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1 Introduction

Let the group µm of mth roots of unity act on the complex line by multiplication. This

gives a µm-action on Diff, the algebra of polynomial differential operators on the line.

Following Crawley-Boevey and Holland [7], we introduce a multiparameter deformation

Dτ of the smash-product Diff#µm. Our main result provides natural bijections between

(roughly speaking) the following spaces:

(1) µm-equivariant version of Wilson’s adelic Grassmannian of rank r;

(2) rank r projectiveDτ-modules (with generic trivialization data);

(3) rank r torsion-free sheaves on a “noncommutative quadric” P1 ×τ P1;

(4) disjoint union of Nakajima quiver varieties for the cyclic quiver with m

vertices.

The bijection between (1) and (2) is provided by a version of Riemann-Hilbert correspon-

dence between D-modules and sheaves. The bijections between (2), (3), and (4) were mo-

tivated by our previous work [2]. The resulting bijection between (1) and (4) reduces, in

the very special case r = 1 and µm = {1}, to the partition of (rank 1) adelic Grassmannian

into a union of Calogero-Moser spaces discovered by Wilson. This gives, in particular, a

natural and purely algebraic approach to Wilson’s result [13].
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We proceed to more details. Recall that Nakajima quiver varieties can be viewed,

according to our previous paper [2], as spaces parametrizing torsion-free sheaves on a

“noncommutative plane.” In the simplest case, this yields a relation, first observed by

Berest and Wilson [3], between Calogero-Moser spaces and projective modules over the

first Weyl algebra D(C) of polynomial differential operators on the line C. The approach

to this result (and to its quiver generalizations) used in [2] was purely algebraic and to-

tally different from the approach in [3]. The latter involved a nonalgebraic Baker func-

tion and was based heavily on the earlier remarkable discovery by Wilson [13] of a con-

nection between an adelic Grassmannian and Calogero-Moser spaces.

In this paper, we reverse the logic used by Berest and Wilson and explain (rather

than exploit) the connection between adelic Grassmannians and quiver varieties by

means of noncommutative algebraic geometry, using the strategy of [2].1

Our first key observation is that each point of adelic Grassmannian can be viewed

as a “constructible sheaf” on the line built up from “infinite-rank” local systems. This

way, the correspondence between projective (not holonomic) D(C)-modules and points

of the adelic Grassmannian becomes nothing but (a nonholonomic version of) the stan-

dard de Rham functor between D-modules and constructible sheaves on the line.2

The de Rham correspondence works equally well in a more general context of

equivariant D-modules with respect to a natural action on the line C of the group µm of

mth roots of unity, by multiplication. Giving a µm-equivariant D-module is clearly the

same thing as giving a module over D(C)#µm, the smash product of D(C) with the group

µm, acting on D(C) by algebra automorphisms. Note that in [2] any, not only cyclic, finite

group Γ ⊂ SL2(C) of automorphisms of the Weyl algebra was considered. In order to

have a de Rham functor, however, we need to specify a standard holonomic D-module of

regular functions. The choice of such a D-module breaks the SL2(C)-symmetry of the 2-

plane formed by the generators of the first Weyl algebra. Thus, the group Γ ⊂ SL2(C) has

to have an invariant line in C2. This leaves us with the only choice Γ = µm.

1During the preparation of this paper (which was first supposed to be part of [2]) another paper by Berest and
Wilson appeared, see [4]. Our approach is similar to that of [4] (we treat more general case of “higher rank”
and µm-equivariant projective modules). However, even in the rank 1case, in [4], the authors do not provide an
independent proof of the bijection between Calogero-Moser spaces and projective modules; instead, they con-
struct a map inverse to the map constructed in [3], assuming that the latter is already known to be a bijection.
An independent direct proof of the bijectivity in the rank 1 case was obtained in the Appendix to [4] by M. Van
den Bergh who used some results of [2]. We emphasize that, for the reasons explained at the end of the intro-
duction below, it seems to be impossible to extend the approach of [4] (connecting the adelic Grassmannian
with rank 1 sheaves on a noncommutative P2τ) to the higher-rank case without replacing P2τ by a noncommuta-
tive surface which fibers over P1 , like the noncommutative quadric P1 ×τ P1 that we are using in this paper.
2More generally, our construction of de Rham functor yields a similar correspondence between projective D-
modules on any smooth algebraic curveXand points of an appropriately defined adelic Grassmannian attached
to the curve (in that case a noncommutative version of projective completion of T∗X should play the role of
P1 ×τ P1). The case of an elliptic curve seems to be especially interesting; we hope to discuss it elsewhere.
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Below, we will be working not only with the algebra D(C)#µm, but also with a

multiparameter deformation

Dτ = C〈x, y〉#µm/
〈
[y, x] = τ

〉
(1.1)

of the algebra introduced by Crawley-Boevey and Holland [7]. Here, τ (deformation pa-

rameter) is an arbitrary element in the group algebra C[µm] and C〈x, y〉 stands for the

free C-algebra of noncommutative polynomials in two variables x and y. Once a de Rham

functor between projective Dτ-modules and points of an adelic Grassmannian is estab-

lished, we can construct a Wilson-type connection between the adelic Grassmannian

and quiver varieties as follows. First, view a projective Dτ-module as a vector bundle

on an appropriate noncommutative plane A2τ. Next, extend (see [2]) this vector bundle to

a (framed) torsion-free sheaf on a completion Xτ ⊃ A2τ, a “noncommutative projective

surface.” Finally, we use a description of the framed torsion-free sheaves on Xτ in terms

of monads (i.e., in terms of linear algebra data) developed in [2] to obtain a parametrisa-

tion of projectiveDτ-modules by points of certain quiver varieties.

There are several possible choices for a “compactification” Xτ of the noncommu-

tative plane A2τ. In [2], we used Xτ = P2τ, a noncommutative version of projective plane.

In this paper, we choose another “compactification” of A2τ, a noncommutative version

P1 ×τ P1 of two-dimensional quadric. This choice is essential for our present purposes.

Our construction of the extension of aDτ-module to a torsion-free sheaf on P1×τP1 does

not behave well enough in the case of P2τ. On the other hand, the relation of sheaves on

P1 ×τ P1 to quiver varieties is a posteriori equivalent to the one used in [2] since the two

noncommutative spaces P1 ×τ P1 and P2τ can be obtained from each other by “blowing

up” and “blowing down” constructions. We will indicate the idea of such a construction

in Remark 5.3 and it will be hinted there how a bijection between torsion-free sheaves

on P1×τ P1 and on P2τ can be established via a noncommutative version of Fourier-Mukai

transform, see (5.11).

Our results generalize (and, hopefully, put in context) the results of Wilson [13]

in two ways. First, we incorporate a µm-action. Second, Wilson only considered the rank

1 case that is the case of rank 1 sheaves on P1 ×τ P1 in the terminology of this paper. In

Wilson’s situation, the whole adelic Grassmannian gets partitioned into a disjoint union

of Calogero-Moser spaces. In the more general setup of arbitrary rank r ≥ 1, this is no

longer true for two reasons. First, in our definition of the adelic Grassmannian, we drop

the index-zero condition of [13, condition 2.1(ii)] (it has to do with replacing the group

SLr by GLr). This makes our version of adelic Grassmannian somewhat larger than that

of [13]. The geometric consequence of “index-zero” condition is (in our language) that
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the restriction of a coherent sheaf to the line P1 × {∞} ⊂ P1 ×τ P1 is a vector bundle

with the vanishing first-Chern class: c1 = 0. In the rank 1 case considered by Wilson, any

such bundle is necessarily trivial, while this is clearly not true for higher ranks. Thus,

our main result says that, for any m ≥ 1 and r ≥ 1, the part of (µm-equivariant) rank r

adelic Grassmannian formed by sheaves, trivial on the line P1 × {∞} ⊂ P1 ×τ P1 can be

partitioned into a disjoint union of quiver varieties of type Am−1.

Remark 1.1. We would like to end this introduction by bringing the reader’s attention

to a surprising correspondence resulting from comparing [2, Theorem 1.3.12] with [8,

Theorem 1.13]. Specifically, let Γ ⊂ SL2(C) be a finite subgroup, andDτ(Γ) the coordinate

ring of the corresponding Γ-equivariant “noncommutative plane.” Recall that, according

to [2], there is a partition of the moduli space of projective Dτ(Γ)-modules N with the

fixed class [N] ∈ K(Dτ(Γ)) corresponding to the class [triv] of the trivial 1-dimensional Γ-

module (under the standard Grothendieck group isomorphism K(Dτ(Γ)) ∼= K(CΓ)) into a

disjoint union, according to the “second-Chern class” c2(N) := n ∈ Z. On the other hand,

given n ≥ 1, let Γn := Sn � (Γ × Γ × · · · × Γ) ⊂ Sp(C2n) denote the corresponding wreath

product and letH0,τ(Γn) be the symplectic reflection algebra attached to Γn, see [8, page

249].3 Further, [8,Theorem 1.13] shows that representation theories of the algebrasDτ(Γ)

andH0,τ(Γn) are related by the following mysterious bijection:

{
Isomorphism classes of finitely generated projective

Dτ(Γ)-modulesN such that [N] = triv and c2(N) = n

}
�
{

Isomorphism classes of

simpleH0,τ
(
Γn
)
-modules

}
.

(1.2)

Finding a direct conceptual explanation of the bijection above presents a challenging

problem. We remark that even in the case of the trivial group Γ , where the moduli space

on each side reduces, as a variety, to the Calogero-Moser space, the bijection is still com-

pletely unexplained. It may be analogous to level-rank type duality in representation the-

ory of Kac-Moody algebras.

2 Statement of results

From now on, let Γ = µm denote the group of mth roots of unity, and CΓ its group al-

gebra. We fix an embedding Γ = µm ↪→ SL2(C), and let L denote the tautological two-

dimensional representation of Γ arising from the embedding. We have L ∼= ε⊕ε−1, where

3In [2], we use the notation Bτ instead ofDτ(Γ), and in [8], we write c for what we denote by τ in [2] (and in this
paper).
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ε is a primitive character of Γ . Let {x, y} be a basis of L∗, compatible with the above di-

rect sum decomposition, such that Γ acts on x by ε and on y by ε−1. Write C[x] for the

polynomial algebra on the line with coordinate x, and C(x) for the corresponding field of

rational functions. We form the smash-product algebras

CΓ [x] := C[x]#Γ, CΓ(x) := C(x)#Γ. (2.1)

The standard embedding CΓ ↪→ C[x]#Γ makes CΓ [x] into a Γ-bimodule via left and right

multiplication by Γ . There is a similar Γ-bimodule structure on CΓ(x).

Choose and fix a finite-dimensional Γ-moduleW. There is a natural C(x)Γ -action

onW ⊗Γ CΓ(x) given by p : w⊗ f 
→ p · (w⊗ f) := w⊗ (p · f).

Definition 2.1. A Γ-invariant vector subspace U ⊂ W ⊗Γ CΓ(x) is called primary decom-

posable4 if the following two conditions hold:

(a) there exists a Γ-invariant polynomial p = p(x) such that

p · (W ⊗Γ CΓ [x]
) ⊂ U ⊂ 1

p
· (W ⊗Γ CΓ [x]

)
; (2.2)

(b) if p(x) =
∏
µ(x−µ)kµ , then the subspace on the left of (2.3) is compatible with

the direct sum decomposition on the right (i.e., left-hand side = sum of

its intersections with the direct summands on the right-hand side)

U

p · (W ⊗Γ CΓ [x]
) ⊂

1

p
· (W ⊗Γ CΓ [x]

)
p · (W ⊗Γ CΓ [x]

) =
⊕
µ

(x− µ)−kµW ⊗Γ CΓ [x]
(x− µ)kµW ⊗Γ CΓ [x]

. (2.3)

Define an adelic Grassmannian Grad(W) to be the set of all primary decompos-

able subspaces U ⊂W ⊗Γ CΓ(x).

Our first goal is to relate the adelic Grassmannian to modules over some noncom-

mutative algebra. To that end, we fix an element τ ∈ CΓ and consider the algebraDτ, see

(1.1), to be denoted asD in the future. Let Dfrac be the localization of the algebra Dwith

respect to the multiplicative system C[x]Γ \ {0} of all nonzero Γ-invariant polynomials in

x. This localization has a natural algebra structure extending that onD. Note further that

we have a natural embedding CΓ(x) ↪→ Dfrac and, moreover, this embedding yields a vec-

tor space isomorphism: CΓ(x) ∼−→ Dfrac/Dfrac ·y. We make CΓ(x) into a leftDfrac-module by

transporting the obviousDfrac-module structure onDfrac/Dfrac ·y via the bijection above.

4This notion is due to Cannings and Holland [5].
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For τ = 1, this reduces essentially to the standard action on CΓ(x) by differential opera-

tors.

For any Γ-moduleW, the spaceW⊗ΓDfrac has an obvious structure of a projective

rightDfrac-module.

Definition 2.2. Let GW = GLDfrac(W ⊗Γ Dfrac) be the group of all (invertible) right Dfrac-

linear automorphisms of theDfrac-moduleW ⊗Γ Dfrac.

We define a left GW-action on the vector space W ⊗Γ CΓ(x) and on the adelic

Grassmannian Grad(W) as follows. First, observe that the natural left GLDfrac(W⊗ΓDfrac)-

action onW ⊗Γ Dfrac commutes with right multiplication by y, therefore, keeps the sub-

space W ⊗Γ Dfrac · y ⊂ W ⊗Γ Dfrac stable. Hence, there is a well-defined left GW-action

on the quotient (W ⊗Γ Dfrac)/(W ⊗Γ Dfrac · y). Further, since left Γ-action commutes with

right Dfrac-action, and since W is a projective Γ-module, it follows that we have an iso-

morphism

ψ : W ⊗Γ CΓ(x) ∼−−−→ (
W ⊗Γ Dfrac

)
/
(
W ⊗Γ Dfrac · y

)
, (2.4)

induced by the isomorphism CΓ(x) ∼−→ Dfrac/Dfrac · y considered two paragraphs above.

We define the left GW-action on W ⊗Γ CΓ(x) by transporting the left GW-action on the

quotient (W ⊗Γ Dfrac)/(W ⊗Γ Dfrac · y) via the isomorphism ψ. It is straightforward to

verify that elements of GW take primary decomposable subspaces of W ⊗Γ CΓ(x) into

primary decomposable subspaces of W ⊗Γ CΓ(x). This gives a canonical left GW-action

on the adelic Grassmannian Grad(W).

To formulate our first result, recall that there is a canonical isomorphism (due to

Quillen) of Grothendieck K-groups: K(CΓ) ∼−→ K(D) induced by the functorW 
→W ⊗Γ D.

We write [N] ∈ K(CΓ) for the image of the class of a D-module N under the inverse iso-

morphism K(D)→ K(CΓ), and let dim : K(CΓ)→ Z denote the dimension homomorphism.

Further, there is a distinguished finite collection of codimension one hyper-

planes in the vector space CΓ , called the root hyperplanes. One way to define these hy-

perplanes is to use McKay correspondence. The latter associates to the cyclic group Γ =

µm ⊂ SL2(C) an affine Dynkin graph of type Ãm−1 such that the underlying vector space

of the group algebra CΓ gets identified with the dual of the C-vector space generated by

simple roots of the corresponding affine root system. In particular, every root gives a hy-

perplane in the vector space CΓ .

Definition 2.3. An element τ ∈ CΓ is called generic if it does not belong to any root hyper-

plane in CΓ .



Wilson’s Grassmannian and a Noncommutative Quadric 1161

Theorem 2.4 below is a noncommutative analogue of a well-known result due to

Weil, providing a description of algebraic vector bundles on an algebraic curve in terms

of an adelic double-coset construction.

Theorem 2.4. Assume that τ is generic. Let W be a Γ-module with dimW = r. The set

of isomorphism classes of projective (right) D-modules N such that dim[N] = r is in a

canonical bijection with the coset space GW\ Grad(W). �

To explain the main ideas involved in the proof of Theorem 2.4, we need the fol-

lowing definition.

Definition 2.5. A right D-submodule N ⊂ W ⊗Γ Dfrac is called fat if there exists a Γ-

invariant polynomial p(x) such that p · (W ⊗Γ D) ⊂ N ⊂ (1/p) · (W ⊗Γ D).

Let GrD(W) be the set of all fat rightD-submodulesN ⊂W ⊗Γ Dfrac.

Now, the proof goes as follows. First, we check that for generic τ any projective

right D-module can be embedded intoW ⊗Γ Dfrac as a fat D-submodule. The embedding

is unique up to a GW-action. Then, it remains to relate the Grassmanians GrD(W) and

Grad(W). To this end, recall that we have equipped the space CΓ [x] with a canonical struc-

ture of leftD-module, that clearly commutes with right Γ-action by multiplication.

We introduce a de Rham functor DR from the category of rightD-modules to the

category of right Γ-modules as follows:

N 
−→ DR(N) := N⊗D CΓ [x]. (2.5)

Given a nonzero polynomial p ∈ C[x]Γ , we write p · (W ⊗Γ D) := (W ⊗Γ (p ·D)). The space

p · (W ⊗Γ D) has an obvious rightD-module structure, and we have

DR
(
p · (W ⊗Γ D

))
= p · (W ⊗Γ D

)⊗D CΓ [x] = p · (W ⊗Γ CΓ [x]
)
. (2.6)

Hence, the de Rham functor takes any fat D-submodule of W ⊗Γ Dfrac to a Γ-invariant

vector subspace U ⊂ W ⊗Γ CΓ(x) such that p · (W ⊗Γ CΓ [x]) ⊂ U ⊂ (1/p) · (W ⊗Γ CΓ [x]).

Moreover, we can check that the latter vector space is primary decomposable.

Example 2.6. Assume that Γ = {1} is trivial, that is,m = 1. Then CΓ = C and τ ∈ CΓ = C is

generic if and only if τ �= 0. In this case, the algebraD is isomorphic to D(C), the algebra

of differential operators on the line C, and the algebraDfrac is isomorphic to the algebra

of differential operators with rational coefficients. The functor DR becomes the standard

de Rham functor.
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We have seen that the de Rham functor yields a map DR : GrD(W) → Grad(W).

We also define a map Grad(W) → GrD(W) (in the opposite direction) as follows. Let U ⊂
W ⊗Γ CΓ(x) be a primary decomposable subspace. Then the leftDfrac-action mapDfrac ⊗
CΓ(x) → CΓ(x) induces, after tensoring with W and restricting to CΓ [x], a linear map

a : W ⊗Γ Dfrac ⊗C CΓ [x] → W ⊗Γ CΓ(x). Let Diffτ(U) denote the set of all elements u ∈
W ⊗Γ Dfrac such that a(u ⊗ CΓ [x]) ⊂ U. It is easy to show that Diffτ(U) ⊂ W ⊗Γ Dfrac is a

fatD-submodule. Thus, we obtain a map Diffτ : Grad(W)→ GrD(W).

Theorem 2.7. For generic τ, the maps DR and Diffτ give mutually inverse bijections

GrD(W) ∼= Grad(W). �

Our next step is to interpret the space GrD(W), using the formalism of noncom-

mutative geometry. To this end, we introduce the algebra

Q = C〈x, z, y,w〉#Γ/〈[x, z] = [y, z] = [z,w] = [y,w] = [x,w] = 0, [y, x] = τ · zw〉,
(2.7)

where for any γ ∈ Γ , we put

γ·x·γ−1=ε(γ)·x, γ·y·γ−1=ε−1(γ)·y, γ·z·γ−1=z, γ·w·γ−1=w. (2.8)

Define a bigradingQ = ⊕i,j≥0Qi,j on the algebraQ by letting deg x = deg z = (1, 0), degy =

degw = (0, 1), and degγ = (0, 0) for any γ ∈ Γ . Thus,Q0,0 = CΓ .

When Γ is trivial and τ = 0, the algebra Q reduces to the standard bigraded al-

gebra associated with the quadric P1 × P1 and a pair of line bundles L1 = O(1, 0) and

L2 = O(0, 1), that is, for any i, j ≥ 0, we haveQi,j = H0(P1×P1, L⊗i1 ⊗ L⊗j2 ). In this case, the

category of coherent sheaves on P1 × P1 can be described as a quotient category of the

category of bigradedQ-modules (see Section 4).

In the general case of a nontrivial group Γ and arbitrary τ, a similar quotient

category construction may still be applied formally to the bigraded ringQ. Following [1],

see also [2] and Appendices A and B below, we will view objects of the resulting quotient

category as coherent sheaves on a “noncommutative quadric” P1 ×τ P1.

Note that, in the commutative case τ = 0, the equations z = 0 and w = 0 give

rise to two embeddings iz : P1z ↪→ P1 × P1 and iw : P1w ↪→ P1 × P1 of the corresponding

factors P1. Thus, we may consider the restriction functor i∗z, taking coherent sheaves on

P1 × P1 to coherent sheaves on P1z (and also consider coherent sheaves on P1 × P1 which

are trivialized in some formal neighbourhood of P1z). In Section 4 and Appendix A, we

show how to extend all relevant concepts to the noncommutative case. The homogeneous

coordinate rings of P1z and P1w will be replaced by C[y,w]#Γ and C[x, z]#Γ , respectively.
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The latter algebras are only slightly noncommutative in the sense that the corresponding

quotient categories of “noncommutative coherent sheaves” are nothing but the categories

of Γ-equivariant coherent sheaves on P1, the ordinary (commutative) projective line. This

leads to the following provisional definition (see Definitions 4.3 and 4.5 for details).

Definition 2.8. Let GrP
1×τP

1

(W) be the set of all (equivalence classes of) coherent sheaves

E on P1 ×τ P1 trivialized in a formal neighbourhood of P1z and such that i∗zE �W ⊗Γ OP1
z
.

Note that in the commutative situation we have, P1 × P1 \ (P1z ∪ P1w) = A2 is an

affine plane with coordinates x and y. In the noncommutative case we have an algebra

isomorphism

D � Q/((z− 1)Q+ (w− 1)Q
)
. (2.9)

Therefore, the algebra D may be viewed as coordinate ring of a noncommutative affine

plane j : A2τ ↪→ P1 ×τ P1. This gives rise to a restriction functor j∗ : coh(P1 ×τ P1) →
mod(D), taking the category of coherent sheaves on P1 ×τ P1 to D-modules. It is easy to

see that j∗ takes any sheaf trivialized in a neighborhood of P1z to a fat D-submodule of

W ⊗Γ Dfrac.

Theorem 2.9. The “restriction” functor j∗ induces a bijection GrP
1×τP

1

(W) ∼−→ GrD(W).

�

We write j!∗ for an inverse of the bijection j∗.

The fourth (and the last) infinite Grassmannian considered in this paper is an

affine Grassmannian Graff(W) introduced below.

Definition 2.10. A right CΓ [x]-submodule W ⊂ W ⊗Γ CΓ(x) is called fat if there exists a

Γ-invariant polynomial p(x) such that p · (W ⊗Γ CΓ [x]) ⊂ W ⊂ (1/p) · (W ⊗Γ CΓ [x]).

Define Graff(W) to be the set of all fat CΓ [x]-submodules inW ⊗Γ CΓ(x).

It is clear that a (right) Γ-stable subspace W ⊂W⊗Γ CΓ(x) is a fat CΓ [x]-submod-

ule if and only if W is a finitely-generated C[x]-submodule such that W ⊗
C[x] C(x) = W ⊗Γ

CΓ(x). Thus, a fat CΓ [x]-submodule may be viewed as a Γ-stable lattice in the C(x)-vector

space W ⊗Γ CΓ(x). For this reason, we refer to Graff(W) as the affine Grassmannian.

The standard relation between loop-Grassmannians and vector bundles on the Riemann

sphere (see, e.g., [12]) shows that the space Graff(W) can also be interpreted as the set of

all Γ-equivariant vector bundles on P1 trivialized in a Zariski neighbourhood of the point∞ ∈ P1 (see Definition 4.3) with W being a fiber at ∞. Thus, the restriction functor i∗w
takes GrP

1×τP
1

(W) to Graff(W).
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We observe that the group GW , see Definition 2.2, acts naturally on each of the

Grassmannians Grad(W), GrD(W), and GrP
1×τP

1

(W). Specifically, the action on Grad(W)

has been defined earlier, and the action on GrD(W) is induced by the corresponding GW-

action on W ⊗Γ Dfrac. The action on GrP
1×τP

1

(W) arises from GW-action on the direct

system formed by the sheaves W ⊗Γ O(n, 0), n = 1, 2, . . . . Observe further that the affine

Grassmannian Graff(W) has an action of the subgroup GLCΓ (x)(W ⊗Γ CΓ(x)) ⊂ GW (the

group GW itself does not act on Graff(W) since it does not preserve the condition to be a

CΓ [x]-submodule).

All the objects and the maps we have introduced so far are incorporated in the

following diagram:

Grad(W)
Diffτ

GrD(W)
DR

j!∗
GrP

1×τP
1

(W)
j∗

i∗w
Graff(W). (2.10)

Principal symbol map “Symb”. The algebraD has a natural increasing filtration CΓ [x] =

F0D ⊂ F1D ⊂ F2D ⊂ · · · , where FkD is the CΓ [x]-submodule generated by {1, y, . . . , yk}.

This filtration, by the order of differential operator, extends canonically to a similar fil-

tration CΓ(x) = F0Dfrac ⊂ F1Dfrac ⊂ F2Dfrac ⊂ · · · on the algebra Dfrac, and for the corre-

sponding associated graded algebras, we have grFD � CΓ [x, y] and grFDfrac � CΓ(x)[y].

The filtration onDfrac also induces an increasing filtration, Fk(W⊗ΓDfrac) := W⊗Γ FkDfrac,

on theDfrac-moduleW ⊗Γ Dfrac such that grF(W ⊗Γ Dfrac) � (W ⊗Γ CΓ(x))[y].

Now, given aD-submoduleN ⊂W ⊗Γ Dfrac, we put

Symb(N) :=
{
f ∈W ⊗Γ CΓ(x) | f · yk + uk−1 ∈ N,

for some k ∈ Z and some uk−1 ∈ Fk−1

(
W ⊗Γ Dfrac

)}
.

(2.11)

This is a CΓ(x)-submodule inW ⊗Γ CΓ(x) that can be equivalently defined as follows.

Right multiplication by y gives rise to a direct system of bijective maps CΓ(x)
∼−→ CΓ(x) · y ∼−→ CΓ(x) · y2 ∼−→ · · · , and it is clear that this yields isomorphisms

CΓ(x) = CΓ(x) · y0 ∼−−−→ lim−−→
k

CΓ(x) · yk,

W ⊗Γ CΓ(x) = W ⊗Γ CΓ(x) · y0 ∼−−−→ lim−−→
k

(
W ⊗Γ CΓ(x)

) · yk. (2.12)

Let grFN ⊂ grF(W ⊗Γ Dfrac) � W ⊗Γ CΓ(x)[y] denote the associated graded module of N

with respect to the induced filtration F•N := N ∩ F•(W ⊗Γ Dfrac). Form the direct system

grF0N → grF1N → grF2N → · · · induced by the y-action on grFN (which is not necessar-

ily bijective). Using the identification provided by (2.12), we have Symb(N) = lim−−→ grFkN.
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It is clear that the right-hand side is a CΓ [x]-submodule in CΓ(x). The assignment N 
→
Symb(N) gives a (discontinuous) map Symb : GrD(W)→ Graff(W).

Let σ denote the composite map, see (2.10),

σ : Grad(W) Diffτ−−−→ GrD(W)
j!∗−−→ GrP

1×τP
1

(W)
i∗w−−→ Graff(W). (2.13)

The following is an enriched version of diagram (2.10).

Theorem 2.11. Assume that τ is generic. Then there is a commutative diagram

Grad(W)
Diffτ

σ

GrD(W)
DR

j!∗

Symb

GrP
1×τP

1

(W)
j∗

i∗w

Graff(W),

(2.14)

where the maps DR, Diffτ, j!∗, and j∗ are GW-equivariant bijections, and the maps i∗w,

Symb, and σ are GLCΓ (x)(W ⊗Γ CΓ(x))-equivariant. �

Finally, we explain how quiver varieties enter the picture. Given a pair of finite-

dimensional Γ-modulesW, V, and an element τ ∈ CΓ define, following Nakajima, a locally

closed subvariety of quiver data

Mτ
Γ
(V,W) :=

{
(B, I, J) ∈ Hom

Γ

(
V,V ⊗C L

)⊕
Hom

Γ
(W,V)

⊕
Hom

Γ
(V,W)

}
(2.15)

formed by the triples (B, I, J) satisfying the following two conditions:

(a) moment map equation: [B,B] + IJ = τ|V ; and

(b) stability condition: if V ′ ⊂ V is a Γ-submodule such that B(V ′) ⊂ V ′ ⊗ L and I(W) ⊂
V ′, then V ′ = V.

The groupG
Γ
(V)=GL(V)Γ of Γ-equivariant automorphisms of V acts on Mτ

Γ
(V,W)

by the formula g(B, I, J) = (gBg−1, gI, Jg−1). Note that this G
Γ
(V)-action is free due to the

stability condition.

Definition 2.12. Let Mτ
Γ
(V,W) = Mτ

Γ
(V,W)/G

Γ
(V) be the geometric invariant theory quo-

tient, called a (Nakajima) quiver variety.

The affine Grassmannian Graff(W) has a marked point W0 = W ⊗Γ CΓ [x] corre-

sponding to the Γ-equivariant sheafW⊗ΓOP1
w

with its natural trivialization in the Zariski

neighbourhood of infinity.
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Theorem 2.13. Let τ be generic. Then there is a canonical bijection

⊔
V

Mτ
Γ
(V,W) ∼= σ−1

(
W0

) ⊂ Grad(W), (2.16)

whereV runs through the set of isomorphism classes of all finite dimensional Γ-modules.

�

Example 2.14. Let the group Γ be trivial and τ �= 0. If W = C and V = Cn, then the cor-

responding quiver variety is isomorphic to the Calogero-Moser space CMn. Further, the

affine Grassmannian reduces to the coset space C(x)×/C×. Moreover, the subset

Grad
0 (C) := σ−1(W0) ⊂ Grad(C) consists of primary decomposable subspaces of “index

zero” (in the sense of [13, condition 2(ii)]) at every point. Thus, Theorem 2.13 implies in

this case Wilson’s theorem saying that Grad
0 (C) =

⊔
n≥0 CMn is a union of the Calogero-

Moser spaces. Note that our proof is purely algebraic (as opposed to [13]) and totally

different from that in [13].

This paper is organized as follows. In Section 3, we prove Theorem 2.7 by means

of a D-module version of Kashiwara’s theorem describing D-modules concentrated on a

point. In Section 4, we reinterpretD-modules in terms of noncommutative geometry, and

prove Theorems 2.9 and 2.11. Sections 5 and 6 contain proofs of Theorems 2.13 and 2.4,

respectively. Appendix A deals with modifications that we have to introduce in the for-

malism of [1] in order to be able to work with polygraded algebras. Finally, in Appendix B,

we prove some technical results on the “noncommutative surface” P1 ×τ P1 including

Serre duality and Beilinson spectral sequence.

3 Kashiwara theorem and de Rham functor

In this section, we prove Theorem 2.7 by reducing it to a deformed version of Kashiwara’s

theorem on D-modules supported on a single point.

To begin the proof of Theorem 2.7, observe first that any primary decomposable

subspace p · (W ⊗Γ CΓ [x]) ⊂ U ⊂ (1/p) · (W ⊗Γ CΓ [x]) is determined by the subspace

p · U/p2 · (W ⊗Γ CΓ [x]) ⊂ W ⊗Γ CΓ [x]/p2 · (W ⊗Γ CΓ [x]). Similarly, any fat D-submodule

p ·(W⊗ΓD) ⊂ N ⊂ (1/p) ·(W⊗ΓD) is determined by theD-submodule p ·N/p2 ·(W⊗ΓD) ⊂
W⊗Γ D/p2 ·(W⊗Γ D). Observe further that the de Rham functor DR is right exact and the

homological dimension of the category of D-modules equals 1 (see [7]). Moreover, since

W ⊗Γ D and p2 · (W ⊗Γ D) are projectiveD-modules, we get

DR

(
p ·N

p2 · (W ⊗Γ D
)) =

p · DR(N)
p2 · (W ⊗Γ CΓ [x]

) ⊂ W ⊗Γ CΓ [x]
p2 · (W ⊗Γ CΓ [x]

) . (3.1)
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Therefore, to prove Theorem 2.7, it suffices, according to the definitions of GrD(W) and

Grad(W), to show that the functor DR induces a bijection between the following sets:

(a) the set ofD-submodules of (W ⊗Γ D)/p2 · (W ⊗Γ D); and

(b) the set of vector subspaces in (W ⊗Γ CΓ [x])/p2 · (W ⊗Γ CΓ [x]) which are com-

patible with the direct sum decomposition

W ⊗Γ CΓ [x]
p2 · (W ⊗Γ CΓ [x]

) =
⊕
µ

W ⊗Γ CΓ [x]
(x− µ)2kµW ⊗Γ CΓ [x]

. (3.2)

Here p(x) =
∏
µ(x − µ)kµ is a fixed Γ-invariant polynomial, and we have used an identifi-

cation

(1/p) · (W ⊗Γ D)
p · (W ⊗Γ D)

∼−−−→ (W ⊗Γ D)
p2 · (W ⊗Γ D)

(3.3)

provided by multiplication by p (and similarly for CΓ [x]).

Next, equip the vector space (W ⊗Γ CΓ [x])/p2 · (W ⊗Γ CΓ [x]) with a new CΓ [x]-

module structure by requiring that x ∈ CΓ [x] acts on (W⊗Γ CΓ [x])/((x−µ)2kµ ·W⊗Γ CΓ [x])

as multiplication by µ, and Γ acts as before. In other words, we replace the natural x-

action by its semisimple part. Let S(W,p2) denote the result of such a semisimplifica-

tion. The key observation is that a vector subspace U ⊂ (W ⊗Γ CΓ [x])/p2(W ⊗Γ CΓ [x]) is

compatible with the direct sum decomposition as in (b) above if and only if U is a CΓ [x]-

submodule in S(W,p2). Thus, Theorem 2.7 reduces to the assertion that DR induces a

bijection between

(a) the set ofD-submodules of (W ⊗Γ D)/p2 · (W ⊗Γ D); and

(b) the set of CΓ [x]-submodules in S(W,p2).

Our next step is to show that the polynomial p2 = p(x)2 above can be replaced by

a simpler polynomial. For any µ ∈ C, let Γµ be the stabilizer of µ in Γ ,mµ the order of the

group Γ/Γµ, and pµ the minimal Γ-semi-invariant polynomial vanishing on the orbit Γ · µ.

In other words, we put

Γµ := {1}, mµ := m, pµ(x) := xm − µm, if µ �= 0;

Γµ := Γ, mµ := 1, pµ(x) := x, if µ = 0.
(3.4)

Then any Γ-invariant polynomial p(x) can be factored as p(x) =
∏
µ∈C/Γ pµ(x)sµ . This

factorization induces direct sum decompositions

W ⊗Γ D
p2 · (W ⊗Γ D

) =
⊕
µ∈C/Γ

W ⊗Γ D
p
2sµ
µ · (W ⊗Γ D

) ; S
(
W,p2

)
=
⊕
µ∈C/Γ

S
(
W,p

2sµ
µ

)
. (3.5)

The following lemma is clear.
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Lemma 3.1. For anyD-submoduleN ⊂⊕µ∈C/Γ (W⊗ΓD/p2sµ
µ ·(W⊗ΓD)), there is a direct

sum decomposition

N =
⊕
µ∈C/Γ

(
N ∩ W ⊗Γ D

p
2sµ
µ · (W ⊗Γ D

)). (3.6)
�

Due to the above lemma, we may (and will) assume, without any loss of general-

ity, that p(x) = pµ(x)2sµ , for some fixed µ ∈ C and some sµ = 1, 2, . . . . Further, we have

S(W,p2sµ
µ ) � S(W,pµ)⊕2sµ , and this space is, in effect, a module over the quotient alge-

bra CΓ [x]/pµCΓ [x]. The set of submodules in S(W,p2sµ
µ ) may be therefore described by the

following result, which is proved by a straightforward computation.

Lemma 3.2. (a) The correspondence U 
→ U⊗Γµ (CΓ [x]/(x− µ)CΓ [x]) establishes a Morita

equivalence between the category Rep(Γµ) of finite-dimensional representations of Γµ

and the category of finite-dimensional CΓ [x]/pµCΓ [x]-modules.

(b) The Γµ-module U(W,p2sµ
µ ) corresponding to S(W,p2sµ

µ ) via this equivalence is

equal to W⊕2sµ , viewed as a vector space (= module over Γµ = {1}) if µ �= 0 and as a

Γ-moduleW ⊗C (C[x]/x2s0C[x]) if µ = 0. �

Thus, to prove Theorem 2.7, we have to establish a bijection between the follow-

ing sets:

(a) the set of allD-submodules ofW ⊗Γ D/p2sµ
µ · (W ⊗Γ D); and

(b) the set of all Γµ-submodules of U(W,p2sµ
µ ).

To that end, we introduce the following definition.

Definition 3.3. Denote by modΓ ·µ(D) the category of all finitely generated D-modules M

such that pµ(x) acts locally nilpotently on M.

If M is an object in modΓ ·µ(D), then

Kµ(M) := Ker(x− µ) ⊂ M (3.7)

is a Γµ-module. Moreover, it is clear that the assignment M 
→ Kµ(M) gives a functor

Kµ : modΓ ·µ(D)→ Rep(Γµ). Further, consider the induction functor

Iµ : Rep
(
Γµ
) −→ modΓ ·µ(D), U 
−→ U ⊗CΓµ[x] D, (3.8)

where CΓµ[x] = CΓµ⊗C[x] and where the CΓµ[x]-module structure on U ∈ Rep(Γµ) is given

by the standard action of Γµ and the action of x by the µ-multiplication.
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The following theorem is a deformed (and equivariant) analogue of a well-known

result of Kashiwara saying that any D-module concentrated at a point is the D-module

direct image of a vector space (= D-module on that point).

Theorem 3.4 (Kashiwara theorem). Assume that the element τ ∈ CΓ , involved in the def-

inition of D, is generic in the sense of Definition 2.3. Then the functors Kµ and Iµ give

mutually inverse equivalences between the categories modΓ ·µ(D) and Rep(Γµ). �

Before we prove this theorem, we record a few consequences of the condition:

τ is generic. For any k = 1, 2, . . . and any integers 0 ≤ a ≤ b, we define elements τ(k),

τ[a,b] ∈ CΓ by the equations

yk · τ = τ(k) · yk, τ[a,b] =

b∑
k=a

τ(k). (3.9)

The definition yields

y · τ[a,b] = τ[a+1,b+1] · y, x · τ[a,b] = τ[a−1,b−1] · x. (3.10)

Lemma 3.5. (a) The element τ is generic if and only if for all a ≤ b, the element τ[a,b] ∈ CΓ

is invertible. Furthermore, in this case, for any a ∈ Z, the element τ[a,a+m−1] acts by a

constant (independent of a) in any representation of Γ .

(b) If τ is generic, then for any µ ∈ C and all a ≤ b, the element
∑b
i=a τ[i,i+mµ−1] ∈

CΓ is invertible.

(c) The following identity holds: [y, pµ(x)] = (τ[0,mµ−1]/mµ) · p ′
µ(x). �

Proof. To prove (a), recall (cf., e.g., [7]) that McKay correspondence associates to the

cyclic group Z/mZ = µm, the affine Dynkin graph Ãm−1. Using an explicit expression

for the roots, it is easy to deduce assertion (a) of the lemma.

To prove (b), note that if µ �= 0, then mµ = m and the sum in question equals

|τ| · (b− a+ 1), where |τ| is the constant of part (a). Hence, this sum is invertible. If µ = 0,

thenmµ = 1 and we have
∑b
i=a τ[i,i+mµ−1] = τ[a,b]. Hence, this element is also invertible.

Part (c) is proved by a direct computation. �

Proof of Theorem 3.4. It follows from the definitions of Kµ and Iµ that the functor Kµ

is right adjoint to Iµ. This gives canonical adjunction morphisms U → Kµ(Iµ(U)) and

Iµ(Kµ(M))→M for any M ∈ Ob(modΓ ·µD) and U ∈ Ob(Rep Γµ).

To show that Iµ(Kµ(M)) → M is an isomorphism, set Mk := Kerpµ(x)k+1 ⊂ M

and writeMk := Mk/Mk−1, for short. On ⊕kMk, we have the following structure.
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First, it is clear that the increasing filtration {Mk}k=0,1,... is stable under the ac-

tion of the subalgebra Γ [x] ⊂ D; hence, eachMk is a Γ [x]-module. Further, multiplication

by pµ(x) takes Mk to Mk−1, and thus induces a map p : Mk → Mk−1. Moreover, the ac-

tion of ymoves Mk to Mk+1, and thus induces a mapMk →Mk+1. Finally, it is clear that

the map p is an embedding of Γ [x]-modules, while y is a morphism of C[x]-modules, and

p ′
µ(x) : Mk →Mk is an isomorphism (because pµ(x) and p ′

µ(x) are coprime). We prove, by

induction in k, that

(p · y)|Mk
= −

k∑
i=0

τ[i,i+mµ−1]

mµ
· p ′
µ(x),

(y · p)|Mk+1
= −

k+1∑
i=1

τ[i,i+mµ−1]

mµ
· p ′
µ(x).

(3.11)

The base of induction (k = −1) is clear. Assume that we have verified (3.11) for k−1. Then

for any a ∈Mk, applying Lemma 3.5(c) and the induction hypothesis, we get

p · y · a = y · p · a− [y, p] · a

= −

k∑
i=1

τ[i,i+mµ−1]

mµ
· p ′
µa−

τ[0,mµ−1]

mµ
· p ′
µa

= −

k∑
i=0

τ[i,i+mµ−1]

mµ
· p ′
µa.

(3.12)

Note that since τ is generic, it follows from Lemma 3.5(b) that the map p ·y : Mk →Mk is

a bijection. On the other hand, p is injective by definition. Hence, y gives an isomorphism

Mk
∼−→Mk+1. It follows that, for any b ∈Mk+1, there exists an a ∈Mk such that b = y ·a.

Applying Lemma 3.5(b), we calculate

y · p · b = y · p · y · a = −y ·
k∑
i=0

τ[i,i+mµ−1]

mµ
· p ′
µ · a = −

k∑
i=0

τ[i+1,i+mµ]

mµ
· y · p ′

µ · a

= −

k+1∑
i=1

τ[i,i+mµ−1]

mµ
· p ′
µ · y · a = −

k+1∑
i=1

τ[i,i+mµ−1]

mµ
· p ′
µ · b.

(3.13)

(In the third equality, we use the fact that the operators y : Mk → Mk+1 and p ′
µ(x) :

Mk →Mk commute, because their commutator on M takes Mk to Mk, hence induces the

zero map Mk → Mk+1.) Thus, we have proved (3.11) for any k and, moreover, we have

shown along the way that for any k, the map y : Mk → Mk+1 is an isomorphism. This
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means that the action of the subalgebra C[y] ⊂ D gives an isomorphism M ∼= M0 ⊗ C[y].

Further, we have M0 = Kerpµ(x) and Kµ(M) = Ker(x− µ). We use the equalities

Kerpµ(x)=
⊕
γ∈Γ/Γµ

Ker
(
γ(x−µ)γ−1

)
=
⊕
γ∈Γ/Γµ

(
Ker(x−µ)

)
γ−1=Ker(x−µ) ⊗C[Γµ] CΓ

(3.14)

to conclude that Iµ(Kµ(M))→M is an isomorphism.

To show that the canonical morphism f : U → Kµ(Iµ(U)) is an isomorphism, first

note that it is clearly injective. Hence, we have an exact sequence

0 −→ U −→ Kµ
(
Iµ(U)

) −→ U ′ −→ 0, where U ′ := Coker(f). (3.15)

On the other hand, the functor Iµ is exact since D is a flat Γµ[x]-module. Hence, applying

the functor Iµ(−), we obtain an exact sequence

0 −→ Iµ(U) α−−−→ Iµ
(
Kµ
(
Iµ(U)

)) −→ Iµ(U ′) −→ 0. (3.16)

The argument of the first part of the proof, applied to theD-module Iµ(U), shows that the

morphism α above is an isomorphism. Hence, Iµ(U ′) = 0. But this clearly yields U ′ = 0.

Thus, the map U→ Kµ(Iµ(U)) is an isomorphism, and Theorem 3.4 follows. �

End of proof of Theorem 2.7. The de Rham functor DR, restricted to the set of submod-

ules in (W ⊗Γ D)/p2sµ
µ · (W ⊗Γ D), can be factored as a composition of the equivalence

Kµ : modΓ ·µD → Rep Γµ and the Morita equivalence Rep Γµ → mod(CΓ [x]/pµ · CΓ [x])

of Lemma 3.2(b). Hence, it is an equivalence as well. By a straightforward (but a bit te-

dious) computation, we deduce that

Kµ
((
W ⊗Γ D

)
/p
2sµ
µ · (W ⊗Γ D

)) � U
(
W,p

2sµ
µ

)
, (3.17)

where U(W,p2sµ
µ ) is given by Lemma 3.2(b). This implies Theorem 2.7, as we have seen in

the first half of this section.

Finally, we can check that the map Diffτ, defined just above the statement of

Theorem 2.7, is in effect the inverse bijection Grad(W)→ GrD(W). �

4 D-module Grassmannian and sheaves on P1 ×τ P1

Recall the bigraded algebra Q defined in (2.7). Let gr2(Q) be the category of finitely gen-

erated bigraded right Q-modules M = ⊕Mi,j. Let tor2(Q) denote its Serre subcategory
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formed by all modulesM such that there exists a pair (i0, j0), such that for any i > i0 and

j > j0, we have Mi,j = 0. Consider the quotient category qgr2(Q) = gr2(Q)/ tor2(Q). The

category qgr2(Q) will be viewed as the category of coherent sheaves on a noncommuta-

tive scheme P1 ×τ P1 (see Appendix A for details). Thus, by definition, we put

coh
(
P1 ×τ P1

)
:= qgr2(Q), (4.1)

and we write π : gr2(Q)→ coh(P1 ×τ P1) for the canonical projection functor.

The isomorphismD ∼= Q/((z−1)Q+ (w−1)Q) gives rise to a “restriction” functor

j∗ : coh
(
P1 ×τ P1

) −→ mod(D),

E = π(M) 
−→ lim−−→
k,l

Mk,l
∼= M/

(
(z− 1)M+ (w− 1)M

)
,

(4.2)

where the direct limit is taken with respect to the maps Mk,l → Mk+1,l and Mk,l →
Mk,l+1, induced by multiplication by z andw, respectively.

There are canonical isomorphisms

Q/zQ ∼=
(
C[x] ⊗ C[y,w]

)
#Γ, Q/wQ ∼=

(
C[x, z] ⊗ C[y]

)
#Γ. (4.3)

Thus, we obtain the following equivalences of categories qgr2(Q/zQ) � qgr(C[xy, xw]#Γ)

and qgr2(Q/wQ) � qgr(C[xy, yz]#Γ) (see Corollary A.8). The two categories on the right

can be viewed as the categories of Γ-equivariant coherent sheaves on the ordinary pro-

jective line P1. We denote the corresponding copies of P1 by P1z and P1w, respectively. We

have the corresponding push-forward and pullback functors(
iz
)
∗ : coh

(
P1z
) −→ coh

(
P1 ×τ P1

)
, i∗z : coh

(
P1 ×τ P1

) −→ coh
(
P1z
)
,(

iw
)
∗ : coh

(
P1w
) −→ coh

(
P1 ×τ P1

)
, i∗w : coh

(
P1 ×τ P1

) −→ coh
(
P1w
)
.

(4.4)

Let L1i∗ stand for the first derive functor.

Given aD-module M, we let its support be the support of M, viewed as a module

over the subalgebra C[x] ⊂ D (more precisely, the union of supports of all C[x]-finitely

generated submodules in M).

Definition 4.1. (i) Let QuotP
1×τP

1

(W) be the category of all surjectionsW ⊗Γ O � F in the

category coh(P1 ×τ P1) such that

i∗zF = L1i∗zF = 0, L1i∗wF = 0. (4.5)

(ii) Let QuotD(W) be the category of allD-module surjectionsW ⊗Γ D � M such

that M has zero-dimensional support.
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Theorem 4.2. The functor j∗ takes any object of the category QuotP
1×τP

1

(W) to an object

of QuotD(W) and, moreover, gives an equivalence QuotP
1×τP

1

(W) ∼−→ QuotD(W). �

Proof. First, note that j∗ is exact, being a direct limit functor. Thus, to show that j∗ takes

QuotP
1×τP

1

(W) to QuotD(W), it suffices to show that for any object of QuotP
1×τP

1

(W) of

the formW⊗O � F, theD-module j∗F has zero-dimensional support. Indeed, let F = π(M)

where M = ⊕Mk,l. Then conditions i∗zF = L1i∗zF = 0 imply that z-multiplication gives an

isomorphismMk,l
∼−→Mk+1,l for k, l� 0. SinceM is finitely generated, we can choose k0

and l0 such that ⊕k≥k0, l≥l0Mk,l is generated by Mk0,l0 and such that z : Mk,l → Mk+1,l

is an isomorphism for all k ≥ k0, l ≥ l0. Let p be the characteristic polynomial of the

operator z−1x : Mk0,l0 → Mk0,l0 . Then it is easy to see that p(x) acts locally nilpotently

on j∗F = lim−−→Mk,l, and hence j∗ indeed defines a functor j∗ : QuotP
1×τP

1

(W)→ QuotD(W).

The assertion that j∗ is an equivalence will be proved by constructing a quasi-

inverse functor j!∗. To that end, let ψ : W ⊗Γ D � M be an object of QuotD(W). Since

M has zero-dimensional support, there exists a Γ-invariant polynomial p(x) that acts by

zero on the subspace ψ(W ⊗Γ CΓ) ⊂ M. It is clear that we have ψ(W ⊗ p(x)) = 0; hence,

ψ
(
p · (W ⊗Γ D

))
= 0. (4.6)

LetDk,l be the natural increasing bifiltration ofD (induced by the bigrading ofQ) and

Mk,l = ψ
(
W ⊗Γ Dk,l

) ⊂ M, (4.7)

the induced bifiltration of M. It follows from (4.6) that this bifiltration stabilizes with

respect to the first index when k ≥ d = degp(x), that is, we have

Mk,l = ψ
(
W ⊗Γ Dk,l

)
= ψ

(
W ⊗Γ Dd,l

)
= Md,l ⊂ M, for k ≥ d and all l. (4.8)

It follows from the definition that the bifiltration Mk,l is compatible with the bifiltration

on D. Moreover, it is clearly increasing, finitely generated and exhaustive (because ψ is

surjective). Hence,M = ⊕k,lMk,l is a finitely generated Q-module, where the action on

M of x-generators and y-generators of Q is given by the x and y multiplication maps

Mk,l → Mk+1,l and Mk,l → Mk,l+1, respectively, and the action of z and w generators is

given by the natural embeddings Mk,l ↪→Mk+1,l and Mk,l ↪→Mk,l+1, respectively.

Consider F = π(M), a coherent sheaf on P1 ×τ P1. It follows from the definition of

F that the z-multiplication map F → F(1, 0) is an isomorphism (since Mk,l = Mk+1,l for

k ≥ d), hence i∗zF = L1i∗zF = 0. On the other hand, the w-multiplication map F → F(0, 1)

is an embedding (because Mk,l ⊂ Mk,l+1), hence L1i∗wF = 0. Finally note that the map
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ψ is compatible with the bifiltrations on W ⊗Γ D and M, hence it gives rise to a map

ψ̃ : W ⊗Γ O → F of coherent sheaves on P1 ×τ P1. Moreover, this map is surjective by

definition, hence it gives an object of QuotP
1×τP

1

(W). Finally, it is easy to show that this

way we obtain a functor j!∗ : QuotD(W)→ QuotP
1×τP

1

(W).

We show that j!∗ and j∗ are quasi-inverse. Let W ⊗Γ O
ψ−→ F be an object of the

category QuotP
1×τP

1

(W) and let M = ⊕Mk,l, where Mk,l = H0(P1 ×τ P1, F(k, l)). Then M

is a bigradedQ-module and it is clear that π(M) = F. Note that we have exact sequences

0 −→ (iz)∗L
1i∗zF(k+ 1, l) −→ F(k, l) −→ F(k+ 1, l) −→ (iz)∗i

∗
zF(k+ 1, l) −→ 0,

0 −→ (iw)∗L
1i∗wF(k, l+ 1) −→ F(k, l) −→ F(k, l+ 1) −→ (iw)∗i

∗
wF(k, l+ 1) −→ 0.

(4.9)

Moreover, applying (4.5), we get

L1i∗zF(k+ 1, l) ∼=
(
L1i∗zF

)
(l) = 0, i∗zF(k+ 1, l) ∼=

(
i∗zF
)
(l) = 0,

L1i∗wF(k, l+ 1) ∼=
(
L1i∗wF

)
(k) = 0.

(4.10)

Combining these isomorphisms with the above exact sequences and with the definition

of Mk,l, we see that the maps Mk,l
z−→ Mk+1,l and Mk,l

w−→ Mk,l+1 are an isomorphism

and an embedding, respectively. Therefore, j∗F =
⋃
lMk,l for any k. On the other hand, we

haveDk,l = H0(P1×τ P1,O(k, l)) by definition, and it is clear that the map j∗ψ sendsW⊗Γ
Dk,l toMk,l and coincides there with the mapH0(ψ(k, l)). Thus, to show that j!∗(j∗F) ∼= F,

it suffices to show that this map is surjective for all k and l sufficiently large. The latter is

nothing but the definition of the map ψ being a surjection in the category coh(P1 ×τ P1).

Now assume thatW⊗Γ D→M is an object of QuotD(W). Then by definition of j!∗,

we have Mk+1,l = Mk,l for k ≥ d and all l, and when k ≥ d is fixed, the filtration Mk,l of

M is exhaustive. Hence, M = lim−−→Mk,l, that is, j∗j!∗(M) = M. �

Now we give a more rigorous version of Definition 2.8. Let E be a coherent sheaf

on P1 ×τ P1 such that i∗zE ∼= W ⊗Γ OP1
z
. Recall that ε denotes a fixed primitive character

Γ = µm ↪→ C∗.

Definition 4.3. (i) We say that the sheaf E is trivialized in a neighborhood of P1z if we are

given embeddings

(
W ⊗ ε−n

)⊗Γ O(−n, 0)
φ

E
ψ (

W ⊗ εn)⊗Γ O(n, 0), (4.11)
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such that the composite

ψ ◦ φ ∈ Hom
((
W ⊗ ε−n

)⊗Γ O(−n, 0),
(
W ⊗ εn)⊗Γ O(n, 0)

)
∼= HomΓ

(
W,
(
W ⊗ ε2n)⊗Γ Q2n,0) (4.12)

equals multiplication by P(x, z)2, where P(x, z) ∈ C[x, z] is a Γ-semi-invariant homoge-

neous polynomial of degree n such that P(1, 0) = 1.

(ii) We call two trivializations (φ,ψ) and (φ ′, ψ ′) of the sheaf E equivalent if there

exists a pair of Γ-semi-invariant homogeneous polynomials q̃(x, z) and q̃ ′(x, z) such that

q̃(1, 0) = q̃ ′(1, 0) = 1, and the following diagram commutes:

(
W ⊗ ε−n

)⊗Γ O(−n, 0)
φ

E
ψ

(
W ⊗ εn)⊗Γ O(n, 0)

q̃

(
W ⊗ ε−n ′′)⊗Γ O(−n ′′, 0)

q̃

q̃ ′

(
W ⊗ εn ′′)⊗Γ O(n ′′, 0)

(
W ⊗ ε−n ′)⊗Γ O(−n ′, 0)

φ ′

E
ψ ′ (

W ⊗ εn ′)⊗Γ O(n ′, 0).

q̃ ′

(4.13)

Remark 4.4. We can always replace a trivialization by an equivalent one with n ≡
0modm, thus getting rid of εn and ε−n factors in the definition and making the poly-

nomial P(x, z) Γ-invariant.

Definition 4.5. Let GrP
1×τP

1

(W) be the set of all equivalence classes of trivializations in

a neighborhood of P1z of coherent sheaves E on P1 ×τ P1 such that i∗zE ∼= W ⊗Γ OP1
z
.

Proof of Theorem 2.9 (bijection between GrD(W) and GrP
1×τP

1

(W)). For any Γ-invariant

polynomial p(x)=
∑d
k=0 akx

k, let GrP
1×τP

1

p (W)⊂GrP
1×τP

1

(W) denote the set of all sheaves

admitting a trivialization (φ,ψ) withψ◦φ = P(x, z)2, where P(x, z) is the homogenization

of p(x), that is, P(x, z) =
∑d
k=0 akx

kzd−k. Then we have

GrP
1×τP

1

(W) =
⋃
p(x)

GrP
1×τP

1

p (W). (4.14)

We will show that the functor j∗ induces a bijection between GrP
1×τP

1

p (W) ⊂ GrP
1×τP

1

(W)

and the subset GrDp (W) ⊂ GrD(W) formed by all D-submodules (or, equivalently, quo-

tient modules) of (1/p) · (W ⊗Γ D)/p · (W ⊗Γ D).
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Let QuotP
1×τP

1

p (W) ⊂ QuotP
1×τP

1

(W) be the subset formed by surjections W ⊗Γ
O � F, which send the image of the mapW ⊗Γ O(−2n, 0)

P(x,z)2

−−−−−→ W ⊗Γ O to zero in F. We

may identify the set GrP
1×τP

1

p (W) with QuotP
1×τP

1

p (W) via the assignment

{
W ⊗Γ O(−n, 0)

φ−−→ E
ψ−−→W ⊗Γ O(n, 0)

}

−→ {W ⊗Γ O −→ Coker

(
E(−n, 0)

ψ(−n,0)−−−−−−−→W ⊗Γ O
)}
.

(4.15)

Hence, Theorem 4.2 implies that the functor j∗ provides an identification of the

set QuotP
1×τP

1

p (W) with the subset QuotDp (W) ⊂ QuotD(W) formed by all surjections

W ⊗Γ D � M which send p2 · (W ⊗Γ D) to zero (in M). On the other hand, to any object

p · (W ⊗Γ D
) φ−−→ N

ψ−−→ 1

p
· (W ⊗Γ D

)
(4.16)

in GrDp (W), we associate the quotient

W ⊗Γ D Coker
(
p ·N pψ−−−→W ⊗Γ D

)
. (4.17)

This yields an identification of QuotDp (W) with GrDp (W). Therefore, we get a bijection

GrP
1×τP

1

p (W) ∼−→ GrDp (W).

Note that, for any polynomial p(x) dividing q(x), the map j∗ commutes with the

natural embeddings GrP
1×τP

1

p (W) ↪→ GrP
1×τP

1

q (W) and GrDp (W) ↪→ GrDq (W). The assertion

of Theorem 2.9 follows. �

Finally, we prove Theorem 2.11. Recall that the pull back functor i∗w takes any

sheaf trivialized in a neighborhood of P1z to a sheaf on P1w trivialized in a neighborhood

of the point P = P1z ∩ P1w, which is the same as a Γ-equivariant sheaf on the ordinary

projective line P1 trivialized in a Zariski neighborhood of the infinity. Thus, i∗w induces a

map GrP
1×τP

1

(W)→ Graff(W).

Proof of Theorem 2.11. The claim easily follows from the definitions of the maps involv-

ed. In more details, letN ⊂ p·(W⊗ΓD) be a fatD-submodule andM = p·(W⊗ΓD). Then it

follows that j!∗(N) = π(⊕Nk,l), whereNk,l = N ∩ (W ⊗Γ Dk,l) and j!∗ is the quasi-inverse

to j∗ defined in the proof of Theorem 4.2. Hence, i∗w(j!∗(N)) = π(⊕Nk,l/Nk,l−1) and the

restriction of this sheaf to P1w \ {∞} is isomorphic to lim−−→ kNk,l/Nk,l−1 = Symb(N). This

shows that diagram (2.14) is commutative. Further, the maps in the upper row of the

diagram are bijections by Theorems 2.7 and 2.9. Further, the maps DR and j∗ are GW-

equivariant, hence Diffτ and j!∗ are GW-equivariant as well. And finally, the map Symb

is GLCΓ (x)(W ⊗Γ CΓ(x))-equivariant, hence the maps i∗w and σ are GLCΓ (x)(W ⊗Γ CΓ(x))-

equivariant as well. �
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5 Monads and quiver varieties

The two lines P1z and P1w in P1×τP1 intersect at the point P, corresponding to the quotient

algebra

Q/(zQ+wQ) ∼=
(
C[x] ⊗ C[y]

)
#Γ. (5.1)

Moreover, the category qgr2(Q/(zQ +wQ)) is equivalent to the category of finite dimen-

sional Γ-modules. The point P is given on the line P1z by the equation w = 0 and on the

line P1w by the equation z = 0. Let izP : {P} ↪→ P1w and iwP : {P} ↪→ P1z denote the embeddings.

There is a canonical isomorphism of functors

(
izP
)∗ ◦ i∗w ∼=

(
iwP
)∗ ◦ i∗z : coh

(
P1 ×τ P1

) −→ coh(P) = Rep(Γ). (5.2)

LetW, V be a pair of Γ-modules as in Definition 2.12.

Definition 5.1. A coherent sheaf E on P1×τP1 is calledW-framed, provided it is equipped

with two isomorphisms i∗zE ∼= W ⊗Γ OP1
z

and i∗wE ∼= W ⊗Γ OP1
w
, which agree at the point P.

Let MP1×τP1(V,W) denote the set of isomorphism classes of W-framed torsion-

free sheaves E (for the definition of torsion-free see [2, Definition 1.1.4]) on P1 ×τ P1 such

thatH1(P1 ×τ P1, E(−1,−1)) ∼= V.

Theorem 5.2. The set MP1×τP1(V,W) is in a natural bijection with the quiver variety

Mτ
Γ (V,W). �

Sketch of the proof. The proof is essentially the same as that of [2, Section 4, Theorem

1.3.10]. So, we will skip most of the details and only mention the points that are different

from [2, Section 4].

The first difference is that, in the present situation, the monad representing a

framed sheaf has a form slightly different from the one used in [2]. Specifically, for any

point (B1, B2, I, J) of the quiver variety, our monad is now given by the following complex:

(V ⊗ ε) ⊗Γ O(0,−1)⊕
0 −→ V ⊗Γ O(−1,−1) a−−−→ (

V ⊗ ε−1
)⊗Γ O(−1, 0) b−−→ V ⊗Γ O −→ 0,⊕
W ⊗Γ O

(5.3)

a =
(
B1z− x, B2w− y, Jzw

)
, b =

(
−
(
B2w− y

)
, B1z− x, I

)
. (5.4)
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Second, whenever the functor i∗ (the restriction to the line at infinity in P2τ) is

used in [2], it should be replaced by a pair of functors i∗z, i
∗
w.

Third, [2, Lemma 4.2.12] should be replaced by the following isomorphisms:

H0
(
P1 ×τ P1, E(−1, 0)

)
= H0

(
P1 ×τ P1, E(0,−1)

)
= H0

(
P1 ×τ P1, E(−1,−1)

)
= 0,

H2
(
P1 ×τ P1, E

)
= H2

(
P1 ×τ P1, E(−1, 0)

)
= H2

(
P1 ×τ P1, E(0,−1)

)
= H2

(
P1 ×τ P1, E(−1,−1)

)
= 0,

H0
(
P1 ×τ P1, E(−1, 0)

)
= H0

(
P1 ×τ P1, E(0,−1)

)
= H0

(
P1 ×τ P1, E(−1,−1)

)
,

(5.5)

and furthermore, there is a canonical exact sequence

0 −→ H0
(
P1 ×τ P1, E

) −→W
fE−−−→ V −→ H1

(
P1 ×τ P1, E

) −→ 0. (5.6)

Fourth, the Beilinson spectral sequence takes the form (see Appendix B):

E
p,q
1 =
Extq

(
O(1, 1), E

)⊗Γ O(−1,−1) −→

(

Extq
(
O(1, 0), E

)⊗ ε)⊗Γ O(−1, 0)⊕(
Extq

(
O(0, 1), E

)⊗ ε−1
)
⊗Γ O(0,−1)



−→ Extq(O, E) ⊗Γ O


 .
(5.7)

We apply this spectral sequence to obtain a monadic description of an arbitrary

framed coherent sheaf E. Using (5.5), we see that, for any W-framed sheaf E such that

H1(P1 ×τ P1, E(−1,−1)) ∼= V, the spectral sequence takes the form

V ⊗Γ O(−1,−1)

d−2,1
2

−→ (V ⊗ ε) ⊗Γ O(−1, 0)
⊕(

V ⊗ ε−1
)⊗Γ O(0,−1) −→ H1(E) ⊗Γ O

H0(E) ⊗Γ O.

(5.8)
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Further, we show that we can replace H1(E) = Coker fE and H0(E) = Ker fE by V and W,

respectively, and lift the differential d−2,1
2 : E−2,1

2 → E0,02 to a morphism V⊗Γ O(−1,−1)→
W ⊗Γ O. Finally, replacing the spectral sequence with the total complex, we obtain the

desired monadic description (5.3) of the sheaf E. We leave for the reader to check that

the maps in (5.3) take the form (5.4) for an appropriately chosen quiver data (B1, B2, I, J).

�

Remark 5.3. There is an alternative way to prove Theorem 5.2. using the following tri-

graded algebra:

S := C〈ξ, η, ζ, x, z, y,w〉#Γ/I, (5.9)

where

I =

〈 [•, ζ] = [•, z] = [•, w] = [ξ, x] = [η, y] = 0,

[η, ξ] = τζ2, [y, x] = τzw, [η, x] = τζz, [y, ξ] = τζw,

ξz = xζ, ηw = yζ

〉
. (5.10)

Let X be the corresponding noncommutative variety (i.e., such that coh(X) = qgr3(S)).

Then we have a diagram

P2τ
p←−− X q−−→ P1 ×τ P1, (5.11)

where the morphism q is a noncommutative analogue of the blowup of the point P on

P1 ×τ P1, and the morphism p is a noncommutative analogue of the blowup of a pair of

points on the line at infinity. We can show that Fourier-Mukai type functors

q∗p∗ : coh
(
P2τ
) −→ coh

(
P1 ×τ P1

)
, p∗q∗ : coh

(
P1 ×τ P1

) −→ coh
(
P2τ
)

(5.12)

induce mutually inverse bijections between the corresponding sets of (isomorphism

classes of)W-framed torsion-free sheaves. Theorem 5.2 is now immediate from [2, The-

orem 1.3.10].

We now turn to the proof of Theorem 2.13. Let E be a W-framed torsion-free co-

herent sheaf on P1 ×τ P1 such thatH1(P1 ×τ P1, E(−1,−1)) ∼= V. Theorem 5.2 implies that

E can be represented as the cohomology sheaf of monad (5.3). We consider the following
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maps:

(V ⊗ ε) ⊗Γ O(0,−1)⊕
(
W ⊗ ε−n

)⊗Γ O(−n, 0) Φ−−−→ (
V ⊗ ε−1

)⊗Γ O(−1, 0) Ψ−−−→ (
W ⊗ εn)⊗Γ O(n, 0),⊕

W ⊗Γ O

Φ =
(
0,− ̂(B1z− x

)
I, P(x, z)

)
, Ψ =

(
− zwJ ̂(B1z− x

)
, 0, P(x, z)

)
,

(5.13)

where ̂(B1z− x) stands for the cofactor matrix (i.e., the matrix formed by the (n − 1) ×
(n−1) minors in the matrixB1z−x, taken with appropriate sign) and P(x, z) = det(B1z−x).

It is easy to see that Ψ · a = b ·Φ = 0. Thus,Φ and Ψ induce morphisms

(
W ⊗ ε−n

)⊗Γ O(−n, 0)
φ−−−→ E

ψ−−−→ (
W ⊗ εn)⊗Γ O(n, 0). (5.14)

Furthermore, it is easy to show that the composite ψ ◦ φ : (W ⊗ ε−n) ⊗Γ O(−n, 0) →
(W ⊗ εn) ⊗Γ O(n, 0) equals multiplication by P(x, z)2. Thus, (φ,ψ) is a trivialization of E

in a neighborhood of P1z. Finally, it is easy to see that the trivialization of i∗wE ∼= W⊗Γ OP1
w

takes the form

(
W ⊗ ε−n

)⊗Γ O(−n)
P(x,z)−−−−−−→W ⊗Γ O

P(x,z)−−−−−−→ (
W ⊗ εn)⊗Γ O(n). (5.15)

This trivialization is equivalent to the trivial one, thus the map i∗w : GrP
1×τP

1

(W) →
Graff(W) takes (E,φ,ψ) to the base point W0. Thus, we obtain an embedding

β :
⊔
V MP1×τP1(V,W)

(
i∗w
)−1(

W0

) ⊂ GrP
1×τP

1

(W). (5.16)

Theorem 2.13 is an immediate consequence of Theorem 5.2 and the following

result.

Theorem 5.4. The map β :
⊔
V MP1×τP1(V,W)→ (i∗w)−1(W0) is a bijection. �

Proof of Theorem 5.4. Let E be a coherent sheaf on P1 ×τ P1 with a trivialization (φ,ψ)

in a neighborhood of P1z. Then E has a canonical W-framing on P1z (given by restricting
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the trivialization). If, in addition, i∗w(E) = W0, then the sheaf E acquires a canonical W-

framing on P1w. Moreover, the framings agree at the point P, hence we obtain a map

α :
(
i∗w
)−1(

W0

) −→⊔
V

MP1×τP1(V,W). (5.17)

We now show that both α ◦ β and β ◦ α are identities. To prove that α ◦ β = Id,

note that theW-framings of the sheaf E on P1z and P1w induced by the trivialization (5.13)

coincide with the canonicalW-framings.

In order to prove β ◦ α = Id, we need to show that any trivialization of E which

gives the canonical W-framing of E on P1w is equivalent to the trivialization (5.13). In-

deed, let E be the cohomology of monad (5.3) and consider an arbitrary trivialization

(W⊗ε−n ′
)⊗ΓO(−n ′, 0)

φ ′
−−→ E

ψ ′
−−→ (W⊗εn ′

)⊗ΓO(n ′, 0) of E in a neighborhood of P1z. Apply-

ing diagram (5.3) to compute Hom((W ⊗ ε−n ′
) ⊗Γ O(−n ′, 0), E) and Hom(E,

(W ⊗ εn ′
) ⊗Γ O(n ′, 0)), we see that the morphisms φ ′ and ψ ′ can be lifted to morphisms

(V ⊗ ε) ⊗Γ O(0,−1)⊕
(
W ⊗ ε−n ′)⊗Γ O(−n ′, 0) Φ ′

−−−→ (
V ⊗ ε−1

)⊗Γ O(−1, 0) Ψ ′
−−−→ (

W ⊗ εn)⊗Γ O(n ′, 0)⊕
W ⊗Γ O

(5.18)

such that

b ·Φ ′ = Ψ ′ · a = 0. (5.19)

Moreover, the lift Φ ′ of φ is unique while the lift Ψ ′ of ψ ′ is unique up to a summand of

the form λ · b, where λ ∈ Hom(V ⊗Γ O, (W ⊗ εn ′
) ⊗Γ O(n ′, 0)). Let

Φ ′ =
(
Φ ′
1,Φ

′
2,Φ

′
3

)
, Ψ ′ =

(
Ψ ′
1, Ψ

′
2, Ψ

′
3

)
(5.20)

be the components ofΦ ′ and Ψ ′ with respect to the direct sum decomposition

(V ⊗ ε) ⊗Γ O(0,−1)
⊕(

V ⊗ ε−1
)⊗Γ O(−1, 0)

⊕
W ⊗Γ O. (5.21)

Since the trivialization (φ ′, ψ ′) of E restricts to the canonicalW-framing of EP1
w
, it follows

that

Φ ′
3 = Ψ ′

3 = P ′(x, z), (5.22)
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where P ′(x, z) is a homogeneous polynomial of certain degree n ′ such that P ′(1, 0) = 1.

Furthermore, the vanishing

Hom
((
W ⊗ ε−n ′)⊗Γ O(−n ′, 0),

(
V ⊗ ε−1

)⊗Γ O(0,−1)
)

= 0 (5.23)

implies thatΦ ′
1 = 0. On the other hand, using the freedom in the choice of λ, we can make

Ψ ′
2 = 0. Then, (5.19) yield

(
B1z− x

)
Φ ′
2 + IP ′(x, z) = 0, Ψ ′

1

(
B1z− x

)
+ P ′(x, z)zwJ = 0. (5.24)

Multiplying the first equation by ̂(B1z− x) on the left and the second by ̂(B1z− x) on the

right, we obtain

P(x, z)Φ ′
2 = −P ′(x, z) ̂(B1z− x

)
I, Ψ ′

1P(x, z) = −zwJ ̂(B1z− x
)
P ′(x, z), (5.25)

where P(x, z) = det(B1z − x). Thus, we see that the trivialization (φ ′, ψ ′) is equivalent to

trivialization (5.13) via the equivalence given by the polynomials P(x, z) and P ′(x, z). �

6 ProjectiveD-modules

In this section, we prove Theorem 2.4. Throughout, we will assume the parameter τ to be

generic. We begin with a description of projectiveDfrac-modules.

Proposition 6.1. Assume that τ is generic. Then

(i) any projective finitely generated Dfrac-module has the form M ∼= W ⊗Γ Dfrac,

for a finite dimensional Γ-moduleW;

(ii) two Dfrac-modules W ⊗Γ Dfrac and W ′ ⊗Γ Dfrac are isomorphic if and only if

dimW = dimW ′. �

Proof. Let e = (1/|Γ |)
∑
γ∈Γ γ ∈ CΓ denote the averaging idempotent. Consider the subal-

gebra eDfrace ⊂ Dfrac. It is clear that this algebra is isomorphic to the algebra of differen-

tial operators on C/Γ with rational coefficients. Set ξ = exm, and η = ex1−my. We have an

isomorphism

eDfrace ∼= C(ξ)〈η〉/〈[η, ξ] = |τ|
〉

(6.1)

(ξ can be considered as a coordinate on C/Γ and η as a vector field on C/Γ generating the

algebra of differential operators). We see that eDfrace is a skew polynomial ring over the

field C(ξ), hence it is Euclidean. Therefore, eDfrace is a principal ideal domain, hence any

projective eDfrace-module is free.
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We claim next that the algebrasDfrac and eDfrace are Morita equivalent. To prove

this, observe first that, since Γ-action on C \ {0} is free, the field C(x) is a Galois extension

of C(x)Γ , with Γ being the Galois group. It follows that the algebra CΓ(x) = C(x)#Γ is a

simple C(x)Γ -algebra. Hence, CΓ(x) ·e ·CΓ(x), a two-sided ideal in CΓ(x), must be equal to

CΓ(x). We see that there exist elements aj, bj ∈ CΓ(x), j = 1, . . . , l such that
∑
aj ·e ·bj = 1.

Therefore, since aj, bj ∈ CΓ(x) ⊂ Dfrac, we deduceDfrac ·e ·Dfrac = Dfrac. This implies, by a

standard argument, that the functorN 
→ N⊗
eDfrace

eDfrac provides a Morita equivalence

between the algebras eDfrace andDfrac. Our claim follows.

Using the Morita equivalence, we deduce that any projectiveDfrac-module is iso-

morphic to

(
e ·Dfrac · e

)⊕r ⊗e·Dfrac·e
(
e ·Dfrac

)
∼=
(
e ·Dfrac

)⊕r ∼=
(
triv⊕r)⊗Γ Dfrac, (6.2)

where triv = ε0 is the trivial 1-dimensional Γ-module. This proves the first part of the

proposition.

To prove the second part, letW ∼= ⊕Wi⊗εi be a decomposition ofW with respect

to the irreducible Γ-modules εi. Then,W ⊗Γ Dfrac goes under Morita equivalence to

(
W ⊗Γ Dfrac

)⊗Dfrac Dfrace ∼= W ⊗Γ Dfrace =
(⊕

Wi ⊗ εi
)
⊗Γ Dfrace

∼=
⊕

Wi ⊗ eiDfrace,

(6.3)

where ei ∈ CΓ is the projector onto εi. Now it is easy to see that eiDfrace is a free rank 1

eDfrace-module (with e · xi being a generator). Hence

⊕
i

Wi ⊗ eiDfrace ∼=
(
eDfrace

)⊕ dimW
. (6.4)

In particular, it follows thatW ⊗Γ Dfrac andW ′ ⊗Γ Dfrac are isomorphic Dfrac-modules if

and only if dimW = dimW ′. �

Recall that we have a natural isomorphism K(CΓ) ∼−→ K(D), W 
→ W ⊗Γ D. Let

[N] ∈ K(CΓ) denote the class of aD-moduleN under the inverse isomorphism, and write

dim : K(CΓ)→ Z for the dimension homomorphism. Proposition 6.1 can be reformulated

in the following way.

Corollary 6.2. There is a natural isomorphism K(Dfrac) = Z. Moreover, the morphism

K(D)→ K(Dfrac) induced by the localization functorN 
→ N⊗D Dfrac gets identified with

the dimension homomorphism dim : K(CΓ)→ Z. �

Lemma 6.3. If N is a projective finitely generated D-module such that [N] = W, then

N⊗D Dfrac
∼= W ⊗Γ Dfrac. �
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Proof. It is clear that N ⊗D Dfrac is a projective finitely generated Dfrac-module, hence

Proposition 6.1(i) yields N ⊗D Dfrac
∼= W ′ ⊗Γ Dfrac for some W ′. Moreover, Corollary 6.2

implies that dimW ′ = dimW. Finally, Proposition 6.1(ii) shows that N ⊗D Dfrac
∼=

W ⊗Γ Dfrac. �

Lemma 6.4. Let W be a Γ-module. Any projective finitely generated D-module N with

dim[N] = dimW can be embedded into W ⊗Γ Dfrac as a fat D-submodule. Furthermore,

the embedding is unique up to the action of the group GW . �

Proof. To prove the existence of embedding, we consider the natural map N → N ⊗D
Dfrac = N ⊗CΓ [x] CΓ(x). Since N is projective, it follows that N is torsion free (as a CΓ [x]-

module), hence the above map is an embedding. Further, by Lemma 6.3, it follows that

N ⊗D Dfrac
∼= W ⊗Γ Dfrac. Finally, taking an arbitrary set of generators (over D) of N ⊂

W⊗Γ Dfrac and denoting by p1(x) some Γ-invariant multiple of all their denominators, we

see that

N ⊂ 1

p1
· (W ⊗Γ D

) ⊂W ⊗Γ Dfrac. (6.5)

Similarly, considering the dual D-module, we can check that there exists a Γ-invariant

polynomial p2(x) such that

p2 ·
(
W ⊗Γ D

) ⊂ N ⊂W ⊗Γ Dfrac. (6.6)

Finally, taking p(x) = p1(x)p2(x), we see thatN is a fatD-submodule inW ⊗Γ Dfrac.

Now assume that we have two embeddings ψ1, ψ2 : N ↪→ W ⊗Γ Dfrac. Tensoring

with Dfrac, we obtain two isomorphisms ψ1, ψ2 : N ⊗D Dfrac
∼−→ W ⊗Γ Dfrac. Then g =

ψ2 ◦ψ−1
1 ∈ GLDfrac(W ⊗Γ Dfrac) = GW and it is clear that ψ2 = g ◦ψ1. �

Proof of Theorem 2.4. It follows from Lemma 6.4 that any projective D-module N such

that dim[N] = r can be embedded into W ⊗Γ Dfrac as a fat D-submodule. On the other

hand, for generic τ, the homological dimension of the algebra D equals 1 (see [7]), hence

any fat D-submodule N ⊂ W ⊗Γ Dfrac is projective. Moreover, it is clear that we have

N⊗DDfrac = W⊗Γ Dfrac, hence by Proposition 6.1 and Corollary 6.2, we deduce dim[N] =

dimW = r. Finally, by Lemma 6.4, two fatD-submodules inW⊗Γ Dfrac are isomorphic as

D-modules if and only if they are conjugate by the action of the groupGW . It follows that

the set of isomorphism classes of projective D-modules N with dim[N] = r is in a natu-

ral bijection with the coset space GW\ GrD(W). It remains to apply the isomorphisms of

diagram (2.10). �
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Appendices

A Formalism of polygraded algebras

Let A = ⊕p≥0Ap be a graded algebra over a field K. Let gr(A) denote the category of

graded finitely generated right A-modules. For any n ∈ Z and anyM ∈ gr(A), letM≥n =

⊕p≥nMp be the tail of M. An element x ∈ M is called torsion if x · A≥n = 0 for some n.

A module M is called torsion if every element of M is torsion. Let tor(A) denote the full

subcategory of gr(A) formed by all torsion A-modules. Then tor(A) is a Serre subcate-

gory, hence we can consider the quotient category qgr(A) = gr(A)/ tor(A). If A is com-

mutative and generated over A0 by A1, then by the Serre theorem, the category qgr(A)

is equivalent to the category coh(X) of coherent sheaves on X = Proj(A), the projective

spectrum of the algebra A.

In the series of papers [1, 15] (cf. the references therein), a formalism has been

developed, that allows to consider the category qgr(A) as a category of coherent sheaves

in the case when A is a noncommutative graded algebra. This means that the category

qgr(A) shares many of the general properties of categories of coherent sheaves, provided

that the algebraA satisfies some “reasonable” properties. In this case, we say that qgr(A)

is the category of coherent sheaves on a noncommutative algebraic variety X and denote

it by coh(X).

We extend the formalism of [1] to the polygraded case as follows. Let A =

⊕p∈NrAp be an Nr-graded algebra (we will denote vector indices by bold letters). Let

grr(A) denote the category of finitely generated Zr-graded A-modules. For any n ∈ Zr

and any M ∈ grr(A), let M≥n = ⊕p≥nMp be the tail of M, where p = (p1, . . . ,pr) ≥ n =

(n1, . . . ,nr) if and only if pi ≥ ni for all 1 ≤ i ≤ r. An element x ∈ M is called torsion

if x · A≥n = 0 for some n. A module M is called torsion if every element of M is torsion.

Let torr(A) denote the full subcategory of grr(A) formed by all torsion A-modules. Thus,

torr(A) is a Serre subcategory. We set qgrr(A) = grr(A)/ torr(A).

In the polygraded situation, we have to make the following modifications in the

definitions used in [1]. First, a Zr-graded K-module V = ⊕p∈ZrVp should be called left

bounded if V = V≥n for some n ∈ Zr (such n is called a left bound for V). Similarly, V

should be called right bounded if V≥n = 0 for some n ∈ Zr (such n is called a right bound

for V). Note, that a finitely generated module M over a finitely generated algebra A is

torsion if and only if it is both left and right bounded. Thus, torr(A) is the category of

bounded Zr-graded A-modules.

Most essential changes involve the definition of property χi(M) (cf. [1, Defini-

tion 3.2]). First, introduce the following notation: For each i = 1, . . . , r, write ei ∈ Zr for

the ith basis vector, and let I ⊂ {1, . . . , r} denote a nonempty subset of indices. For any
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M ∈ grr(A), put

MI
n =

( ⊕
p≥n, pi=ni for i∈I

Mp

)
= M≥n

/∑
i∈I
M≥n+ei

. (A.1)

Definition A.1. We say that property χi(M) holds for a Zr-graded A-module M provided

Extj(A{k}
0 ,M) a bounded K-module for any j ≤ i and any 1 ≤ k ≤ r.
We say that property χi holds for the graded algebra A provided property χi(M)

holds for every finitely generated Zr-graded A-moduleM.

We say that property χ holds for A provided property χi holds for every i.

In [1], a graded algebra A was said to be regular algebra of dimension d if the

following holds:

(0) A is connected (i.e., A0 = K);

(1) A has finite global dimension d;

(2) A has polynomial growth;

(3) A is Gorenstein, that is,

Extimod(A)(K, A) =


K[l], if i = d,

0, otherwise.
(A.2)

It was demonstrated in [1] that, for regular algebras A, the category qgr(A) has

good properties, in particular, we can compute cohomology of the sheaves O(i) = π(A(i)),

where π : gr(A) → qgr(A) is the projection functor and (i) stands for the degree shift by

i ∈ Z. Further, in [2], we explained that the conditions (0) and (3) above can be replaced,

respectively, by the following conditions:

(0 ′) A0 is a finite-dimensional semisimple K-algebra;

(3 ′) A is generalized Gorenstein, that is,

Extimod(A)(K, A) =


R[l], if i = d,

0, otherwise,
(A.3)

where R is a finite dimensional A0-bimodule isomorphic to A0 as right

A0-module.

In this paper, we will need a further generalization of the notion of regular alge-

bra to the setup of polygraded algebras. To this end, we have to replace condition (3 ′)

above by the following condition:
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(3 ′′) A is strongly Gorenstein with parameters d = (d1, . . . , dr), l = (l1, . . . , lr) such

that d =
∑r
i=1 di. This means that for any subset I ⊂ {1, . . . , r}, we have

Extimod(A)

(
AI0, A

)
=



(
RI ⊗A0

AI0
)(

lI
)
, if i = dI,

0, otherwise,
(A.4)

where

dI =
∑
k∈I

dk, lI =
∑
k∈I

lkek, RI =
⊗
k∈I

εk
(
tensor product over A0

)
,

(A.5)

where εk are A0-bimodules isomorphic to A0 as right A0-modules, and

such that εk ⊗A0
εl ∼= εl ⊗A0

εk as A0-bimodules.

Now, with all these modifications made, we can verify that most of the results of

[1] can be extended to Nr-graded algebras by the same arguments as in [1]. In particular,

we have an analogue of [1, Theorem 8.1].

Theorem A.2. Let A be an Nr-graded Noetherian regular algebra of dimension d over a

semisimple algebra A0. Let O(p) = π(A(p)) ∈ qgrr(A) = coh(X). Then

(1) property χ holds for A;

(2) H0(X,O(p)) = Ap andH>0(X,O(p)) = 0 for all p ≥ 0;
(3) the cohomological dimension of the category coh(X) = qgrr(A) equals d − r.

�

Remark A.3. As opposed to the single-graded case studied in [1], in the polygraded case,

it is impossible to determine the cohomology of the sheaves O(p) for nonpositive p with-

out some extra information about the structure of the algebra A (it is necessary to know

the AI0-module structure on AIn for all n ≥ 0 and I ⊂ {1, . . . , r}).

Definition A.4. We say that an Nr-graded algebraA is strongly generated by its first com-

ponent if for any 1 ≤ i ≤ r, both maps below are surjective for any p ≥ 0

Aei
⊗Ap −→ Ap+ei

, Ap ⊗Aei
−→ Ap+ei

. (A.6)

Remark A.5. It is easy to see that any N-graded algebra, which is generated by its first

component, is strongly generated. Thus, in the case r = 1, we obtain nothing new.

An element p = (p1, . . . , pr) ∈ Nr is called strictly positive if pi > 0 for all 1 ≤ r.
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Proposition A.6. If A is an Nr-graded Noetherian algebra strongly generated by its first

component and satisfying the χ-condition, then for any strictly positive p, the shift func-

tor s(M) = M(p) in the category qgrr(A) is ample in the sense of [1, condition (4.2.1)]. �

Proof. It follows, from an Nr-graded analogue of [1, Theorem 4.5], that the collection of

shift functors si(M) = M(ei), i = 1, . . . , r is ample. Now let E be an object of qgrr(A).

Then it follows, from the ampleness of the collection (si), that there exists a surjection

⊕pi=1O(−li)→ E for some li ≥ 0. Now for each li, we can choose ki ∈ N such that ki ·p ≥ li.

Then the strong regularity of the algebra A implies that the canonical map

Aki·p−li ⊗A0
O
(

− ki · p
) −→ O

(
− li

)
(A.7)

is surjective. Further, since Aki·p−li is a finitely generated A0-module, it follows that we

have a surjection ⊕pi=1O(−ki · p)⊕mi → E and part (a) of the ampleness property for the

functor s follows. Part (b) of the ampleness for the functor s follows trivially from the

ampleness of the collection si. �

Remark A.7. For any strictly positive p, we put ∆p(A) :=
⊕∞
k=0Ak·p. Thus, ∆p(A) is a

single-graded subalgebra of A. The following is immediate from Proposition A.6 and [1,

Theorem 4.5].

Corollary A.8. If A is an Nr-graded Noetherian algebra which is strongly generated by

its first component and such that condition χ holds, then for any strictly positive p, the

algebra ∆p(A) is Noetherian, satisfies condition χ. Furthermore, there is an equivalence

of categories

qgrr(A) ∼= qgr
(
∆p(A)

)
. (A.8)

�

Remark A.9. We would like to emphasize that, inspite of Corollary A.8, the above devel-

oped formalism of quotient categories for polygraded algebras does not reduce to that

for single-graded algebras. The point is that though algebras A and ∆p(A) give rise to

equivalent quotient categories, the algebra ∆p(A) may not be regular or Koszul, for in-

stance, even when A is.

B The geometry of P1 ×τ P1

The goal of this appendix is to study homological properties of the algebra Q, see (2.7)

and to establish Serre duality and Beilinson spectral sequence for P1 ×τ P1.
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Proposition B.1. The bigraded algebra Q is Noetherian and it is strongly generated by

its first component. Furthermore,Q is a regular algebra of dimension 4. �

To prove this proposition, we introduce some notation. Given a semisimple alge-

bra A0 and an A0-bimoduleM, we write TA0
(M) for the tensor algebra ofM over A0.

Definition B.2. Let A be the Nr-graded algebra generated by a bimodule ⊕ri=1Aei
over a

semisimple algebra A0. We say that A is quadratic if A = TA0
(⊕ri=1Aei

)/〈R〉, where 〈R〉
denotes the two-sided ideal generated by a graded vector subspace R = ⊕1≤i,j≤rRei+ej

,

called the space of “quadratic relations.”

Assume thatA is a quadratic Nr-graded algebra. LetA! denote its quadratic dual

algebra (with respect to the total grading). Then A! is also a quadratic Nr-graded alge-

bra. Recall that the algebra A is called Koszul if the following Koszul complex K•(A) is

exact:

· · · −→ ⊕1≤i, j≤r
(
A!
ei+ej

)∗ ⊗A0
A
(

− ei − ej
)

−→ ⊕1≤i≤r
(
A!
ei

)∗ ⊗A0
A
(

− ei
) −→ A −→ A0 −→ 0.

(B.1)

Definition B.3. We call the algebra A strongly Koszul if for any subset I ⊂ {1, . . . , r} the

following partial Koszul complex K•
I(A) is exact

· · · −→ ⊕i,j∈I
(
A!
ei+ej

)∗ ⊗A0
A
(

− ei − ej
)

−→ ⊕i∈I
(
A!
ei

)∗ ⊗A0
A
(

− ei
) −→ A −→ AI0 −→ 0.

(B.2)

It is clear from the definition of the quadratic dual algebra that (A!)I0 is dual toAĪ0,

where Ī = {1, . . . , r} \ I. Thus if A is strongly Koszul, then for any I ⊂ {1, . . . , r}, the algebra

AI0 is Koszul as well. Fix d = (d1, . . . , dr), and for any subset I, write dI =
∑
i∈I diei. Set

A!
p := (A!)p.

Definition B.4. We say that A! is strongly Frobenius of index d if the following holds

(i) A!
p = 0 unless 0 ≤ p ≤ d;

(ii) the component A!
dI

of A! is isomorphic to A0 as right A0-module, for any sub-

set I ⊂ {1, . . . , r};

(iii) the multiplication map A!
p ⊗A0

A!
dI−p → A!

dI
gives a nondegenerate pairing,

for any 0 ≤ p ≤ dI.
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Proposition B.5. The algebra Q is strongly Koszul, and Q! is a strongly Frobenius alge-

bra of index (2, 2). Moreover, the bigraded components ofQ! are

Q!
i,j =




CΓ, (i, j) = (0, 0),

C〈ξ, ζ〉 ⊗ CΓ, (i, j) = (1, 0),

C〈ξ∧ ζ〉 ⊗ CΓ, (i, j) = (2, 0),

C〈η,ω〉 ⊗ CΓ, (i, j) = (0, 1),

C〈ξ∧ η, ξ∧ω, ζ∧ η, ζ∧ω〉 ⊗ CΓ, (i, j) = (1, 1),

C〈ξ∧ ζ∧ η, ξ∧ ζ∧ω〉 ⊗ CΓ, (i, j) = (2, 1),

C〈η∧ω〉 ⊗ CΓ, (i, j) = (0, 2),

C〈ξ∧ η∧ω, ζ∧ η∧ω〉 ⊗ CΓ, (i, j) = (1, 2),

C〈ξ∧ ζ∧ η∧ω〉 ⊗ CΓ, (i, j) = (2, 2),

0, otherwise,

(B.3)

where ξ is a generator of the Γ-bimodule ε−1, η is a generator of the Γ-bimodule ε, and ζ

andω stand for generators of the trivial Γ-bimodule. �

Proof. Consider τ as a variable, and view the algebra Q as an algebra, depending on a

parameter τ. We will indicate the value of τ by a superscript. For example,Q0 stands for

the algebraQwith τ = 0.

First, it is easy to show that for any τ, the components of the dual algebra are

given by the above formulas. Further, note that for τ = 0, we have an isomorphism Q0 ∼=

C[x, z, y,w]#Γ . In this case, it is quite easy to show thatQ0 is strongly Koszul. Finally, we

note that we may view the family of partial Koszul complexes K•
I(Q

τ) of the algebrasQτ

as a family of varying (with τ) differentials on the partial Koszul complex K•
I(Q

0). Since

the complex is exact for τ = 0, the same holds for all values of τ close enough to zero.

However, the algebras Qτ and Qα·τ are isomorphic for any α ∈ C∗. Thus, Qτ is strongly

Koszul for any τ.

Similarly, to show that (Qτ)! is strongly Frobenius for any τ, we note that this

holds for τ = 0. Further, we consider the family of pairings (Qτ)!
p ⊗Γ (Qτ)!

dI−p → (Qτ)!
dI

as a family of varying (with τ) pairings (Q0)!
p ⊗Γ (Q0)!

dI−p → (Q0)!
dI

. Since the pairings

are nondegenerate for τ = 0, the same is true for all values of τ close enough to zero.

However, the algebras (Qτ)! and (Qα·τ)! are isomorphic for any α ∈ C∗. Thus, (Qτ)! is

strongly Frobenius for any τ. �
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Proposition B.6. If an Nr-graded algebra A is strongly Koszul and the dual algebra A! is

strongly Frobenius of index (d1, . . . , dr), then A is strongly Gorenstein with parameters

d = (d1, . . . , dr) and l = (d1, . . . , dr). �

Proof. If A is strongly Koszul, then the partial Koszul complex K•
I(A) can be considered

as a projective resolution of AI0. It follows that Ext•mod(A)(A
I
0, A) coincides with the coho-

mology of complex

0 −→ A −→ ⊕i∈IA!
ei

⊗A0
A
(

− ei
) −→ · · · −→ ⊕i∈IA!

dI−ei
⊗A0

A
(
dI − ei

)
−→ A!

dI
⊗A0

A
(
dI
) −→ 0.

(B.4)

On the other hand, the strong Frobenius property of the algebra A! shows that A!
p

∼=

A!
dI
⊗A0

(A!
dI−p)∗ asA0-bimodule. Hence, the above complex is isomorphic to the complex

A!
dI

⊗A0
K•
I(A)(dI) truncated at the rightmost term. Therefore, it has a single nonzero co-

homology group in degree dI, which is isomorphic to A!
dI

⊗A0
AI0(dI). It follows that A

satisfies the strong Gorenstein property with parameters (d,d) and with RI = A!
dI

. �

Proof of Proposition B.1. It is clear that Q is strongly generated by its first component.

So, it remains to prove regularity and the Noetherian property.

First, note that Qτ(0,0) = CΓ is a semisimple algebra. Thus (0 ′) holds. Second, we

have to show thatQτ is Noetherian. This follows from the fact thatQτ can be represented

as a consecutive Ore extension, starting with the base field C. Further, it is easy to show

that dimCQ
τ
i,j = (i+ 1)(j+ 1)|Γ |. In particular,Qτ has polynomial growth. Thus (2) holds.

The strong Gorenstein property (3 ′′) for the algebraQτ follows immediately from

Propositions B.5 and B.6. The Gorenstein parameters are given by d = (2, 2) and l = (2, 2).

Finally, it follows from [10] that the global dimension of Qτ equals the length

of the minimal free resolution of Qτ(0,0). But the Koszul complex K•(Qτ) provides such a

resolution of length 4, hence the global dimension of Qτ is bounded by 4 from above. On

the other hand, since Qτ is Gorenstein with parameters d = (2, 2), l = (2, 2), it follows

that Ext4(Qτ0,0,Q
τ) �= 0, hence the global dimension equals 4. �

Thus, the cohomological dimension of the category coh(P1 ×τ P1) = qgr2(Qτ)

equals 2, and it is clear that we have

Hp
(
P1 ×τ P1,O(i, j)

)
=


Qi,j, p = 0,

0, p > 0,
(B.5)

for all i, j ≥ 0. More generally, we prove the following result.
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Lemma B.7. The cohomology groups of the sheaves O(i, j) are given by

Hp
(
P1 ×τ P1,O(i, j)

)
=




Qi,j, if p = 0, i, j ≥ 0,
ε−1 ⊗Q∗

−2−i,0 ⊗Γ Q0,j, if p = 1, i ≤ −2, j ≥ 0,
ε⊗Q∗

0,−2−j ⊗Γ Qi,0, if p = 1, i ≥ 0, j ≤ −2,

Q∗
−2−i,−2−j, if p = 2, i, j ≤ −2,

0, otherwise.

(B.6)

�

Sketch of proof. In order to compute the global cohomology of O(i, j) for not necessarily

positive values of (i, j), we use partial Koszul complexes. In more detail, the projections

of the partial Koszul complexes to the category coh(P1 ×τ P1) yield exact sequences

0 −→ ε⊗ O(−2, 0) −→ Q1,0 ⊗Γ O(−1, 0) −→ O −→ 0,

0 −→ ε−1 ⊗ O(0,−2) −→ Q0,1 ⊗Γ O(0,−1) −→ O −→ 0,
(B.7)

(we used here the fact thatQI0 ∈ tor(Q) for any nonempty I ⊂ {1, 2}, and thatQ!
0,1

∼= Q∗
0,1,

Q!
1,0

∼= Q∗
1,0,Q

!
0,2

∼= ε−1,Q!
2,0

∼= ε).

To complete the proof of the lemma, we apply descending induction in (i, j) using

the above sequences twisted by (i + 2, j) and (i, j + 2), respectively, and the fact that the

multiplication mapQi,0 ⊗Γ Q0,j → Qi,j is an isomorphism of Γ-bimodules. �

Serre duality for P1 ×τ P1. A natural approach to Serre duality theorems for noncommu-

tative schemes corresponding to regular noncommutative algebras would be via the con-

cept of balanced dualizing complex (see [14, 15]). Generalizing this concept to the case

of Nr-graded algebras does not seem to be straightforward, however. The reason is that,

while the notion of dualizing complex easily extends to the polygraded case, it is rather

difficult to find the relevant meaning of “balanced” property in this case. The problem is

similar to that of computing the cohomology of sheaves O(p) for nonpositive values of p,

see Remark A.3.

In the special case of P1 ×τ P1, these problems can be circumvented as follows:

We consider the algebra A = ∆(1,1)(Q). It follows from Proposition B.1 and Corollary A.8

that this algebra is Noetherian and satisfies condition χ. Moreover, by Corollary A.8,

Theorem A.2, and Proposition B.1, the cohomological degree of the category qgr2(A) =

coh(P1 ×τ P1) equals 2. Hence, we can use [15, Theorem 2.3] which implies that the cate-

gory coh(P1 ×τ P1) enjoys the Serre duality with the dualizing sheaf

ω0 = π
(
⊕∞k=0 H

2
(
P1 ×τ P1,O(−k,−k)

)∗)
. (B.8)
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But Lemma B.7 yields

π

( ∞⊕
k=0

H2
(
P1 ×τ P1,O(−k,−k)

)∗) ∼= π

( ∞⊕
k=0

Qk−2,k−2

)
∼= O(−2,−2). (B.9)

Thus, the dualizing sheaf on P1 ×τ P1 is isomorphic to O(−2,−2).

Beilinson spectral sequence. A noncommutative analogue of Beilinson spectral se-

quence has been introduced in [9] for a certain class of graded Koszul algebras, using

a double Koszul bicomplex. Below, we explain how to adapt the approach of [9] to the

case of Nr-graded Koszul algebras. We will freely use the notation and definitions of [9],

in particular, the notion of Yang-Baxter operator.

An exact functor from a tensor category T to the tensor category of vector spaces

will be called a noncommutative fiber functor if this functor is compatible with the ten-

sor product structures and associativity constraint, but is not necessarily compatible

with the commutativity constraint. Given a Yang-Baxter operator on a finite-dimensional

vector space, we can construct as has been explained in [11] (see also [9, Section 8]), a

tensor category T equipped with a noncommutative fiber functor. Then the category of

(either graded, or Nr-graded, or . . . ) commutative algebras in the category T gives a class

of (graded, Nr-graded, . . . ) noncommutative algebras in the category of vector spaces.

The class of noncommutative algebras, thus obtained, shares a lot of properties of the

category of commutative algebras. For example, for any two algebras in the class, their

tensor product admits a canonical algebra structure.

Remark B.8. Instead of Yang-Baxter operator in a vector space we may start with an A0-

invariant Yang-Baxter operator in a finitely generated A0-bimodule, for any semisimple

finite dimensional algebraA0. Then we obtain anA0-linear tensor category T with a func-

tor to the category ofA0-bimodules. The category of commutativeA0-algebras in T gives

a class of noncommutative A0-algebras.

Example B.9. Consider a free-right Γ-module V of rank 4 with generators x, y, z, and w

and endow it with a Γ-bimodule structure as in (2.8). Then the Γ-linear operator V⊗Γ V →
V ⊗Γ V defined on generators as

x⊗ y 
−→ y⊗ x−
τ

2
z⊗w−

τ

2
w⊗ z,

y⊗ x 
−→ x⊗ y+
τ

2
z⊗w+

τ

2
w⊗ z,

u⊗ v 
−→ v⊗ u otherwise

(B.10)



1194 Vladimir Baranovsky et al.

is a Yang-Baxter operator. It is easy to see that the algebra Q comes from a bigraded

commutative algebra in the tensor category corresponding to this Yang-Baxter operator.

LetA be an Nr-graded algebra obtained in such a way. ThenA⊗A0
A is an Nr⊕Nr-

graded algebra and the maps p∗1(a) = a ⊗ 1 and p∗2(a) = 1 ⊗ a are homomorphisms of

algebras A → A ⊗A0
A. Let X denote the noncommutative variety, corresponding to the

algebraA and let X×X denote the noncommutative variety, corresponding to the algebra

A⊗A0
A. Thus qgrr(A) = coh(X) and qgr2r(A⊗A0

A) = coh(X× X).

Now, ifM is a right Nr-gradedA-module, we define p∗1M = M⊗A (A⊗A0
A). Then

p∗1M is a right (Nr⊕Nr)-gradedA⊗A0
A-module. It is clear that p∗1M(p,q) = Mp ⊗A0

Aq,

hence for anyM ∈ torr(A), we have p∗1M ∈ tor2r(A⊗A0
A). Thus p∗1 can be considered as

a functor qgrr(A)→ qgr2r(A⊗A0
A), that is, as a functor coh(X)→ coh(X× X).

Similarly, ifM = ⊕p,qMp,q is a right (Nr⊕Nr)-graded (A⊗A0
A)-module, then we

define ((p2)∗M)q := Γ(X, π(⊕pMp,q)) where

Γ
(
X, π(•)) = Homqgrr(A)

(
π(A), π(•)), (B.11)

and the A-module structure of ⊕pMp,q is obtained via the homomorphism p∗1. It is clear

that (p2)∗M = ⊕q((p2)∗M)q is an Nr-graded A-module. Furthermore, if the module M ∈
tor2r(A ⊗A0

A), then it is clear that (p2)∗M ∈ torr(A). Thus, (p2)∗ can be considered as a

functor qgr2r(A⊗A0
A)→ qgrr(A), that is, a functor coh(X× X)→ coh(X).

Now, ifN is an (Nr ⊕ Nr)-graded (A⊗A0
A)-bimodule, then the assignmentM 
→

(p2)∗(p∗1M⊗A⊗A0
AN) gives a functorΦN : qgrr(A)→ qgrr(A), that is, a functor coh(X)→

coh(X).

Lemma B.10. (i) Let (∆A)p,q = Ap+q and ∆A = ⊕p,q≥0(∆A)p,q. Then there is a natural

isomorphism of functorsΦ∆A
∼= Id.

(ii) IfN1 andN2 are A-bimodules andN1 ⊗A0
N2 has a canonical structure of an

(A⊗A0
A)-bimodule, then

ΦN1⊗A0
N2

(M) = Γ
(
X, π

(
M⊗A N1

))⊗A0
N2. (B.12)

�

Proof. (i) LetM ′ = Φ∆A
(M). Note that ∆A, considered as an A-module, is isomorphic to

⊕q∈NrA(q)≥0. HenceM ′
q = Γ(X, π(M⊗A A(q)≥0)). On the other hand, it is clear that

π
(
M⊗A A(q)≥0

)
∼= π
(
M⊗A A(q)

)
∼= π
(
M(q)

)
∼= π(M)(q). (B.13)

This means that M ′ = ⊕qΓ(X, π(M)(q)), hence π(M ′) ∼= π(M). Furthermore, it is clear

that the isomorphism constructed above gives an isomorphism of functorsΦ∆A
→ Id.
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(ii) LetM ′ = ΦN1⊗A0
N2

(M). Then

M ′
q = Γ

(
X, π

(
M⊗A N1 ⊗A0

(
N2
)
q

))
= Γ
(
X, π

(
M⊗A N1

))⊗A0

(
N2
)
q
, (B.14)

henceM ′ = Γ(X, π(M⊗A N1)) ⊗A0
N2. �

Remark B.11. It is clear that∆A can be endowed with an algebra structure. Furthermore,

it is easy to show that qgr2r(∆A) ∼= qgrr(A). Finally, the multiplication in A gives an

epimorphism A ⊗A0
A → ∆A. This way, we may view ∆A as a diagonal embedding ∆X :

X ↪→ X× X.

Once the diagonal X ↪→ X × X has been defined, we could apply standard tech-

niques provided that we find a resolution of diagonal. If A is Koszul, we may obtain a

resolution of diagonal as follows. Consider the double Koszul bicomplex of A,

· · · dR ⊕i,jA⊗(A!
ei+ej

)∗⊗A(−ei−ej) dR

dL

⊕iA⊗(A!
ei

)∗⊗A(−ei) dR

dL

A⊗A

· · · dR ⊕i,jA
(
ei
)⊗ (A!

ej

)∗ ⊗A(− ei − ej
) dR

dL

⊕iA
(
ei
)⊗A(− ei

)

· · · dR ⊕i,jA
(
ei + ej

)⊗A(− ei − ej
)
,

(B.15)

where both dR and dL are induced by the differential in the Koszul complex of A. Write

Kp(A) = Ker

(
A(−p) ⊗ (A!

p

)∗ −→ ⊕
{i|ei≤p}

A
(
ei − p

)⊗ (A!
p−ei

)∗)
(B.16)

for the cohomology of the truncated Koszul complex. Using the Koszul property of the al-

gebra A and mimicking the proof of [9, Proposition 4.7], we deduce the following propo-

sition.

Proposition B.12. The following complex is exact

· · · −→ ⊕i,jKei+ej
(
ei + ej

)⊗A(− ei − ej
) −→ ⊕iKei

(
ei
)⊗A(− ei

)
−→ A⊗A −→ ∆A −→ 0,

(B.17)

where the map A⊗A→ ∆A is given by the multiplication in A. �

Let Qp = π(Kp(A))∗. Combining Proposition B.12 with Lemma B.10, we obtain the

Beilinson spectral sequence.
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Corollary B.13. Assume that A is Koszul and A! is Frobenius. Then for any F ∈ X, there

exists a spectral sequence with the first term

E
p,q
1 =

⊕
{p||p|=p}

Extq
(
Qp, F

)⊗A0
O(−p) =⇒ Ei∞ =


F, i = 0,

0, otherwise.
(B.18)

�

In the special case of the algebraQ, the only nonvanishing components of Qp are

Q0 = O, Qe1 = ε−1 ⊗ O(1, 0), Qe2 = ε1 ⊗ O(0, 1), Qe1+e2 = O(1, 1).

(B.19)

Thus, Beilinson spectral sequence takes the form of (5.7).
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