑj as scalars in S(sU).

Now consider a linear map τ = τ1 + τ2 : C → A of degree +1, where τ1 is the

suspension operator identifying V ⊕ sU ⊂ C with sV ⊕ s2U ⊂ A, extended by zero to the

rest of C, and

τ2 : S(V)≥1 −→ A, yP 	−→ |P|!d̂
(
∂̂PW

)
, |P| ≥ 1 (2.3)

(again, τ2 is extended by zero from S(V)≥1 to C). Here, d̂ is the “corrected exterior deriv-

ative,”
∑n

i=0 ∂̂i(· · · ) · x̂i, which satisfies δAd̂(f(x)g(z)) = f(x)g(z) − f(0)g(z). Below, Ω(· · · )
stands for the reduced cobar construction (cf. [5, Chapter 19]).

Lemma 2.1. The linear map τ : C → A satisfies the twisted cochain condition of

Appendix A.4. Moreover, the natural multiplicative extension Ω(C) → A is a quasi-

isomorphism of DG-algebras. �

Proof. Since z1, . . . , zm are central in A, the nontrivial case is when the twisted cochain

condition is applied to yP, |P| ≥ 2. Then everything follows from the identities:

τ2

(
yP
)
τ2

(
yQ
)

+ τ2

(
yQ
)
τ2

(
yP
)

= 0;

δAτ2

(
yP
)

= |P|!∂̂PW − τ1δC

(
yP
)
;

ŷpx̂p + x̂pŷp = 1.

(2.4)

To prove the quasi-isomorphism Ω(C) → A by [12, Proposition 2.2.1.4], it suffices to es-

tablish that the natural map F0 : k → A ⊗ C is a quasi-isomorphism (the differential

on A ⊗ C = Fτ(A) is as in Appendix A.4). To that end, first set formally all Wj to zero.
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Then A ⊗ C becomes a tensor product of classical Koszul complexes with a standard

contracting homotopy H0 and projection G0 : A ⊗ C → k, satisfying the side conditions

H2
0 = 0, H0F0 = 0, G0H0 = 0. Returning to the original Wj amounts to perturbing the dif-

ferential on A⊗C, and the quasi-isomorphism follows from the basic pertubation lemma.

�

Corollary 2.2. If CW is the graded dual coalgebra of SW and τW : CW → C → A is the

composition of the adjoint to B → SW and τ, then its canonical multiplicative extension

Ω(CW) → A is a quasi-isomorphism of DG-algebras. �

3 A transferred A∞ -structure

In this section, we provide an explicit contraction identifying the cohomology of A with

the graded vector space EW = k[z1, . . . , zm] ⊗ Λ(ŷ0, . . . , ŷn). Using the obvious supercom-

mutative product ŷi ∧ ŷj in EW , define G : EW → A by

G
((

ŷi1
∧ · · · ∧ ŷis

)
zP
)

=
1

s!

∑
σ∈Σs

(−1)σ
(
ŷiσ(1) + d̂∂̂iσ(1)W

) · · · (ŷiσ(s) + d̂∂̂iσ(s)W
)
zP,

(3.1)

where Σs is the symmetric group and P is a multi-index. Then,G is a map of complexes (if

EW has zero differential) since individual factors on the right-hand side are annihilated

by δA.

Let F : A → EW be the quotient map by the right ideal generated by xi, x̂i. To

establish FG = 1EW
for any subset I = {i1, . . . , is}, denote ŷi1

∧ · · · ∧ ŷis by ŷI, and for

I1 ⊂ I let [ŷI1 \ ŷI] = ±ŷI\I1 with the sign determined by the formula ŷI1 ∧ [ŷI1 \ ŷI] = ŷI.

Then

G
(
ŷI
)

=
∑

I1={i1,...,ip}⊂I

d̂∂̂i1
(W) · · · d̂∂̂ip(W)

[
ŷI1 \ ŷI

]
(3.2)

which implies FG = 1EW
. To define a homotopy, split A into a tensor product of complexes

(
A, δA

) � (S(V∗ ⊕ sV∗), δx

)⊗ (G(EW

)
, 0
)
, (3.3)

where δx is the restriction of δA to the subalgebra S(V∗ ⊕ sV∗) generated by the x- and

x̂-variables. Define H : A → A as d̂ ⊗ 1G(EW ), where the corrected exterior derivative

d̂ is defined before Lemma 2.1. It follows immediately that δAH + HδA = 1A − GF and

F(H(a)b) = 0, for all a, b ∈ A.

Following the procedure of Appendix A.3, one uses H to compute the “kernels”

pn : A⊗n → A and then defines an A∞ -structure on EW by µk = F ◦ pk ◦ G⊗k. The next
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proposition computes µ2(v, u) = F(G(v)G(u)) (which is associative since EW has zero dif-

ferential) and states some properties of the higher products. To unload notation, from

now on we set

W(i1,...,ik) := ∂̂i1
· · · ∂̂ik

(W). (3.4)

Proposition 3.1. The associative algebra (EW , µ2) is isomorphic to Cl(Q1, . . . , Qm), the

graded Clifford algebra built from the quadratic parts Qj of the homogeneous polynomi-

als Wj. Moreover, the higher products µk, k ≥ 3 have the following properties:

(a) µk(v1, . . . , vk) = 0 if vi = 1, for some i. Thus, EW is a strictly unital A∞ -algebra;

(b) µk(v1, . . . , vk) are multilinear with respect to the z-variables. �

Proof. Since the maps F,G are linear with respect to the z-variables which also belong to

the center of A, it suffices to compute µ2(ŷI, ŷJ). Since F annihilates elements of the form

x̂ib,

µ2

(
ŷI, ŷJ

)
= F

(
ŷI

∑
J1={j1,...,js}⊂J

d̂W(j1) · · · d̂W(js)[ŷJ1 \ ŷJ
])

. (3.5)

Taking into account ŷid̂ = −d̂ŷi + ∂i, one gets

G
(
ŷI
) · G(ŷJ

)
=

∑
k≥0

∑
I1={i1,...,ik}⊂I
J1={j1,...,jk}⊂J

(−1)(|I|−k)k det
(
W(ip,jq))

p,q=1,...,k
G
([

ŷI1 \ ŷI
]
∧
[
ŷJ1 \ ŷJ

])
.

(3.6)

Applying F to the expression on the right-hand side amounts to evaluating the deter-

minant at (x0, . . . , xn) = (0, . . . , 0) and removing G. Thus, only the quadratic defining

equations Wj will give a nonzero contribution to µ2. For quadratic polynomials, one has

∂̂i∂̂j(Q) = (1/2)(∂2Q/∂xi∂xj). In particular, this gives a formula

µ2

(
ŷp, ŷq

)
= ŷpŷq +

1

2

m∑
j=1

∂2Qj

∂xp∂xq
zj. (3.7)

In particular, µ2(ŷp, ŷq) + µ2(ŷq, ŷp) =
∑m

j=1(∂2Qj/∂xp∂xq)zj. Therefore, the homomor-

phism

ρ : T
(
V∗)⊗ k

[
z1, . . . , zm

] −→ (
EW , µ2

)
, ŷp 	−→ ŷp, zj 	−→ zj, (3.8)
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descends to an algebra map Cl(Q1, . . . , Qm) → (EW , µ2). By a standard argument involv-

ing filtration by monomials of degree less than or equal to k in ŷp, the map ρ : Cl(Q1, . . . ,

Qm) → (EW , µ2) is an isomorphism.

Part (a) follows by an easy induction from the definition of pn and the side con-

ditions H2 = 0, FH = 0, HG = 0, which hold in our case. Part (b) is a consequence of

linearity of F,G, and H with respect to the central z-variables. �

The easiest way to describe the A∞ -structure on EW completely is to include it in

a family of A∞ -structures which we now proceed to describe. Add extra central variables

(x0, . . . ,xn) to A and EW to obtain a k[x0, . . . ,xn]-algebra A[x] and a free k[x0, . . . ,xn]-

module EW [x], respectively. Consider a new potential W(x, x) ∈ A[x] obtained from W by

replacing every xi by (xi + xi). Define the differential δA[x] and the contraction Fx, Gx, Hx

from A[x] to EW [x] by the same formulas as before, but using W(x, x) instead of W(x). In

particular, all operators just introduced are linear with respect to the x-variables, and

the corrected partial and exterior derivatives ∂̂i, d̂ act only on xi, not xi. The corrected

partial derivatives which do act on xi will be denoted by d̂/dxi to avoid confusion.

By Appendix A.3, EW [x] acquires a transferred A∞ -structure {ηk}k≥2 from A[x].

For example, repeating the arguments leading to (3.6), we obtain the following expres-

sion for the product η2 in EW [x]:

η2

(
ŷI, ŷJ

)
=

∑
k≥0

∑
I1={i1,...,ik}⊂I
J1={j1,...,jk}⊂J

(−1)(|I|−k)k det
(
W(ip,jq)[x]

)
p,q=1,...,k

[
ŷI1 \ ŷI

]
∧
[
ŷJ1 \ ŷJ

]
,

(3.9)

where W[x] is obtained from W by substitution xi 	→ xi and

W(ip,jq)[x] =
d̂

dxip

d̂

dxiq

W[x]. (3.10)

In other words, (EW [x], η2) is a Clifford algebra of a symmetric quadratic form V ⊗ V →
Sym•(V∗) ⊗ U, a partial polarization of W.

There is a natural surjective map πE : EW [x] → EW obtained by sending xi to zero.

Proposition 3.2. The A∞ -structure {ηk} on EW [x] has the following properties:

(a) µk(πE(v1), . . . , πE(vk)) = πEηk(v1, . . . , vk) for k ≥ 2;

(b) the generators z1, . . . , zm and x0, . . . ,xn are central for the associative product

η2, while for k ≥ 3, the higher products ηk are linear with respect to these

generators;
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(c) the following recursive formula determines uniquely the A∞ -structure {ηk}

(and hence by (a) the A∞ -structure {µk}):

ηk

(
ŷi, ŷ

I2 , . . . , ŷIk
)

=
d̂

dxi
ηk−1

(
ŷI2 , . . . , ŷIk

)
. (3.11)

�

Proof. Let πA : A[x] → A be the quotient map with respect to the DG-ideal generated

by x0, . . . ,xn. Then, πA is multiplicative and πAHx = HπA, πEFx = FπA, πAGx = GπE.

The definitions of the corresponding “kernels” pn[x] on A[x] (cf. Appendix A.3) give (a)

immediately.

Part (b) follows from the fact that Fx, Gx, and Hx commute with multiplication

by xi.

To prove (c), one first shows Fx(Hx(a)b) = 0 for all a, b ∈ A[x], hence only the first

term in the inductive formula for pk[x] (cf. Appendix A.3) gives a nonzero contribution to

Fx ◦ pk[x] ◦ G⊗k
x . Therefore, setting v ′

i = Gx(vi), we get

ηk

(
ŷi, v2, . . . , vk

)
= Fx

(
Gx

(
ŷi

)
Hxpk−1[x]

(
v ′

2, . . . , v ′
k

))
= Fx

(
ŷiHxpk−1[x]

(
v ′

2, . . . , v ′
k

))
= Fx

(
− Hxŷipk−1[x]

(
v ′

2, . . . , v ′
k

)
+ ∂̂ipk−1[x]

(
v ′

2, . . . , v ′
k

))
= Fx

(
∂̂ipk−1[x]

(
v ′

2, . . . , v ′
k

))
.

(3.12)

Inspecting the definition of pk[x], we see that pk−1[x](Gx(ŷI2), . . . , Gx(ŷIk)) is a sum of

products involving d̂WP(x, x),WP(x, x), and ŷi. We can assume that all factors ŷi stand to

the right of d̂WP(x, x) and then disregard those terms which contain d̂WP(x, x) since they

are annihilated by Fx. All other terms can be reduced to the form R(x0 + x0, . . . , xn + xn),

where R is a polynomial with coefficients in k[z1, . . . , zm]⊗Λ(y0, . . . , yn). Applying Fx just

amounts to setting xi = 0, for i = 0, . . . , n. Now (c) follows from the formula

(
∂̂iR
(
x0 + x0, . . . , xn + xn

))∣∣
x=0

=
d̂

dxi

(
R
(
x0 + x0, . . . , xn + xn

)∣∣
x=0

)
. (3.13)

Finally, to show that the above formula allows to recover the general values of

ηk, we note that EW [x] is generated by ŷi as a k[z1, . . . , zm, x0, . . . ,xn]-algebra and that by

A∞ -identities, one has

ηk

(
ŷi ∗ ŷI, v2, . . . , vk

)
= ±ηk

(
ŷi, ŷ

I ∗ v2, . . . , vk

)± ηk

(
ŷi, ŷ

I, v2 ∗ v3, . . . , vk

)
± ηk(ŷi, ŷ

I, v2, . . . , vk−1 ∗ vk) + (smth),

(3.14)
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where ∗ denotes the product η2 and (smth) is an expression which depends on ηk ′ with

k ′ < k. Hence, using induction on k and cardinality of I, as well as explicit formula for

ŷi ∗ ŷI, we see that the associative product η2 = ∗ and property (c) determine the A∞ -

structure uniquely. �

Corollary 3.3.

µk

(
ŷi1

, . . . , ŷik

)
= W(i1,...,ik)

∣∣
x=0

=
1

k!

∑
{j|deg Wj=k}

∂kWj

∂xi1
· · ·∂xik

zj. (3.15)
�

4 Derived equivalences

Recall that CW is the graded dual coalgebra of SW . Let τW : CW → EW be a linear

map, which sends yi to ŷi, extended by zero to the natural complement of the subspace

spanned by yi. Then, τW is a generalized twisted cochain (cf. Appendix A.4). The two

functors related to it may be modified to give a functor F from graded SW-modules to

graded EW-modules and the adjoint functor G in the opposite direction. Explicitly,

F(N)p ′
q ′ =

⊕
p ′=p+q+s

q ′=t−q

Np
q ⊗ (EW

)s
t
, G(M)p ′

q ′ =
⊕

p ′=p+q
q ′=t−q

Mp
q ⊗ (CW

)
t
, (4.1)

where the upper index denotes the homological grading and the lower index internal

grading, and the A∞ -module structure on F(N) is given by

µ
F(N)
k

(
(m ⊗ a) ⊗ a1 ⊗ · · · ⊗ an−1

)
= m ⊗ µk

(
a ⊗ a1 ⊗ · · · ⊗ an−1

)
. (4.2)

Now that CW is viewed above as SW-module. The differentials are induced by τW via

formulas (A.8) and (A.9) of Appendix A.4, respectively. We want to show that F and G give

mutually inverse equivalences and we begin by defining the categories in which these

functors take values a priori.

The algebra SW is considered with its standard grading in which all generators

xi ∈ SW have internal degree 1 and homological degree 0. Let Mof −SW be the category of

finitely generated graded SW-modules and Db(SW) its bounded derived category. Follow-

ing [2] define C↓(SW) as the category of complexes M•
• of SW-modules such that M

p
q = 0

if p � 0 or p + q 
 0. Its localization at quasi-isomorphisms is denoted by D↓(SW). The

dual category (Cb(Mof −SW))op may be identified with a subcategory of C↓(SW) by send-

ing a finitely generated module M = ⊕Mq to its graded dual M∗ = ⊕Homk(M−q, k) (du-

alization inverts grading). Define D
↓
b(SW) ⊂ D↓(SW) as the full subcategory formed by
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all objects M, for which the bigraded dual (H•(N))∗ of total cohomology is a finitely gen-

erated SW-module (since SW has homological degree zero, this implies that N has only

finitely many nonzero cohomology groups). By taking graded duals in [2, Lemma 2.12.8],

we obtain an equivalence Db(SW)op � D
↓
b(SW).

As for EW , let ŷp have homological degree 0 and internal degree 1, while zj have

homological degree 2−dj and internal degree dj. Note that (EW)p
q = 0, for p > 0 or p+q <

0. Define Mod −EW as the category of all strictly unital right A∞ -modules equipped with

internal grading preserved by µM
k (see Appendix A.1). The morphisms in Mod −EW are

strictly unital A∞ -module homomorphisms preserving the internal grading, see Appen-

dix A.1. Let C↑(EW) be the full subcategory of Mod −EW formed by modules M = ⊕M
p
q

with M
p
q = 0, if p 
 0 or p + q � 0. Let D↑(EW) denote the localizations of C↑(EW) at

quasi-isomorphisms (those maps f = {fn} for which f1 : M → N is a quasi-isomorphism

of complexes). Since EW has trivial differential, the total cohomology H•(M) of any A∞ -

module M is naturally a module over the associative algebra (E, µ2). Define D
↑
b(EW) ⊂

D↑(EW) as the full subcategory of all objects M for which H•(M) is finitely generated

over (EW , µ2). By a slight abuse of notation, we also denote D
↑
b(EW) by Db(EW).

Proposition 4.1. The above functors F and G induce mutually inverse equivalences be-

tween D↓(SW) and D↑(EW). Moreover, they restrict to mutually inverse equivalences be-

tween D
↓
b(SW) and D

↑
b(EW). �

Proof. It follows from definitions that F sends C↓(SW) to C↑(EW) and G sends C↑(EW) to

C↓(SW). As in [2], using a spectral sequence one can show that the functors descend to

derived categories.

To show that it is an equivalence, we use intermediate algebras Ω(CW) and A.

First, note that by [13] the quasi-isomorphism of complexes G = G1 : EW → A can be

completed to a quasi-isomorphism {Gi}i≥1 : EW → A of A∞ -algebras. Firstly, this gives

a twisted cochain B(EW) → A, where B(· · · ) is the reduced bar construction (cf. [9]) and

secondly, any A-module Q becomes an EW-module by composing EW → A with the DG-

algebra map A → End(Q)op (cf. [9, Sections 3.4 and 4.2]).

Consider the natural functors F ′′′, F ′′, and F ′ taking SW-modules to Ω(CW)-

modules,Ω(CW)-modules to A-modules and A-modules to EW-modules, respectively. On

the level of vector spaces, we have F ′′′(N) = N ⊗ Ω(CW), F ′′(P) = P ⊗Ω(CW ) A, F ′(Q) = Q.

Since for any SW-module N the maps Gi : E⊗i
W → A give a quasi-isomorphism N ⊗ EW →

N⊗A of EW-modules, we have a canonical quasi-isomorphism of functors F → F ′ ◦ F ′′ ◦
F ′′′.

Similarly, a canonical quasi-isomorphism of complexes B(EW)⊗A → k gives rise

to a canonical quasi-isomorphism G ′′′◦G ′′◦G ′ → G, where Gs act in the direction opposite
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to Fs, and on the level of vector spaces we have G ′(M) = M ⊗ B(EW) ⊗ A, G ′′(Q) = Q, and

G ′′′(P) = P ⊗ CW .

By [1], the compositions F ′′′◦G ′′′ and G ′′′◦F ′′′ are canonically quasi-isomorphic to

identity. Since Ω(CW) → A and EW → A are quasi-isomorphisms of DG- or A∞ -algebras,

the same holds for pairs (F ′′,G ′′), (F ′,G ′). Therefore, F and G are mutually inverse equiv-

alences.

Since the cohomology of F(N) is simply Ext•(N,k), the fact that F perserves the

finiteness condition follows from [6, Section 3].

To prove G(D↑
b(EW)) ⊂ D

↓
b(SW), use the original BGG correspondence between

the symmetric algebra S = Sym•(V∗) and the exterior algebra Λ = Λ•(V). Let N be an EW-

module with finitely generated total cohomology. We have seen before that FG(N) = N ⊗
CW ⊗EW is quasi-isomorphic to N. Since N⊗CW ⊗EW is also a complex of free modules

over the associative algebra (EW , µ2), we can apply ⊗(EW ,µ2)Λ and obtain a complex of

free Λ-modules N⊗CW⊗Λ with finitely generated total cohomology. Then, by the original

BGG-correspondence N ⊗ CW ⊗ Λ ⊗ S is a complex of S-modules with finitely generated

bigraded dual of total cohomology. But N⊗CW and N⊗CW⊗Λ⊗S are quasi-isomorphic as

S-modules, hence the cohomology of N ⊗ CW satisfies the required finiteness condition

over S and therefore over SW , since the S-module structure on N ⊗ CW is obtained by

restriction of scalars from S → SW . �

Proof of Theorem 1.1. The properties (a)–(c) of EW are established in Proposition 3.1.

Equivalence (Db(SW))op � Db(EW) follows from Proposition 4.1 since (Db(SW))op �
D

↓
b(SW) and Db(EW) = D

↑
b(EW) by definition. Equivalence Db(Coh(X))op � Db(EW)/I

follows as in [8]. �

Remark 4.2. Alternatively, we could define Db(EW) by considering the category Cb(EW)

of all strictly unital A∞ -modules N over EW , which are also modules over the associa-

tive algebra (EW , µ2) (this happens precisely when µN
3 (·, a1, a2) commutes with the dif-

ferential on N, for all a1, a2 ∈ EW). The morphisms in Cb(EW) are still strictly unital

A∞ -module homomorphisms. Then we can set Db(EW) to be the localization at quasi-

isomorphisms, which leads to a category equivalent to the one used above. Note that

both notations Db and Cb are somewhat deceptive here, since EW itself has nontrivial

homological grading and even free EW-modules are only bounded above as complexes

of abelian groups. For a different homological grading on EW in which degh(ŷi) = 1,

degh(zj) = 2, free EW-modules will be bounded below. However, one cannot work with

complexes which are bounded above and below since the (generally nonzero) operations

µk have degrees (2 − k).



BGG Correspondence for Projective Complete Intersections 2771

Appendix

Some differential homological algebra

A.1 A∞ -algebras, modules, and derived categories [9, 12]

An A∞ -algebra is a graded vector space E equipped with a system of products µk : E⊗k →
E of degrees (2 − k), which satisfy “higher associativity identities” for m ≥ 1,

∑
j+k+l=m

(−1)jk+lµj+1+l

(
1⊗j ⊗ µk ⊗ 1⊗l

)
= 0. (A.1)

The first identity simply says that δE = µ1 is a differential. If µ1 = 0 (i.e., E is minimal,

as is the algebra EW in this paper), the first two identities become trivial while the third

states that µ2 is an associative product. However, the higher operations µk can still be

nontrivial.

A (right) A∞ -module over an A∞ -algebra E is a graded vector space M together

with a system of operations µM
k : M ⊗ A⊗k−1 → M, satisfying essentially similar iden-

tities (terms with j ≥ 0 are interpreted as µM
j+1+l(1

⊗j ⊗ µk ⊗ 1⊗l), and terms with j = 0

as µM
j+1+l(µ

M
k ⊗ 1⊗l)). An A∞ -morphism between E-modules M,N is a family of maps

fk : M ⊗ A⊗k−1 → N, such that

∑
j+k+l=m

(−1)jk+lµM
j+1+l

(
1⊗j ⊗ µk ⊗ 1⊗l

)
=

∑
r+s=m

µN
s+1

(
fr ⊗ 1⊗s

)
(A.2)

(for j = 0, one uses µM
k instead of µk). For g : N → T and f : M → N, define the composition

f ◦ g by setting (f ◦ g)i =
∑

k+l=i f1+l(gk ⊗ 1⊗l).

A strictly unital A∞ -algebra E is equipped with a unit morphism η : k → E such

that µi(1 · · · 1 ⊗ η ⊗ 1 · · · 1) = 0, for i �= 2 and µ2(1 ⊗ η) = µ2(η ⊗ 1) = 1. A module M over

such E is strictly unital if µM
i (1M ⊗ 1 · · · 1⊗η⊗ 1 · · · 1) = 0, for i ≥ 3 and µM

2 (1M ⊗η) = 1M.

Finally, a morphism f : M → N of two such modules is called strictly unital if fi(1M ⊗
1 · · · 1 ⊗ η ⊗ 1 · · · 1) = 0, for i ≥ 2.

A.2 Basic perturbation lemma [4]

Lemma A.1. Let (C1, δ1) and (C2, δ2) and F0 : C1 → C2, G0 : C2 → C1 be maps of com-

plexes such that F0G0 = 1C2
and 1C1

− G0F0 = δ1H0 + H0δ1, where H0 : C1 → C1 is a

homotopy. Suppose further that the following “side conditions” are satisfied:

F0H0 = 0, H0G0 = 0, H2
0 = 0. (A.3)
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Then, given a “perturbation” δ̂1 = δ1 + ∂ of the differential δ1 (i.e., δ̂2
1 = 0) such that the

operator ∂H0 is locally nilpotent, there exist a new differential δ̂2 = δ2 + ∂̂ on C2, maps

of complexes F : (C1, δ̂1) → (C2, δ̂2), G : (C2, δ̂2) → (C1, δ̂1), and a homotopy H : C1 → C1

such that

FG = 1C2
, 1C1

− GF = δ̂1H + Hδ̂1, FH = 0, HG = 0, H2 = 0. (A.4)

Explicitly, setting X = (∂ − ∂H0∂ + ∂H0∂H0∂ − · · · ), one can choose

F = F0

(
1 − XH0

)
, G =

(
1 − H0X

)
G0, H = H0 − H0XH0; ∂̂ = F0XG0.

(A.5)
�

A.3 Transferred A∞ -structures [7, 13]

Let A be a DG-algebra and E a complex. Consider maps of complexes F : A → E,G : E → A,

and a homotopy H : A → A such that 1A − GF = dAH + HdA. This data defines an A∞ -

structure on E as follows. First, define degree (n − 2) “p-kernels” pn : A⊗n → A, n ≥ 2

with p2 = m2, and

pn = (−1)nm2

(
1 ⊗ Hpn−1

)
+

n−2∑
k=2

(−1)knm2

(
Hpk ⊗ Hpn−k

)
+ m2

(
Hpn−1 ⊗ 1

)
, n ≥ 3.

(A.6)

Then compositions µn = F ◦ pn ◦ G⊗n : En → E give an A∞ -structure on E.

A.4 Twisted cochains and functors between (co)modules [10, 12]

Let C = k ⊕ C be a coaugmented DG-coalgebra, N a comodule over it, and A = k ⊕ A

an augmented DG-algebra. Let ∆(k) : C → C⊗k be the iteration of the coproduct, and

∆
(k)
N : N → N ⊗ C⊗(k−1) the iteration of the comodule structure map. Then, C (resp., N)

is called cocomplete if C =
⋃

n≥2 ker(∆(k)) (resp., N =
⋃

n≥2 ker(∆(k)
N )). Assume that both

hold for C, N.

Let E be an augmented A∞ , algebra, then a degree +1 linear map τ : C → E is

called a generalized twisted cochain if τ vanishes on the coaugmentation of C, takes

values in A, and satisfies

τ ◦ δC + δE ◦ τ +
∑
k≥2

µk ◦ τ⊗k ◦ ∆(k) = 0, (A.7)
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where µk are the products on E. Note that the sum is finite on each particular element

since C is cocomplete. If E = A is an associative algebra, the sum on the left has only one

term corresponding to µ2, and then τ is called a twisted cochain.

If E is strictly unital, a generalized twisted cochain τ gives rise to functors Gτ,Fτ

between the categories of cocomplete C-comodules and strictly unital E-modules, re-

spectively, see [10] and [12, Section 2.2.1]. For a strictly unital A∞ -module M over E, let

Gτ(M) = M ⊗ C with the differential

δGτ(M) := 1 ⊗ δC + δM ⊗ 1 +
∑
k≥2

(
µM

k ⊗ 1
)(

1 ⊗ τ⊗(k−1) ⊗ 1
)(

1 ⊗ ∆(k)). (A.8)

Similarly, for a right DG-comodule N over C, let Fτ(N) = N ⊗ E with the differential

δFτ(N) := 1 ⊗ δE + δN ⊗ 1 −
∑
k≥2

(
1 ⊗ µk

)(
1 ⊗ τ⊗(k−1) ⊗ 1

)(
∆

(k)
N ⊗ 1

)
. (A.9)

This is well defined by cocompleteness. Then, Fτ and Gτ are adjoint: both HomE(Fτ(N),

M) and HomC(N,Gτ(M)) are isomorphic to the space of graded k-linear maps φ : N → M,

satisfying

δMφ − φδN +
∑
k≥2

µk,M

(
φ ⊗ τ⊗(k−1))∆(k)

N = 0. (A.10)
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[3] I. N. Bernšteı̆n, I. M. Gel’fand, and S. I. Gel’fand, Algebraic vector bundles on Pn and problems

of linear algebra, Funct. Anal. Appl. 12 (1978), no. 3, 212–214.

[4] R. Brown, The twisted Eilenberg-Zilber theorem, Simposio di Topologia (Messina, 1964), Edi-

zioni Oderisi, Gubbio, 1965, pp. 33–37.

[5] Y. Félix, S. Halperin, and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathe-

matics, vol. 205, Springer, New York, 2001.



2774 Vladimir Baranovsky

[6] T. H. Gulliksen,A change of ring theorem with applications to Poincaré series and intersection
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