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Conjugacy Classes in Loop Groups and

G-Bundles on Elliptic Curves

Vladimir Baranovsky and Victor Ginzburg

1 Introduction

Let C[[z]] be the ring of formal power series and C((z)) the field of formal Laurent power

series, the field of fractions of C[[z]]. Given a complex algebraic group G, we will write

G((z)) for the group of C((z))-rational points of G, thought of as a formal “loop group,” and

a(z) for an element of G((z)). Let q be a fixed nonzero complex number. Define a “twisted”

conjugation action of G((z)) on itself by the formula

g(z): a(z) 7→ ga = g(q · z) · a(z) · g(z)−1. (1.1)

We are concerned with the problem of classifying the orbits of the twisted conjugation

action. If q = 1, twisted conjugation becomes the ordinary conjugation, and the problem

reduces to the classification of conjugacy classes in G((z)).

In this paper we will be interested in the case |q| < 1. Let G[[z]] ⊂ G((z)) be the

subgroup of C[[z]]-points of G. A twisted conjugacy class in G((z)) is called integral if it

contains an element of G[[z]].

Introduce the elliptic curve E = C∗/qZ. Our main result is the following.

Theorem 1.2. Let G be a complex connected semisimple algebraic group. Then there is

a natural bijection between the set of integral twisted conjugacy classes in G((z)) and the

set of isomorphism classes of semistable holomorphic principal G-bundles on E.

The main reason we are interested in this result is that twisted conjugacy classes

in G((z)) may be interpreted as ordinary conjugacy classes in a larger group. Specifically,
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the group C∗ acts on C((z)) by field automorphisms rescaling the variable z, i.e., t ∈ C∗

acts by a(z) 7→ a(t · z). This gives a C∗-action on the group G((z)) called “rotation of the

loop.” Write C∗ nG((z)) for the corresponding semidirect product. Then, for (q, a) , (1, g) ∈
C∗nG((z)) , we have (1, g) · (q, a) · (1, g)−1 = (q, ga) . Thus, twisted conjugacy classes in G((z))

are essentially the same as ordinary conjugacy classes in a Kac-Moody group (= standard

central extension of C∗ nG((z))).

We arrived at Theorem 1.2 while trying to find an algebraic version of the follow-

ing unpublished analytic result due to Looijenga (cf. [EFK]). Let G be a connected complex

Lie group, let G(C∗)hol be the group of all holomorphic maps a: C∗ 7→ G (possibly with

an essential singularity at z = 0), and let q be a fixed nonzero complex number such that

|q| < 1. Then Looijenga showed the following proposition.

Proposition 1.3. There is a natural bijection between the set of all twisted congugacy

classes in G(C∗)hol and the set of isomorphism classes of arbitrary holomorphic G-bundles

on E.

Proof. Observe that the pull-back via the projection π: C∗ → C∗/qZ = E establishes an

equivalence between the category of G-bundles on E and the category of qZ-equivariant

holomorphic G-bundles on C∗. We associate to a ∈ G(C∗)hol the trivial holomorphic G-

bundle C∗ × G → C∗ on C∗ with qZ-equivariant structure given by the action q: (z, g) 7→
(q · z , a(z) · g) . The corresponding G-bundle on E will be referred to as the G-bundle with

multiplier a. It is easy to see that two G-bundles on E associated to two different multi-

pliers are isomorphic if and only if the multipliers are twisted conjugate. Conversely, it

is known that any holomorphic G-bundle on C∗ is trivial. The action of the element q on

such a trivial bundle has to be of the form q: (z, g) 7→ (q · z, a(z) · g) , where a: C∗ → G is a

holomorphic map. (Changing trivialization has the effect of replacing a by a twisted con-

jugate map.) Hence, every qZ-equivariant holomorphic G-bundle on C∗ can be obtained

via the above construction.

Although motivation for Theorem 1.2 came from loop groups, the result itself is

most adequately understood in the framework of q-difference equations. To explain this,

assume, for simplicity, that G = GLn. Given q ∈ C∗ and a(z) ∈ GLn((z)), we consider a

difference equation

x(q · z) = a(z) · x(z), (1.4)

where x(z) ∈ Cn((z)) is the unknown Cn-valued formal power series. It is clear that if x(z) is

a solution to (1.4) and g(z) ∈ GLn((z)), then x̃(z) := g(z)x(z) ∈ Cn((z)) is a solution to a similar

equation with a(z) being replaced by ã(z) = g(qz) · a(z) · g(z)−1 , a twisted conjugate loop.
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Therefore classification of equations (1.4) modulo transformations x(z) 7→ x̃(z) reduces to

the classification of the twisted cojugacy classes in GLn((z)).

Equation (1.4) should be regarded as a q-analogue of the first-order differential

equation

z
dx

dz
= a(z) · x(z), (1.5)

and twisted conjugation (1.1) should be regarded as a q-analogue of the gauge transfor-

mation: a(z) 7→ g(z) · a(z) · g(z)−1 + z(dg/dz)g(z)−1. It is well known that the classification

of equivalence classes of equations like (1.5) depends in an essential way on the type of

functions a and g one is considering. If one puts oneself into analytic framework, then a

and g are taken to be elements of gln(C∗)hol and GLn(C∗)hol, respectively. It is well known

and easy to prove that in this case the differential equation is completely determined

(up to equivalence) by the monodromy of its fundamental solution. Thus, there is a nat-

ural bijection between the set of equivalence classes of differential equations of type

(1.5) and the set of conjugacy classes in G. This is a differential equation analogue of

Proposition 1.3.

The situation changes drastically if gln(C∗)hol and GLn(C∗)hol are replaced by for-

mal loops gln((z)) and GLn((z)), respectively. The classical theory says that for the equation

to be determined by its monodromy, it should have a regular singularity at z = 0. This is

a differential analogue of the “integrality” condition in Theorem 1.2. Thus, the G-bundle

in Theorem 1.2 should be thought of as a q-analogue of the monodromy of a differential

equation.

Classification of q-difference equations (1.4) is equivalent to the classification of

Dq-modules, where by a Dq-module we mean a finite-rankC((z))-module M equipped with

an invertible C-linear operator q: M → M such that

q(f(z) · m) = f(qz) · (qm), ∀f ∈ C((z)), m ∈ M.

A Dq-module is a module over a smash product of the group algebra of the group qZ with

C((z)). A Dq-module M is said to be integral if there exists a free C[[z]]-submodule L ⊂ M

of maximal rank such that q(L) ⊂ L and q−1(L) ⊂ L. Integral Dq-modules form an abelian

category, Mq. It is easy to verify that tensor product overC((z)) makes Mq into a tensor cat-

egory. On the other hand, it is known that degree-zero semistable holomorphic vector bun-

dles on E form an abelian category, Vectss,◦(E), with Hom’s given by arbitrary vector bundle

morphisms. Tensor product of vector bundles makes this category into a tensor category.

The following result is a natural strengthening of Theorem 1.2 in the G = GL = case.

Theorem 1.6. The tensor category Mq is equivalent to Vectss,◦(E).
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2 From loop groups to G-bundles on E

The ring homomorphism C[[z]] → C , f 7→ f(0) induces, for any algebraic group H, a natu-

ral group homomorphism H[[z]] → H. Let H1[[z]] denote the kernel of this homomorphism,

a “congruence subgroup.” We use the notation H[z] and H[z, z−1] for the groups of C[z]-

and C[z, z−1]-points of H, respectively. Thus, H[z] ⊂ H[[z]] and H[z, z−1] ⊂ H((z)) . Elements

of H[z, z−1] will be referred to as polynomial loops.

From now on we fix a complex connected semisimple algebraic group G with Lie

algebra g, and q ∈ C∗ such that |q| < 1.

Our proof of Theorem 1.2 consists of several steps. We first assign to an integral

element a ∈ G((z)) a G-bundle on E. The naive idea of using a as a multiplier (cf. proof of

Proposition 1.3) cannot be applied here directly, for a is only a formal loop, and hence,

does not give a holomorphic map, in general. To overcome this difficulty, we prove the

following result.

Proposition 2.1. For any a ∈ G[[z]], there exists a Borel subgroup B ⊂ G with unipotent

radical U, such that a is twisted conjugate to a polynomial loop of the form a0 · a1(z)

where a0 ∈ B and a1 ∈ U[z].

To prove the proposition we need some preparations. Recall that for a semisimple

element s ∈ G, the adjoint action of s on g has a weight space decomposition g = ⊕
λ gλ

where gλ is the eigenspace corresponding to an eigenvalue λ ∈ C∗.

Let a(z) = a0 · a1(z) ∈ G[[z]], where a0 ∈ G is a constant loop and a1(z) ∈ G1[[z]].

Write ass
0 ∈ G for the semisimple part in the Jordan decomposition of a0, and let g =⊕

λ gλ be the weight space decomposition with respect to the adjoint action of ass
0 .

Definition. The element a(z) = a0 ·a1(z) is called aligned if it can be written as a product

a0 exp(x1z) exp(x2z
2) · · · ·, where xi ∈ gqi .

Note that the product above is finite and gives an element of G[z]. Hence any

aligned element is a polynomial loop.

Lemma 2.2. For any a ∈ G[[z]], one can find g ∈ G1[[z]] such that ga is aligned.

Proof. Following [BV, pp. 31, 68], we will construct a sequence of elements xi ∈ g and

yi ∈ gqi as follows. Note that the exponential map gives a bijection z · g[[z]]
∼−→ G1[[z]].

Therefore we can write a in the form a = a0 exp(a1z) exp(a′z2) , where a1 ∈ g and a′ ∈ g[[z]].

Since the operator (q · Ad
a−1

0
−Id) is invertible on

⊕
λ 6=q gλ, there are uniquely de-

termined elements x1 ∈ ⊕λ 6=q gλ and y1 ∈ gq such that

(q · Ad
a−1

0
−Id)(x1) + a1 = y1.
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We next find y2. To that end, set g1 = exp(x1z). Then the above equation im-

plies g1a = a0 exp(y1z) exp(a2z
2) exp(a′z3) , where a2 ∈ g and a′ ∈ g[[z]]. Hence there exist

uniquely determined elements x2 ∈ ⊕λ 6=q2 gλ and y2 ∈ gq2 such that

(q2 · Ad
a−1

0
− Id)(x2) + a2 = y2.

Set g2 = exp(x2z
2) exp(x1z). Then the above equation ensures that

g2a = a0 exp(y1z) exp(y2z
2) exp(a3z

3) exp(a′′z4) ,

where a3 ∈ g and a′′ ∈ g[[z]]. Iterating this process, we construct a sequence {xi ∈ g , i =
1, 2, . . .}, such that, setting gk := exp(xkz

k) exp(xk−1z
k−1) · · · exp(x1z), we get

gka = a0 · exp(y1z) exp(y2z
2) · · · exp(ykz

k) exp(yzk+1), (2.3)

where yi ∈ gqi and y ∈ g[[z]]. Then the product g := lim gk = . . . · exp(xkz
k) · exp(xk−1z

k−1) ·
. . . · exp(x1z) stabilizes since gqk = 0 for all k À 0. Equation (2.3) shows that ga is aligned.

Proof of Proposition 2.1. Choose a maximal torus T ⊂ G containing ass
0 . Let R ⊂

Hom(T,C∗) be the set of roots of (G, T ). The subset consisting of the roots γ ∈ R such

that |γ(ass
0 )| ≤ 1 defines a parabolic P ⊂ G. Then, for any i > 0, the subspace gqi is

contained in the nilradical of LieP, for |q| < 1.

Further, we may choose a Borel subgroup B ⊂ P that contains the unipotent part

of a0. Let U denote the unipotent radical of B. Then the element exp(y1z) exp(y2z
2) · · ·

exp(ykz
k) constructed in the proof of Lemma 2.2 belongs to U[z], and the proposition

follows.

Lemma 2.5. Let B and B̃ be two Borel subgroups with unipotent radicals U, Ũ. Let

a = a0 · a1, (a0 ∈ B, a1 ∈ U1[z]) , and ã = ã0 · ã1, (ã0 ∈ B, ã1 ∈ U1[z]) . Then any element

g ∈ G((z)) such that ga = ã is a polynomial loop, i.e., g ∈ G[z, z−1].

Proof. Multiplying g by an element of G, we may assume that B = B̃. Further, we find

a faithful rational representation ρ: G → SLn(C) such that B is the inverse image of the

subgroup of upper triangular matrices in SLn(C). Thus, applying ρ, we are reduced to

proving the lemma in the case G = SLn(C) and B = upper triangular matrices. Thus,

from now on, a and ã are assumed to be upper triangular polynomial matrices. Set

M = max(deg a, deg ã) , the maximum of the degrees of the corresponding matrix-valued

polynomials. Note that, by assumption, the diagonal entries aii and ãii of the matrices a

and ã are independent of z.
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Let ga = ã. We can write g(z) = ∑k≥k0
g(k)zk , where g(k) are complex (n × n)-

matrices. Computing the bottom-left corner matrix entry of each side of the equation

g(qz)a(z) = ã(z)g(z) yields

g(k)n,1 · (qka1,1 − ãn,n) = 0 .

It follows, since the diagonal entries of a, ã are nonzero, that there exists at most one

k, say k = K1, such that g(k)n,1 6= 0. Using this, we now compute the two matrix entries

standing on (n − 1) × 1 and n × 2 places of each side of the equation g(qz)a(z) = ã(z)g(z).

We find that, for any k > K1 + M,

g(k)n−1,1 · (qka1,1 − ãn−1,n−1) = 0, g(k)n,2 · (qka2,2 − ãn,n) = 0.

We deduce, as before, that there exists K2 À 0 such that for all k ≥ K2, we have

g(k)n−1,1 = g(k)n,2 = 0.

Continuing the process of computing the entries of each side of the equation

g(qz)a(z) = ã(z)g(z) along the diagonals (moving from bottom-left corner to top-right cor-

ner) we prove by descending induction on (i − j) that g(k)i, j = 0, for all k À 0.

We define a map from integral twisted conjugacy classes in G((z)) to G-bundles on

the elliptic curve E = C∗/qZ as follows. Given an element a ∈ G((z)) in an integral twisted

conjugacy class, we find (Proposition 2.1) an aligned element f ∈ G((z)) which is twisted

conjugate to a. The loop f being polynomial, it gives a well-defined holomorphic map

f: C∗ → G. Hence, we can associate to f the holomorphic G-bundle on E with multiplier

f; see the proof of Proposition 1.3. If f′ is another aligned element which is twisted con-

jugate to a, then by Lemma 2.5, f and f′ are twisted conjugate to each other via a Laurent

polynomial, hence a holomorphic loop. It follows that the G-bundles with multipliers f

and f′ are isomorphic. Thus, we have associated to a a well-defined isomorphism class

of G-bundles on E.

Remark 2.6. Note that if a is a polynomial loop, the above map does not necessarily

take the twisted conjugacy class of a (in G((z))) to the holomorphic G-bundle on E with

multiplier a, even though the latter is defined. We do not claim that, if a and a′ are

two polynomial loops that are twisted conjugate in G((z)), then the G-bundles on E with

multipliers a and a′ are isomorphic. Moreover, the polynomial loops

a =
(

z 0

0 z−1

)
, a′ =

(
z z−1

0 z−1

)
are twisted conjugate in SL2((z)) by a divergent element, while the holomorphic SL2-

bundles on E with multipliers a and a′ are not isomorphic. This is an obstacle for trying

to extend the correspondence of Theorem 1.2 beyond the set of integral twisted conjugacy

classes on the one hand, and semistable G-bundles on the other.
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3 Going to a finite covering

Recall that for any positive integer m, the field imbedding C((z))↪→C((w)), z 7→ wm, makes

C((w)) a Galois extension of C((z)) with the Galois group Z/mZ. From now on we will

write z1/m instead of w, so that (z1/m)m = z, and the generator of the Galois group acts

as ω: z1/m 7→ e2πi/mz1/m . Let G((z1/m)) denote the group of C((z1/m))-rational points of G.

We view G((z)) as the subgroup of ω-fixed points in G((z1/m)). We will sometimes write

a = a(z1/m) for an element of G((z1/m)).

Further, we fix τ in the upper half-plane, Imτ > 0, such that q = e2πiτ. The auto-

morphism f(z) 7→ f(q · z) of the field C((z)) can be extended to an automorphism of C((z1/m))

via the assignment z1/m 7→ e2πi·τ/mz1/m. This gives rise to a twisted conjugation action

g: a 7→ ga on G((z1/m)) that extends the one on G((z)).

Definition. An element s ∈ G is said to be reduced if, for any finite-dimensional ratio-

nal representation ρ: G → GL(V), and any eigenvalue λ of the operator ρ(s), the equation

λk = ql, (for some k, l ∈ Z \ {0}) implies λ = 1, i.e., if there are no eigenvalues of the form

λ = e2πi·τ·r , r ∈ Q , except λ = 1.

View G as the subgroup of “constant loops” in G((z1/m)).

Theorem 3.1. Let a(z) ∈ G[[z]] be an aligned element. Then one can find a positive integer

m and g ∈ G((z1/m)) such that ga is a constant loop and, moreover, the element ga ∈ G is

reduced.

To prove the theorem, we fix a maximal torus T ⊂ G, and let X∗(T ) = Homalg(T,C∗)

and X∗(T ) = Homalg(C∗, T ) denote the weight and coweight lattices, respectively. There is

a canonical perfect pairing 〈 , 〉: X∗(T ) × X∗(T ) → Z . We first prove the following lemma.

Lemma 3.2. For any s ∈ T, there exists a φ ∈ X∗(T ) and an integer m 6= 0 such that the

following holds:

(i) s = φ(e2πi·τ/m) · sred where sred is reduced.

(ii) Let α ∈ X∗(T ). If α(s) = ql for some l ∈ Z, then 〈α, φ〉/m = l and α(sred) = 1.

Proof of Lemma 3.2. Fix s ∈ T . In C∗ consider the subgroup

Γ = {z ∈ C∗ | ∃ k, l ∈ Z such that zk = ql} .

Let L be the subgroup of the weights α ∈ X∗(T ) such that α(s) ∈ Γ . Clearly, if α ∈ X∗(T )

and m · α ∈ Γ for some integer m 6= 0, then α ∈ Γ . Hence, by the well-known structure

theorem about subgroups in Zn, we deduce that L splits off as a direct summand in X∗(T ).

Therefore, there is another lattice Lred ⊂ X∗(T ) such that X∗(T ) = L ⊕ Lred. This direct-sum
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decomposition of lattices must be induced by a direct product decomposition T = T1×Tred,

where T1 and Tred are subtori in T such that X∗(T1) = L and X∗(Tred) = Lred. Thus, we have

s = s1 · s′
red, where s1 ∈ T1 and s′

red ∈ Tred.

For any α ∈ X∗(T ), we have by construction α(s1) ∈ Γ . Furthermore, α(s) ∈ Γ im-

plies α ∈ L, and hence α(Tred) = 1. Therefore, for α ∈ X∗(T ) such that α(s′
red) ∈ Γ , we have

α(s1 · s′
red) ∈ Γ , and hence α ∈ L, and hence α(s′

red) = 1. Thus, s′
red is reduced.

View the groups X∗(T1) and X∗(T1) as lattices in (LieT1)∗ and LieT1, respectively, so

that X∗(T1) is the kernel of the exponential map. Write s1 = exp(h), where h ∈ LieT1. Since

α(s1) ∈ Γ for any α ∈ X∗(T ), and elements of Γ have the form z = e2πi(τ·r+r′) , r, r′ ∈ Q , it

follows that α(h) ∈ Q · τ + Q, for any α ∈ X∗(T ). Hence, h ∈ τ · Q ⊗Z X∗(T1) + Q ⊗Z X∗(T1) .

Therefore, there exist φ, ψ ∈ X∗(T1) and an integer m such that h = (τ/m)φ + (1/m)ψ.

Thus, s1 = exp(h) = ε · φ(e2πi·τ/m) , where ε = ψ(e2πi/m) is an element of order m. We put

sred = ε · s′
red. Clearly, sred is reduced, and s = s1 · s′

red = φ(e2πi·τ/m) · sred.

To prove part (ii), let α ∈ X∗(T ) be such that α(s) = ql for some l ∈ Z. Then α ∈ L,

and hence α(s′
red) = 1. Furthermore, the equation

e2πi·τ·l = ql = α(s) = e2πi·τ·〈α,φ〉/m+2πi·〈α,ψ〉/m

yields τ · (l − 〈α, φ〉/m) + 〈α, ψ〉/m ∈ Z . It follows, since 〈α, φ〉 and 〈α, ψ〉 are integers,

that l = 〈α, φ〉/m and that 〈α, ψ〉/m ∈ Z. Hence α(ε) = α(ψ(e2πi/m)) = 1. Thus, α(sred) =
α(ε) · α(s′

red) = 1 , and (ii) follows.

Proof of Theorem 3.1. We choose the Borel subgroup B = T · U as constructed in the

proof of Proposition 2.1. Thus we have a(z) = a0 exp(x1z) exp(x2z
2) · · · · · exp(xkz

k), where

ass
0 ∈ T and xi ∈ gqi ⊂ LieB , where gqi stands for the qi-eigenspace of Ad ass

0 .

Applying Lemma 3.2 to s = ass
0 , we find an integer m and an algebraic group

homomorphism φ: C∗ → T such that ass
0 = φ(e2πi·τ/m) · sred.

For any integer i ≥ 1 we can write xi =∑α xα,i, where α is a positive root of (G, T )

such that α(ass
0 ) = qi and xα,i is a nonzero root vector corresponding to α. For such an α,

part (ii) of Lemma 3.2 yields α(φ(z1/m)) = z〈α,φ〉/m = zi . We set g = φ(z1/m) , a well-defined

element of the group G((z1/m)). Then we obtain

(Ad g)(xα,i) = α(φ(z1/m)) · xα,i = zi · xα,i.

It follows that a similar equation holds for xi instead of xα,i. From this we deduce

g−1 · exp(xiz
i) · g = exp(xi). (3.2.1)

Further, let u be the unipotent part of the Jordan decomposition of a0. Write u = exp(y).

We have y = ∑α yα, where yα ∈ Lie U are root vectors. Since ass
0 commutes with y, we
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deduce similarly, using Lemma 3.2 (ii), that α(φ) = 0 for any root α such that yα 6= 0. It

follows that g−1 · u · g = u. From this and (3.2.1) we obtain

ga = φ(e2πi·τ/mz1/m)−1 · ass
0 · u · exp(x1z) exp(x2z

2) · · · · · exp(xkz
k) · φ(z1/m)

= φ(e2πi·τ/m)−1 · ass
0 · u · exp(x1) · exp(x2) · · · exp(xk) .

Using Lemma 3.2 (i), we see that φ(e2πi·τ/m)−1 · ass
0 · u = sred · u. This element is reduced,

and the theorem follows.

Lemma 3.3. Let s ∈ G be reduced. Then any element g ∈ G((z)) such that gs = s is a

constant loop.

Proof. Consider the adjoint representation ρ: G → GL(g). We choose a basis in g such

that ρ(s) is an upper-triangular matrix. Given g such that gs = s, we write

ρ(g) =
∑
k≥k0

g(k)zk,

where g(k) are complex (n × n)-matrices. The same process as in the proof of Lemma 2.5

gives equations of the type

g(k)m,n · (qksn,n − sm,m) = 0, k ∈ Z.

Since s is reduced, this implies g(k)m,n = 0 for all k 6= 0. Hence the image of g in GL(g)((z))

is constant. It follows that g is itself constant, for the kernel of the adjoint representation

G → GL(g) is finite.

Corollary 3.4. Let a ∈ G[[z]] be aligned and s ∈ G be reduced. Assume g ∈ G((z1/m)) is such

that ga = s. Then g ∈ G[z1/m, z−1/m] is a Laurent polynomial loop in z1/m. Furthermore,

θ = g(e2πi·τ/mz1/m)g(z1/m)−1 is a constant loop, and θm = 1.

Proof. The first claim follows from Lemma 2.5. To prove the second claim, recall the

Galois automorphism ω: f(z1/m) 7→ f(e2πi·τ/mz1/m) on C((z1/m)). We apply the induced au-

tomorphism of G((z1/m)) to the equation ga = s. The right-hand side being independent

of z, and a being fixed by ω, we get ωga = s. This equation together with the original

one, ga = s, yields θs = s, where θ = g(e2πi·τ/mz1/m)g(z1/m)−1 . Hence, θ is a constant loop,

by Lemma 3.3. Further, applying the automorphism ω several times to the first equation

below we get a sequence of equations

θ = (ωg) · g−1, θ = (ω2g) · (ωg)−1, . . . , θ = (ωmg) · (ωm−1g)−1.

Since ωm = Id, taking the product of all these equations yields θm = 1.
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We fix two generators, an “a-cycle” and “b-cycle,” of the fundamental group π1(E)

as follows. The a-cycle is defined to be the image of a generator of π1(C∗) = Z under the

imbedding π1(C∗)↪→π1(E) induced by the projection C∗ → C∗/qZ = E . The b-cycle is the

image of the segment [1, q] ⊂ C∗ under the projection.

Given an integer m 6= 0, set mE = C∗/qZ/m, and let mπ: mE → E , z 7→ zm be the

natural projection. Thus, mE is an elliptic curve and the map mπ is an m-sheeted Galois

covering with the Galois group Z/mZ acting as monodromy around the a-cycle.

Proposition 3.5. Let a ∈ G[z] be an aligned element and P the principal G-bundle on E

with multiplier a. Then there exists a positive integer m such that

(i) The bundle mπ∗P is isomorphic to the holomorphic G-bundle on mE with a re-

duced constant multiplier s ∈ G.

(ii) Let ∇̃ be the holomorphic connection on mπ∗P transported via the isomorphism

(i) from the trivial connection d on the G-bundle with multiplier s. Then ∇̃ descends to

a well-defined holomorphic connection ∇ on P. The latter has finite monodromy around

the a-cycle and a reduced monodromy around the b-cycle.

Proof. By Theorem 3.1 there exists an element g ∈ G(z1/m) such that ga = s is a constant

loop, and s ∈ G is reduced. By Corollary 3.4, g = g(z1/m) is a Laurent polynomial in z1/m.

Hence, g may be viewed as a well-defined G-valued regular function on the m-fold cov-

ering of C∗. Let P be the G-bundle on E with multiplier a. It follows that the pull-back,

mπ∗P, has a multiplier which is a twisted conjugate of s. This proves part (i).

To prove (ii), recall that any G-bundle with a constant multiplier s has a natural

flat holomorphic connection which is given (in the trivialization onC∗ corresponding to s)

by the de Rham differential d. We transport this connection to mπ∗P via the isomorphism

given by the loop g. The connection ∇̃ = g−1 ◦d◦g thus obtained descends to a connection

on P if and only if it is invariant under the Galois action of Z/mZ. But by Corollary 3.4

we have ωg = θ · g, and hence we get

ω(∇̃) = (θ · g)−1 ◦ d ◦ (θ · g) = g−1 · (θ−1 ◦ d ◦ θ) · g = g−1 ◦ d ◦ g = ∇̃,

since θ commutes with d. Thus, ∇̃ is fixed by the Galois action.

To compute the monodromy, note that g−1 is a flat section of the connection ∇̃.

Hence the monodromy of ∇̃ around the b-cycle equals g(e2πi·τ/mz1/m)· g(z1/m)−1 = θ . Since

the covering mπ: mE → E has no monodromy around the b-cycle and has finite monodromy

around the a-cycle, it follows that ∇ also has monodromy θ around the b-cycle and has

finite monodromy around the a-cycle.

Given a finite-dimensional rational G-module V, write V
P

for the associated vector

bundle on E corresponding to a principal G-bundle P.
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Lemma 3.6. Let P be the G-bundle with an aligned multiplier, and ∇ the connection on

P constructed in Proposition 3.5. Then, for any rational representation φ: G → GL(V),

every holomorphic section of the associated vector bundle V
P

is flat with respect to the

induced connection on V
P
.

Proof. Since the connection ∇ constructed in Proposition 3.5 was obtained from a con-

nection ∇̃ on mπ∗P, the claim for V
P

is equivalent to a similar claim for the vector bundle
mπ∗V

P
. This vector bundle is isomorphic to the vector bundle V on mE with multiplier

φ(s), so that the connection ∇̃ is isomorphic to the trivial connection d. Thus, proving

the claim amounts to showing that any holomorphic section of the vector bundle V with

multiplier φ(s) is constant.

To that end, write the matrix φ(s) in Jordan form φ(s) = ⊕
i J(λi, ni) , where J(λi, ni)

is the (ni × ni) Jordan block with eigenvalue λi. This gives the corresponding vector bun-

dle decomposition V = ⊕
iVi where Vi is the vector bundle with multiplier J(λi, ni). If

Li denotes the line bundle with multiplier λi, then there is a canonical vector bundle

imbedding Li↪→Vi. Furthermore, one can prove (using, e.g., the Fourier-Mukai transform)

that the imbedding induces an isomorphism Γ (mE, Li)
∼→ Γ (mE, Vi) of the spaces of global

sections. Hence, any holomorphic section of Vi comes from a holomorphic section of Li.

But Li is a degree-zero line bundle, and hence has a nonzero section only if it is a trivial

bundle, i.e., if λi = qm. Observe now that λi is an eigenvalue of the matrix φ(s). Since s ∈ G

is reduced, equation λi = qm implies λi = 1. But then the only holomorphic section of

Li is a constant section. The latter is annihilated by the de Rham differential d, and the

lemma is proved.

Proposition 3.7. Let a, a1 ∈ G((z)) be two aligned elements. If the G-bundle on E with

multiplier a is isomorphic to the G-bundle on E with multiplier a1, then a is twisted

conjugate to a1 via a polynomial loop.

Proof. By Theorem 3.1, there exist an integer m ≥ 1 and elements g, g1 ∈ G((z1/m)) such

that

ga = s, g1a1 = s1, where s, s1 ∈ G are reduced. (3.7.1)

Let ∇, ∇1 be the holomorphic connections on the G-bundles on E with multipliers a and

a1, respectively, constructed in Proposition 3.5. The monodromies of the connections

around the a-cycle are equal to s and s1, respectively, and the monodromies around the

b-cycle are are equal to θ and θ1, respectively. By Proposition 3.5 we have θm = θm
1 = 1 . If

the G-bundles with multipliers a and a1 are isomorphic, then we may view ∇1 as another

holomorphic connection on the G-bundle P with multiplier a.
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Since the cotagent bundle on E is trivial, the difference X = ∇1 −∇ may be viewed

as a holomorphic section, X, of the adjoint bundle g
P
. Since s is reduced the section X is

flat with respect to ∇, by Lemma 3.6. Let p: Ẽ → E be a universal cover of E. The bundle

p∗P on Ẽ has a horizontal holomorphic section. This section gives a trivialization of p∗P

such that, in the induced trivialization of p∗g
P
, the pull-back p∗X is a constant element

x ∈ g. Observe that, in general, any element y ∈ g gives rise in this way to a flat multi-

valued section of g
P
, and the monodromy of this section around a- and b-cycles is equal

to Adθ(y) and Ads(y), respectively. It follows, since X is a single-valued flat section of g
P

without monodromy, that x commutes with both θ and s. Hence, the equation ∇1 = ∇ +X

shows that the monodromy of the connection ∇1 is given by the formulas

θ1 = exp(x) · θ, s1 = exp(τx) · s. (3.7.2)

From these formulas and the equations θm
1 = θm = 1, we deduce exp(m · x) = 1. Thus, we

may find a maximal torus T containing θ, θ1, and φ ∈ X∗(T ), such that x = φ/m (cf. proof

of Lemma 3.2).

Clearly, φ(z1/m) is a well-defined element of G((z1/m)), and from formulas (3.7.2)

we deduce φ(e2πi·τ/mz1/m) · s · φ(z−1/m) = s1 . Recall the notation of (3.7.1), and put f(z1/m) =
g1(z1/m)−1 · φ(z1/m) · g(z1/m) ∈ G((z1/m)) . We claim that f ∈ G((z)). To prove this, it suffices to

show that f(e2πi·τ/mz1/m) = f(z1/m). The latter follows from the chain of equalities:

f(e2πi·τ/mz1/m) = g−1
1 (e2πi·τ/mz1/m) · φ(e2πi·τ/mz1/m) · g(e2πi·τ/mz1/m)

= g−1
1 (z1/m) · θ−1

1 · exp(x) · φ(z1/m) · θ · g(z1/m)

= g−1
1 (z1/m) · θ−1

1 · exp(x) · θ · φ(z1/m) · g(z1/m)

= g−1
1 (z1/m) · φ(z1/m) · g(z1/m) = f(z1/m).

Finally, using (3.7.1) we calculate

fa = g−1
1 ·φ·ga = g−1

1 ·φs = g−1
1 s1 = a1.

Thus, a and a1 are twisted conjugate by an element of G((z)). Lemma 2.5 completes the

proof.

4 Semistable G-bundles and holomorphic connections

Recall that G is a complex connected semisimple group. For the definition and properties

of semistable holomorphic G-bundles on an elliptic curve, we refer to [R] and [RR].
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Proposition 4.1. A holomorphic principal G-bundle over an elliptic curve is semistable

if and only if it has a holomorphic connection (necessarily flat).

Proof. The “if” part is a corollary of the main result of [B]. The “only if” part follows

from Theorem 4.2 below.

Theorem 4.2. For any semistable G-bundle P on E, there exists a holomorphic connec-

tion on P with finite-order monodromy around the a-cycle and such that, for any rational

G-module V, every holomorphic section of the associated vector bundle V
P

is flat with

respect to the induced connection on V
P
.

Proof. We choose and fix a faithful rational representation G → GL(V). By a theorem

of Ramanan and Ramanathan [RR], semistability of P implies semistability of V
P
. By the

classification of semistable vector bundles on E, due to Atiyah [A], any semistable vector

bundle is isomorphic to the vector bundle with a constant multiplier. Hence, the bundle

V
P

has constant multiplier a ∈ GL(V ). View a as an element of the semisimple group

PGL = PGL(V), and let Pa be the principal PGL-bundle with (constant) multiplier a. By

construction, the PGL(V)-bundle Pa is induced from the G-bundle P via the composition

G → GL(V) → PGL(V) .

We may regard the element a ∈ PGL as a constant aligned loop in PGL((z)). Apply-

ing Proposition 3.5, we see that there is an integer m ≥ 1 and a reduced element s ∈ PGL

such that the bundle mπ∗P on mE is isomorphic to the PGL-bundle on mE with multiplier

s ∈ PGL. Let ∇ be the connection on Pa constructed in Proposition 3.5.

We claim that the connection ∇ on Pa arises from a holomorphic connection on

the G-bundle P via the composite homomorphism ρ: G → GL(V) → PGL(V) . Note that

this composition has finite kernel, so that the induced canonical map i: P → Pa is an im-

mersion. Let TPa be the tangent bundle on Pa. Our claim is equivalent to saying that the

distribution in TPa formed by the horizontal subspaces of the connection ∇ is tangent to

the immersed submanifold i(P) ⊂ Pa. Observe that the canonical map i: P → Pa gives rise

to a holomorphic section ν: E = P/G → Pa/ρ(G). The horizontal distribution is tangent

to i(P) if and only if ν is a horizontal section.

To show the latter, we apply Chevalley’s theorem [S, Theorem 5.1.3] to the al-

gebraic subgroup ρ(G) ⊂ PGL. The theorem says that we can find a rational represen-

tation φ: PGL → GL(E) and a one-dimensional subspace l ⊂ E such that ρ(G) = {g ∈
PGL | φ(g)(l) = l}. Notice that since G is semisimple, it stabilises a vector l ∈ l. Hence,

the assignment g 7→ g(l) gives rise to an imbedding PGL/ρ(G)↪→E. Now let E
Pa

be the

associated vector bundle corresponding to E, equipped with the connection induced by

∇. The imbedding PGL/ρ(G)↪→E gives rise to an imbedding Pa/ρ(G)↪→E
Pa

compatible with

the connections. To show that ν is horizontal, it suffices to show that its image under
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the above imbedding is a flat section. But this image is a holomorphic section of E
Pa

. By

Lemma 3.6, any holomorphic section of the vector bundle E
Pa

is flat with respect to the

connection on E
Pa

induced by ∇. This proves that ν is horizontal, so that the horizontal

distribution on TPa is tangent to i(P) and the connection ∇ comes from a holomorphic

G-connection on P.

Observe further that the connection ∇ on Pa has finite monodromy around the

a-cycle. The map i: P → Pa being an immersion with finite fibers, it follows that the

G-connection on P also has finite monodromy around the a-cycle.

Finally, it remains to show that there exists a holomorphic connection on P with

finite-order monodromy around the a-cycle such that, for any rational G-module V, every

holomorphic section of the associated vector bundle V
P

is flat with respect to the induced

connection on V
P
. We do not claim that the connection we have constructed has this prop-

erty. Instead, we proceed as follows. We first use the connection that we have constructed

above to prove that any semistable G-bundle on E is isomorphic to a G-bundle with an

aligned multiplier. This will be done in the proof of Theorem 4.3 below. We can then

apply Proposition 3.5 (ii) and Lemma 3.6 to get a connection on P with all the required

properties.

Theorem 4.3. A G-bundle on E is semistable if and only if it is isomorphic to the G-

bundle with an aligned multiplier a ∈ G[z].

Proof. By Proposition 3.5 (ii), any G-bundle P with an aligned multiplier has a holomor-

phic connection. Then the “if” part of Proposition 4.1 (due to Biswas) implies that P is

semistable.

Conversely, let P be a semistable G-bundle. By Theorem 4.2, we can equip P with

a holomorphic connection that has monodromies θ, b ∈ G around the a- and b-cycles,

respectively, such that θm = 1 for some integer m ≥ 1. Observe that the elements θ and b

commute, for π1(E) is an abelian group. Hence, there is a maximal torus T ⊂ G such that

θ, bss ∈ T . As in the proof of Proposition 2.1, we choose a Borel subgroup B ⊃ T such that

b ∈ B and |α(bss)| ≤ 1, for any positive (with respect to B) root α.

Further, since θm = 1, there exists a φ ∈ X∗(T ) such that θ = φ(e2πi/m) . Set g =
φ(z1/m)−1, a well-defined polynomial loop in G((z1/m)). We put a = gb ∈ G((z1/m)). We have

g(e2πi/mz1/m) = θ−1g(z1/m) . Since θ commutes with b, we deduce that a(e2πi/mz1/m) = a(z1/m).

It follows that a is fixed by the Galois group, and hence, a ∈ G((z)).

Let U be the unipotent radical of B. We have b = bss · u where u ∈ U. Hence,

the condition |α(bss)| ≤ 1, for any positive root α, ensures that a = gb = bss · a1 where

a1 ∈ U1[[z]]. Moreover, since g is a polynomial loop, we have a1 ∈ U1[z]. By Proposition 1.3,

the element a is twisted conjugate in G((z)) to an aligned element a′. Using Lemma 2.5
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and the fact that a ∈ B · U[z], we see that a is twisted conjugate to a′ via a polynomial

loop. Thus, there is an element f ∈ G[z1/m, z−1/m] such that

fa′ = b, f(e2πi/mz1/m)f(z1/m)−1 = θ.

These equations show (see the proof of Proposition 3.5) that the G-bundle P′ with multi-

plier a′ has a holomorphic connection with the monodromies θ and b ∈ G around the a-

and b-cycle, respectively. Thus, P and P′ are two G-bundles with connections that have the

same monodromy. Since a holomorphic G-bundle with connection is determined, up to

isomorphism, by the monodromy representation, we deduce that P ' P′, and the theorem

follows.

Proof of Theorem 1.2. Proposition 3.5 shows that the G-bundle associated to any inte-

gral twisted conjugacy class in G((z)), via the procedure described at the end of Section 2,

has a holomorphic connection and hence is semistable, due to Proposition 4.1. Theo-

rem 4.3 ensures that the map {integral twisted conjugacy classes} −→ {isomorphism

classes of semistable G-bundles} is surjective. Injectivity of the map follows from Propo-

sition 3.7.

Sketch of proof of Theorem 1.6. We note first that although GLn is not a semisimple

group, Lemma 3.2 and all other results of Sections 3–4 hold for G = GLn. In particular,

any holomorphic degree-zero semistable vector bundle on E has a holomorphic connec-

tion with finite-order monodromy around the a-cycle and a reduced monodromy around

the b-cycle. (Since any semistable vector bundle is isomorphic to the one with a constant

multiplier [A], it has a holomorphic connection without monodromy around the a-cycle at

all. Moreover, it is easy to achieve that the monodromy matrix around the b-cycle has no

eigenvalues of the form qk , k ∈ Z\{0} . But in order to ensure that the monodromy around

the b-cycle is reduced, one still has to allow a finite monodromy around the a-cycle.) In

this way, one shows that an analogue of Theorem 1.2 holds for G = GLn.

Now let V be a rank-n and degree-zero semistable vector bundle on E, and ∇ a

holomorphic connection on V with order-m monodromy around the a-cycle. Let π: C∗ → E

and mp: C∗ → C∗ , z 7→ zm denote the projections. We know that the pull-back mp∗(π∗V) can

be trivialized by means of a flat (with respect to the pull-back connection) frame. If ∇′ is

another holomorphic connection on V with finite-order monodromy around the a-cycle,

then we can choose a large enough integer m and two trivializations of mp∗(π∗V ) that

are flat with respect to mp∗∇ and mp∗∇′, respectively. We claim that the transition matrix

between any two such trivializations is given by a holomorphic map a: C∗ → GLn with

a pole at z = 0. To prove the claim, we may choose and fix one holomorphic connection

∇◦ on V that has finite-order monodromy around the a-cycle and, moreover, a reduced
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monodromy around the b-cycle. Using an argument similar to that in the proof of Propo-

sition 3.7, one shows that the transition matrix between the trivialization corresponding

to a flat frame with respect to ∇◦ and the trivialization corresponding to a flat frame with

respect to any other connection with finite monodromy around the a-cycle is given by a

holomorphic loop with a pole at z = 0. This proves the claim.

Next, we define a class of “moderate” holomorphic sections of π∗V as follows.

Write R for the ring of holomorphic functions onC∗ with a pole at z = 0. Let s be a holomor-

phic section of π∗V, let ∇ be a holomorphic connection on V with finite-order monodromy

around the a-cycle, and let s1, . . . , sn be a frame of flat sections of mp∗(π∗V ), for some m.

We say that s is moderate with respect to ∇ if mp∗s is expressed as a linear combination

of the sections s1, . . . , sn with coefficients in R. It is clear that this definition does not de-

pend on the choice of a flat frame and the choice of finite covering mp: C∗ → C∗. Moreover,

the claim proved in the previous paragraph ensures that s is moderate with respect to ∇ if

and only if it is moderate with respect to ∇′, provided both connections have finite-order

monodromy around the a-cycle. Thus, there is a well-defined notion of a moderate holo-

morphic section of π∗V. Clearly, moderate sections form an R-module, to be denoted V(R).

In the previous setting, assume that V is the vector bundle with a constant multi-

plier a ∈ GLn(C), and ∇ = d is the trivial connection on V. Then the tautological trivializa-

tion of π∗V is flat. Furthermore, it is clear that a section of π∗V is moderate if and only if

all its coordinates (relative to the trivialization) belong to R. It follows that V(R) ' Rn is a

free R-module. The qZ-equivariant structure on π∗V (see the proof of Proposition 1.3) pro-

vides an operator q: V(R) → V (R). Viewed as an operator Rn → Rn via the isomorphism

V(R) ' Rn, this operator has the form

q: f(z) 7→ a−1 · f(q · z), where a = multiplier. (4.4)

Let Vectss,◦(E) be the tensor category of degree-zero holomorphic semistable vector

bundles on E. We define a functor F: Vectss,◦(E) → Mq by the assignment

V 7→ F(V ) = C((z)) ⊗
R

V (R),

where the operator q: F(V) → F(V) extends the one introduced above. Isomorphism V(R) '
Rn and formula (4.4) show that q and q−1 preserve the standard lattice L = C[[z]]n ⊂ C((z))n .

Thus, F(V) ∈ Mq.

Let V, V ′ ∈ Vectss,◦(E). It is clear from construction that there is a natural map

V(R) ⊗
R

V ′(R) → (V ⊗ V ′)(R). This map is, in effect, an isomorphism. To see this, choose

trivializations of π∗V and π∗V ′ corresponding to constant multipliers. Then the tensor

product trivialization on π∗(V ⊗ V ′) corresponds to the tensor product of the multipli-

ers. We have seen that in these trivializations one has V(R) ' RrkV , V ′(R) ' RrkV ′
, and
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(V ⊗V ′)(R) ' RrkV·rkV ′
. It follows that the natural map above becomes the standard isomor-

phism RrkV ⊗
R
RrkV ′ ∼−→ RrkV·rkV ′

. ApplyingC((z))⊗
R

(•), we deduce that F is a tensor functor.

Recall now that both Mq and Vectss,◦(E) are rigid tensor categories (cf. [DM]); in

particular, Vectss,◦(E) is an abelian C-category with finite-dimensional Hom’s. To prove

that a tensor functor between two rigid tensor categories is an equivalence, it suffices

to show it is fully faithful. The analogue of Theorem 1.2 for G = GLn ensures that the

functor F is full. It remains to show that, for any V ′, V ∈ Vectss,◦(E), the functor F in-

duces an isomorphism HomVectss,◦(E) (V
′, V ) = Hom

Mq
(F(V ′), F(V)) . Using the duality functor

on rigid tensor categories, one reduces to the case V ′ = 1
E
, the unit of the tensor category

Vectss,◦(E), i.e., the trivial one-dimensional vector bundle. In that case, we have that

HomVectss,◦(E) (1E
, V ) = Γ (E, V) = Γhol(C∗, π∗V )q

is the fixed-point subspace of the qZ-action on the space of all holomorphic sections of

π∗V. On the other hand, we have that Hom(F(1
E
), F(V)) = F(V)q is the q-fixed-point space of

the operator q. In the trivialization corresponding to a constant multiplier a, the operator

q is given by formula (4.4). Therefore, we find

F(V)q = {f(z) ∈ C((z))n | f(q · z) = af(z)}.

Expanding f as a formal Laurent series f(z) =∑k≥k0
fkz

k shows that f ∈ F(V)q if and only

if, for any k, the coefficient fk ∈ Cn is an eigenvalue of the operator a with eigenvalue

qk. It follows that fk must vanish for all k À 0. Hence f is a Laurent polynomial section,

f ∈ V (R)q. Similarly, any element of Γhol(C∗, π∗V )q is a Laurent polynomial. We see that

the natural imbeddings

F(V)q ←↩V(R)q ↪→ Γhol(C∗, π∗V )q = Γ (E, V)

are both bijections. The theorem follows.

Added in proof.

Following a suggestion of M. Kontsevich we briefly outline an alternative approach to The-

orem 1.6. Given a finitely generated abelian group A, form the algebraic group Hom(A,C∗),

which is a direct product of a torus and a finite abelian group scheme. Consider the pro-

jective system of algebraic groups Hom(A,C∗) induced by the direct system of all finitely

generated subgroups A ⊂ C∗/qZ partially ordered by inclusion. This way we get pro-

algebraic groups

Γ◦ = lim←−
A⊂C∗/qZ

Hom(A,C∗) and Γ = Γ◦ × C .
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Let Rep(Γ ) be the category of finite-dimensional representations of the group Γ that factor

through a rational representation of some algebraic quotient. Note that simple objects

of the category Rep(Γ ) are parametrised by the points of the set lim→ A = C∗/qZ.

Theorem 1.6′. The tensor categories Vectss,◦(E) and M are equivalent to Rep(Γ ) each.

Sketch of proof. Note that the Fourier-Mukai transform gives an equivalence of the ten-

sor category Vectss,◦(E) with the tensor category (under convolution) of coherent sheaves

on C∗/qZ with finite support. The latter is easily seen to be equivalent to Rep(Γ ) (by the

Jordan form theorem applied locally at each point of the support).

To prove the theorem for Mq, we argue as follows. For any M ∈ Mq, there is a

q-stable maximal rank C[[z]]-submodule L ⊂ M. The action of q on L gives rise to a C-

linear operator, still denoted by q, on the finite-dimensional C-vector space V = L/zL.

One first finds the lattice L in such a way that the ratio of any two distinct eigenvalues of

this operator is not an integral power of q. Such an L being found, one shows using the

completeness of L in the z-adic topology that the natural projection L³ L/zL = V admits

a q-equivariant splitting. Thus, V may be viewed as a subspace in L so that we get a q-

equivariant imbedding · · · ⊕ z−1V ⊕ V ⊕ zV⊕ z2V ⊕ · · · ↪→ M with dense image. It follows

easily that the C-vector space M is q-equivariantly isomorphic to the completion of the

infinite direct sum on the left. We see that giving an object of Mq amounts to giving a finite-

dimensional vector space V and an invertible operator q : V → V whose eigenvalues sat-

isfy the above-mentioned condition. Writing the Jordan decomposition of this operator,

one deduces that the category of Dq-modules of the form · · · ⊕ z−iV ⊕ V ⊕ zV ⊕ z2V ⊕ · · ·
is equivalent to Rep(Γ ).
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