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Abstract. In this paper we prove the dimension and the irreduciblity of the variety parametri-
zing all pairs of commuting nilpotent matrices. Our proof uses the connection between this
variety and the punctual Hilbert scheme of a smooth algebraic surface.

1. Introduction

Let V be a vector space of dimension n over an algebraically closed field k of cha-
racteristic zero. Consider the subvariety N> C gl(V) @ gl(V) of all pairs of commuting
nilpotent linear operators. The goal of this note is to give a proof of

Theorem 1. N, is an irreducible variety of dimension n? — 1.

Without the nilpotency condition the corresponding statement was first proved by
Motzkin and Taussky in [MT] and later generalized by Richardson, cf. [Ri], to a general
semisimple Lie algebra. In our case, however, the variety of nilpotent commuting pairs
is not irreducible for semisimple algebras of types other than A, and B, (this follows
from Theorem 2 below). We also note here that an earlier proof of Theorem 1 given in
[Gr] contains a serious omission which, to the present author’s knowledge, has not been
filled.

Our proof of Theorem 1 is similar in spirit to the proof of the Motzkin—Taussky
Theorem given in [Gu] (of course, the nilpotency condition introduces some technical
difficulties). We reduce Theorem 1 to a similar theorem about a geometric object known
as the punctual Hilbert scheme Hilbﬁ] of a smooth algebraic surface. This variety was
studied in detail by Briangon and Iarrobino, cf. [B] and [I].

In fact, our original motivation for the study of A5 comes from the theory of vector
bundles on algebraic surfaces. The moduli space N(r) of (semistable) rank r vector
bundles on an algebraic surface, is noncompact and it admits two different compac-
tifications: the Gieseker compactification M (r) and the Uhlenbeck compactification
MUYh(r). These spaces are related via a morphism 7 : MY (r) — MUbl(r) which,
under certain conditions on the surface and Chern classes of the bundles, is a smooth
resolution of MUBl(r) that is semismall in the sense of Goresky-MacPherson [GM].
The fibers of this morphism are products of varieties known as punctual Quot schemes
(with reduced scheme structure). Every punctual Quot scheme may be obtained as a
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quotient of a Zariski open subset U C Ny x V" by a free action of GL(V'). Therefore,
Theorem 1 implies irreducibility and dimension of punctual Quot schemes, which gives
the semismallness property for 7, as well as a formula relating the geometry of the
two compactifications MY (r) and MVP!(r) (see [GS] for the rank 1 case and [Ba2] in
general). The statement about irreduciblity and dimension of Quot schemes was proved
independently by the author in [Bal], and by Ellingsrud and Lehn in [EL]. The proof
of Theorem 1 presented here is a modification of [Bal].

Acknowledgements. The author wishes to express his warmest thanks to V. Ginzburg
whose conjecture on the “Gieseker to Uhlebeck” map originally motivated the author’s
study of Quot schemes, to M. Grinberg for useful discussion, to A. Elashvili for his
encouragement and moral support, and to the referees for their remarks and references.

2. Commuting nilpotents in a semisimple Lie algebra

Let g be a complex semisimple Lie algebra. Denote by N2(g) C g @ g the variety of
pairs (ny,n2) of commuting nilpotent elements. We want to study the dimension and
the irreducible components of A. First we recall the following:

Definition 1. A nilpotent element n € g is called distinguished (cf. [BC]) if its centra-
lizer 34(n) C g does not contain any semisimple elements. This means that any € g
which commutes with n is automatically nilpotent. If n is distinguished, then so is any
other element in the adjoint orbit of n.

The proof of the following result was kindly communicated to the author by M.
Grinberg. The same type of argument was originally used in [P].

Theorem 2. The dimension of N> is equal to dim g. Moreover, there exists a bijection
between the set of irreducible components of No which have the mazimal dimension
dim g, and the set of distinguished nilpotent conjugacy classes in g.

Proof. Note that N3(g) is a closed subvariety of
Na(g) == {(n,x) e g® g | [n,z] = 0 and n is nilpotent }

(i.e., we do not require that x is nilpotent as well). By identifying the second copy of g
with g* via the Killing form, we can view N5(g) as a subvarity of g ® g*. Let p be map
from ./\’72(9) onto the cone N (g) of nilpotent elements in g given by the first projection
(n,z) = n. If O C N(g) is an adjoint orbit, then its preimage p~!(0) can be naturally
identified (as a subvariety of g g*) with the conormal bundle T5g of O in g. Therefore,
dim N>(g) = dim g and hence dim N5 (g) < dim g.

This also shows that the irreducible components of N5 of maximal dimension are
closures of those T¢g which belong to N> C Ns. If n is a point of such an orbit O, then
the condition [z,n] = 0, z € g implies that z is also nilpotent, which means that O is
distinguished. O

Conjecture. All irreducible components of the variety Na(g) of pairs of commuting
nilpotent elements in g have mazximal dimension dim g.

The Lie algebra g = sl,, has a unique distinguished nilpotent class (the class of the
Jordan n x n cell). Thus, Theorem 1 proves the above conjecture for sl,,. In general,
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g has several distinguished nilpotent classes, cf. [BC], and therefore N2(g) has several
irreducible components.

3. Reduction to pairs admitting a cyclic vector

From now on, we consider only the case g = sl,,. In this section we show that the
irreducibility of A3 is equivalent to the irreducibility of an open subvariety U C N2 x V
formed by all triples (B1, B2, w) such that w is a cyclic vector for (B, Bs) € Ns, i.e.,
such that any subspace W C V that contains w and is invariant with respect to B; and
B>, should necessarily coincide with the whole V.

Lemma 3. (cf.[Bal]) Let By, Bz be two commuting nilpotent operators on a vector
space V. There exists a third nilpotent operator Bb and a vector w € V' such that

(i) B commutes with By;

(i) any linear combination aBs + 3B is nilpotent;

(iil) w is a cyclic vector for the pair of operators (By, B)).

Proof. Let p1 > pa > ... > py, be the sizes of Jordan blocks for B;. We will construct
a basis e;; of V, where 1 <4 <k and 1 < j < p; such that

(a) Bi(ej,i) = ejy1,; for j < p; and Bi(ey, ;) =0 (i.e., By has Jordan canonical form
in this basis);

(b) Ba(e;j ;) is a linear combination of e, , where either p = j and ¢ > i or p > j and
q is arbitrary.

In other words, the elements of the basis correspond to the cells of a Young digram
having p; cells in the i-th column (e.g., in the diagrams below we have pu; = 4, ps =
us = pg = 3, us = 2). Condition (a) means that B; acts by shifting cells one step
down (see Diagram 1) and (b) means the vector corresponding to the cell marked by
* is mapped by Bs into a subspace generated by the vectors in the shaded area (see
Diagram 2). Note that due to (a) it suffices to check (b) on the vectors of the first
row eq ;.
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Once such a basis is constructed we define B by Bj(e; i) = ejit1 if j < piy1 and 0
otherwise (i.e., the operator By shifts cells to the right, see Diagram 3). Then [B,, By] =
0 and w = ey, is a cyclic vector for (By, B}) since e;; = B~ (B})"~'(w). Moreover,
any linear combination aBs + 8B} is nilpotent since it is given by a strictly lower-
triangular matrix in the basis (e11,€1,2,-..,€1,k,€21,€22...,€31...) (i.e., we form a
basis from the diagram by going from left to right, starting from the top row).

To construct {e; ;}, recall one way to find a Jordan basis for B;. Let V; =Ker(B}™").
The subspaces V; form a decreasing filtration V=15 D>V, DV, .... Moreover, By -V; C
Vit
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First, choose a basis (wy,...,ws,) of Wy = Vp/Vi (if W3 = 0 go to the next
step). Lift this basis to some vectors ei1,€12,...,€1,4, in V5. Secondly, choose a
basis (Wa,+41,--.,Wa,) of Wo := V1 /(By - Vo + V2) (again, if Wo = 0 go to the next
step). Lift this basis to some vectors ey q,41,-.-,€1,4, i Vi. Continue in this manner
by choosing bases of the spaces Wit1 = V;/(By - Vic1 + Viy1) and lifting them to V.
This procedure gives us vectors ej 1,€12,-..,€1,, and the sizes of Jordan blocks are
given by fig, 41 = ... = flagy,) =N — 1 (in particular, on the first few steps the spaces
W; are likely to be zero). The formula (a) tells us how to define e; ; for i > 2. It is easy
to check that the system of vectors {e; ;} is in fact a basis of V.

To guarantee (b) as well we should go back and choose w; more carefully. Note that
all the subspaces V; and B; - V; are Bs-invariant. Therefore we have an induced action
of By on each of the W;. We can choose our basis (wa; ;+1,-..,Ws;) of W; in such a
way that, for alll € {a;—1 +1,...,a;}, B2(w;) is a linear combination of w; with j > [.
This ensures that (b) holds as well. O

Theorem 4. The subset U defined above is dense in Na x V.

Proof. Let (Bi, Ba,v) be any point in My x V. Consider the triple (By, By, w) € U
provided by the above lemma. Connect the two triples (Bi, B2, v) and (By, By, w) by
an affine line L inside the vector space gl(V) @ ¢gl(V) @ V. Due to the choice of B}, the
whole line L belongs to the closed subspace Ny x V C gl(V) @ gl(V) & V. Since UN L
is open in L and nonempty, (B;, B2, v) belongs to the closure of U. O

Thus, to prove Theorem 1 it suffices to show that U is irreducible of dimension
2
n°+mn— 1.

4. The punctual Hilbert scheme

Note that GL(V) acts on A5 X V' by conjugating the operators and acting on the
vector. The subset U is GL(V)-invariant by its definition.

Lemma 5. The GL(V) action on U is free.

Proof. Suppose that (B1, B, w) € U and g € GL(V) are such that gB;g~' = B;,
i=1,2 and g(w) = w. Then W = Ker(1 — g) is a subspace which contains w and is
invariant with respect to By, Be. By definition of U we have W =V, hence g =1. O

To interpret the space of orbits of GL(V) on U, we consider the Hilbert scheme
Hilb™(P?) of all quotient sheaves Op: — A of finite length n (cf. [G], [S]) on the
projective plane P2. Let s € P2 be a point and let (x,y) be local coordinates at s.
Any triple (By, Ba,w) € U represents V' as a quotient module ¢ : Clz,y] — V if we
set ¢[P(z,y)] = P(By,Bz)(w) € V for any P(z,y) € Clz,y]. The map ¢ is surjective
since w is a cyclic vector. The fact that B; and Bs are nilpotent means that the
corresponding quotient module Op2> — V on P? is supported at s. Therefore we obtain
amap ¢ from U to the fiber Hilbfy; C Hilb"(P?) of the Hilbert-Chow morphism, cf. [F1],
Hilb" (P?) — Sym™(P?) over the point n - s € Sym"(P?) (we give Hilby, the reduced
scheme structure). Of course, we could have taken any smooth point on any surface
instead of P2. One can easily check (cf. [N]) the following:
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Lemma 6. The fibers 1 : U — Hilbpy, are exactly the GL(V)-orbits on U. O

Hence the irreducibility of U is equivalent to the irreducibility of Hilb[”s]. The latter
was first proved in [B] in the case of characteristic zero. Later this result was extended
in [I] to the case when char k = p is large enough. The proof given below is a version of
the proof in [Gra] (the use of Theorem 2 here replaces a dimension calculation of Hilbr;
from [Gra]).

Theorem 7. Hilbf; is irreducible of dimension (n —1).

Proof. Consider the universal subscheme Z C Hilb™(PP2) x P2. On the set-theoretic level
Z is given by all pairs (A4, z) such that x € Supp A. By definition of the Hilbert scheme
Z is finite and flat over Hilb™(P?). Denote by Z, ; the subscheme of all points in Z
where n sheets of the map f : Z — Hilb™(P?) come together (i.e., Z,,_ is the (n — 1)st
ramification locus of f, cf. [GL] for a rigorous definition). Then (Z,_1)req is a locally
trivial bundle over P? with fibers isomorphic to Hilbf;;. Since Z is normal and Hilb" (P%)
is smooth (cf. [F2]), we can apply the following theorem due to Lazarsfeld (cf. [GL] for
the statement of this result, the proof of which is contained in Lazarsfeld’s PhD thesis):

Let f : Z — H be a finite surjective morphism of irreducible varieties, with Z normal
and H nonsingular. If Z, 1 is not empty, then every irreducible component of Z, 1
has codimension < (n —1) in Z.

Since in our case dim Z = 2n, it follows that any irreducible component of Hilb["s]
should be at least (n—1)-dimensional. However, every irreducible component of Hilb["s] of
dimension k gives an irreducible component of A5 of dimension k+dim GL(V)—dim V =
k+n? —n > n? — 1. Applying Theorem 2 in the case of g = sl, (when there is only
one distinguished nilpotent class), we conclude that Hilbf;] has a unique component of
dimension k=n—-1. O

Remark 1. In the case of a not necessarily algebraically closed field of characterstic
p > n our argument shows that that number of irreducible components of A5 is equal
to the number of irreducible components of Hilbﬁ]. In particular, when k is algebraically
closed and char k > n, the variety N> is irreducible. For char k < n, as far as the
author knows, the Hilbert—Chow morphism has not been greatly studied. Moreover,
the Killing form used in the proof of Theorem 2 may become degenerate.

Remark 2. It is known that in the case of the real numbers Hilbfs’]‘ has at least [n/2]
irreducible components, cf. [I].
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