# The Cohomology Ring of the Moduli Space of Stable Vector Bundles with Odd Determinant * 

Vladimir BARANOVSKY


#### Abstract

The multiplicative structure of the cohomology ring of the moduli space of stable rank 2 bundles on a smooth projective curve is computed.


## INTRODUCTION

Let $C$ be a complete smooth curve of genus $g \geq 2$ over the field of complex numbers $\mathbb{C}$. Consider the moduli space $N$ of stable rank 2 vector bundles on $C$ with fixed determinant $L$ of odd degree $2 k-1$. Then $N$ is a smooth projective variety of dimension $3 g-3$. On the direct product $N \times C$ one has a universal bundle $V$ with Chern classes (cf. [1])

$$
\begin{aligned}
& c_{1}(V)=p r_{N}^{*}\left(A_{1}\right)+(2 k-1) p r_{C}^{*}(\omega) \\
& c_{2}(V)=p r_{N}^{*}\left(A_{2}\right)+\sum_{i=1}^{2 g} p r_{N}^{*}\left(D_{i}\right) \cup p r_{C}^{*}\left(\beta_{i}\right)+k \cdot p r_{N}^{*}\left(A_{1}\right) \cup p r_{C}^{*}(\omega)
\end{aligned}
$$

where $A_{j} \in H^{2 j}(N, \mathbb{C}), D_{i} \in H^{3}(N, \mathbb{C}), \omega \in H^{2}(C, \mathbb{C})$, and $\left(\beta_{i}\right)$ is a symplectic basis of $H^{1}(C, \mathbb{C})$ (i.e., $\beta_{i} \cup \beta_{g+s}=\delta_{i s} \omega$ and $\beta_{i} \cup \beta_{s}=0$ for $i, s=1, \ldots, s$ ). One can show that $A_{i}$ and $D_{j}$ generate $H^{*}(N, \mathbb{C})$ as a ring (cf. [1]). Hence to describe the cohomology ring it suffices to compute the intersection numbers $\int_{N} A_{1}^{n} A_{2}^{m} \prod_{i=1}^{2 g} D_{i}^{r_{i}}$ where $r_{i} \in\{0,1\}$ and all the degrees add up to $6 g-6$ (the real dimension of $N$ ), and to determine relations between $A_{1}, A_{2}$ and $D_{i}$.

Let $W=H^{3}(N, \mathbb{C})$, and let $\Lambda^{*}(W)$ be the exterior algebra over $W$. Note that the symplectic group $S p(2 g, \mathbb{C})$ acts on $\Lambda^{*}(W)$ (a symplectic transformation of $H^{1}(C, \mathbb{C})$ induces a transformation of $\left.W\right)$. The intersection form on $N$ is $S p$ invariant and, if we denote $D=\sum_{i=1}^{g} D_{i} \cup D_{g+i}$, the cohomology ring $H^{*}(N, \mathbb{C})$ as a module over $\mathbb{C}\left[A_{1}, A_{2}, D\right]$ splits into direct sum of submodules generated by primitive components of the Lefschetz decomposition for $\Lambda^{*}(W)$. We will show that each of these submodules can be recovered from the cohomology of the moduli spaces corresponding to smaller genera.

[^0]Let $\widetilde{\pi}_{1}(C)$ be the universal central extension of the fundamental group $\pi_{1}(C)$. By Narasimhan-Seshadri Theorem, as a topological space, $N$ parametrizes (up to congugacy) group homomorphisms $\widetilde{\pi}_{1}(C) \rightarrow S U(2)$ mapping the central element to $-1 \in S U(2)$. In particular, the structure of the cohomology ring of $N$ does not depend on the complex structure of $C$.

Using the explicit realization of $N$ for hyperelliptic curves given in [2], we succeed in carrying out the computations within the framework of the classical Schubert calculus (in particular, we do not use the Verlinde formula). A similar method was used by Laszlo [4] to compute the dimension of the space of conformal blocks. We refer to [6] for computation of the intersection form using the Verlinde formula.

In $\S 1$ we compute the intersection form on the cohomology of $N$. In $\S 2$ we construct a resolution of $H^{*}(N, \mathbb{C})$ as a module over the polynomial ring $C\left[A_{1}, A_{2}, D\right]$ (this involves determining relations between $A_{1}, A_{2}, D_{i}$ ).

The author is grateful to B. L. Feigin for arousing interest in this problem, to P. Deligne for useful discussions, and to A. N. Tyurin for valuable suggestions and support.

## §1. THE INTERSECTION FORM

1.1. The moduli space and the Grassmann variety. We recall some results on the moduli space of bundles on a hyperelliptic curve [2].

Consider a general pencil of quadrics in $\mathbb{P}^{2 g+1}$. A general element of this pencil is a smooth quadric containing two families of $g$-dimensional linear subspaces. The degenerate elements of this pencil (there are $2 g+2$ of them) have one singular point and one family of $g$-dimensional linear subspaces. Hence the data

$$
\text { \{quadric in the pencil }+ \text { distinguished family of linear subspaces\} }
$$

defines a double covering of $\mathbb{P}^{1}$ branched at $2 g+2$ points, that is a hyperelliptic curve of genus $g$. Conversely, to each hyperelliptic curve $C$ of genus $g$ there corresponds a pencil of quadrics $\left\{\alpha_{0} Q_{0}+\alpha_{1} Q_{1}\right\},\left(\alpha_{0}: \alpha_{1}\right) \in \mathbb{P}^{1}$.

Theorem 1. Let $N$ be the moduli space of rank two bundles with a fixed odd determinant on a hyperelliptic curve $C$, and let $\alpha_{0} Q_{0}+\alpha_{1} Q_{1}$ be the corresponding pencil of quadrics in $\mathbb{P}^{2 g+1}$. Then

$$
N \simeq\left\{\text { variety of (g-2)-dimensional linear subspaces on } Q_{0} \cap Q_{1}\right\}
$$

The proof is given in [2].
Thus, $N$ is naturally embedded in the Grassmann variety $\operatorname{Gr}(g-1,2 g+2)$. In what follows this Grassmann variety will be denoted simply by $G r_{g}$. Let $S$ and $Q$ denote, respectively, the universal sub- and quotient bundle on $G r_{g}$.

Let $x_{1}, \ldots, x_{g+3}$ be formal variables. We recall the definitions of some symmetric functions in $x_{i}$ : the Newton's symmetric function $p_{n}$ is equal to $\sum x_{i}^{n}$,
while the elementary symmetric functions $e_{n}$ and the full symmetric functions $h_{n}$ are best defined via generating functions:

$$
E(t)=\sum_{i=1}^{g+3} e_{n} t^{n}, \quad H(t)=\sum_{i=1}^{g+3} h_{n} t^{n}
$$

By definition

$$
E(t)=\prod_{i=1}^{g+3}\left(1+x_{i} t\right), \quad H(t)=\prod_{i=1}^{g+3}\left(1-x_{i} t\right)^{-1}
$$

Recall that the ring of symmetric functions in $x_{1}, \ldots, x_{g+3}$ can be mapped surjectively onto $H^{*}\left(G r_{g}, \mathbb{C}\right)$. This map sends $e_{n}$ to $c_{n}(Q), h_{n}$ to $c_{n}\left(S^{*}\right)$, and $p_{n}$ maps to the $n$-th component of the Chern character $c_{n}(Q)$. Recall further that any partition $\lambda=\left(\lambda_{i}\right)_{i=1, \ldots, g-1}$ gives rise to the Schur symmetric function $\operatorname{det}\left(e_{\lambda_{i}+j-i}\right)$, which is mapped to the Schubert class $\left\{\lambda_{1}, \ldots, \lambda_{g-1}\right\}=$ $\operatorname{det}\left(c_{\lambda_{i}+j-i}(Q)\right)_{1 \leq i, j \leq g-1}$. In what follows we denote by the same letters $p_{i}$ and $h_{j}$ the symmetric functions, their images in $H^{*}\left(G r_{g}, \mathbb{C}\right)$, as well as restrictions to $H^{*}(N, \mathbb{C})$ (this should not lead to confusion).

The quadrics $Q_{0}$ and $Q_{1}$ of the pencil in $\mathbb{P}^{2 g+1}$ define two sections of the bundle $S y m^{2}\left(S^{*}\right)$ on $G r_{g}$, and $N$ is the common zero set of these two sections. From ([3], Example 14.7.15) we conclude that the class in $H^{*}\left(G r_{g}, \mathbb{C}\right)$ Poincaré dual to $N$ is $2^{2 g-2}\{g-1, g-2, \ldots, 1\}^{2}$.

Now we want to express the cohomology classes $A_{1}, A_{2}, D_{i}$ on $N$, via the classes $p_{i}$ coming from $G r_{g}$. By the adjunction formula, we have the following equality on $N$ :

$$
\operatorname{ch}\left(\left.T_{G r_{g}}\right|_{N}\right)=\operatorname{ch}\left(T_{N}\right)+2 \operatorname{ch}\left(\operatorname{Sym}^{2}\left(\left.S^{*}\right|_{N}\right)\right)
$$

A direct computation yields:

$$
\operatorname{ch}\left(T_{N}\right)=2\left((g-1)+\sum_{i=1}^{\infty} \frac{(-1)^{i+1} p_{i}}{i!}\right)\left(2+\sum_{i=1}^{\infty} \frac{p_{2 i}}{(2 i)!}\right)-(g-1)+\sum_{i=1}^{\infty} \frac{(-2)^{i} p_{i}}{i!} .
$$

On the other hand, let $\pi: N \times C \rightarrow C$ be a projection. Then $T_{N}=-\pi_{!}\left(E n d_{0} V\right)$ (cf. [1]). By Grothendieck-Riemann-Roch one has

$$
\operatorname{ch}\left(\pi_{!}\left(E n d_{0} V\right)\right)=\pi_{*}\left(\operatorname{ch}\left(E n d_{V}\right)(1-(g-1) \omega)\right) .
$$

Let $\Delta=4 A_{2}-A_{1}^{2}$. Then for $k=1,2 \ldots$ one has:

$$
\begin{gathered}
\operatorname{ch}_{2 k}\left(T_{N}\right)=\frac{2(-1)^{k}}{(2 k)!}(g-1) \Delta^{k} \\
c h_{2 k-1}\left(T_{N}\right)=\frac{2(-1)^{k}}{(2 k-1)!}\left(8(k-1) D \Delta^{k-2}-A_{1} \Delta^{k-1}\right)
\end{gathered}
$$

Comparing the components of the two formulas for $\operatorname{ch}\left(T_{N}\right)$ we get:

$$
\begin{equation*}
A_{1}=p_{1}, \quad A_{2}=\frac{1}{4}\left(p_{1}^{2}-p_{2}\right), \quad D=\frac{1}{4}\left(p_{1} p_{2}-p_{3}\right) . \tag{1}
\end{equation*}
$$

Moreover, we obtain the following relations between restrictions of cohomology classes to $N$ :

$$
\begin{equation*}
p_{2 k}=p_{2}^{k}, \quad p_{2 k-1}=p_{3} p_{2}^{k-2}, \quad k=2,3, \ldots \tag{2}
\end{equation*}
$$

Denote by $\langle\ldots\rangle_{g}$, the intersection form on the moduli space $N$ corresponding to genus a $g$ curve (for our computations we also need the intersection forms for smaller genera), and by $\langle\ldots\rangle_{G r_{g}}$ the intersection form on the Grassman variety $G r_{g}$.
1.2. Computation of $\left\langle\mathbf{A}^{\mathbf{3 g}-\mathbf{3}}\right\rangle_{\mathbf{g}}$. The Schubert class dual to $\{g-1, g-2, \ldots, 1\}$ is $\{g+2, g+1, \ldots, 4\}$. Hence to compute

$$
\left\langle A^{3 g-3}\right\rangle_{g}=\left\langle 2^{2 g-2}\{g-1, g-2, \ldots, 1\}^{2} p_{1}^{3 g-3}\right\rangle_{G r_{g}}
$$

it suffices to find the coefficient of $\{g+2, g+1, \ldots, 4\}$ in the decomposition of $\{g-1, g-2, \ldots, 1\} p_{1}^{3 g-3}$ into Schubert classes. A coefficient of this kind can be found using the Schubert determinant formula (cf. [31, Example 14.7.11, formula (iv)). In our case it is equal to

$$
(3 g-3)!\left|\begin{array}{ccccc}
\frac{1}{3!} & \frac{1}{1!} & 0 & \ldots & 0 \\
\frac{1}{5!} & \frac{1}{3!} & \frac{1}{1!} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{(2 g-3)!} & \frac{1}{(2 g-5)!} & \frac{1}{(2 g-7)!} & \cdots & \frac{1}{1!} \\
\frac{1}{(2 g-1)!} & \frac{1}{(2 g-3)!} & \frac{1}{(2 g-5)!} & \cdots & \frac{1}{3!}
\end{array}\right|
$$

Denote this determinant by $a_{g-1}$. Decompose it with respect to the last column. The second summand in this decomposition is equal to $\frac{1}{3!} a_{g-2}$ while the first can be decomposed again with respect to the last column, and so on. This procedure leads to a relation

$$
0=-a_{g-1}+\frac{1}{3!} a_{g-2}-\frac{1}{5!} a_{g-3}+\ldots+(-1)^{g} \frac{1}{(2 g-1)!}
$$

Put $f(t)=\sum_{g=1}^{\infty} a_{g-1} t^{2 g-2}$, where it is assumed that $a_{0}=1$. The above relation means that $f(t) \sin t=1$, i.e.,

$$
f(t)=\sum_{k=0}^{\infty}(-1)^{k+1}\left(2^{2 k}-2\right) B_{2 k} \frac{t^{2 k}}{(2 k)!},
$$

where $B_{2 k}$ is the Bernoulli number. Finally we get:

$$
\left\langle A_{1}^{3 g-3}\right\rangle_{g}=\frac{(3 g-3)!}{(2 g-2)!}(-1)^{g} 2^{2 g-2}\left(2^{2 g-2}-2\right) B_{2 g-2}
$$

1.3. Computation of $\left\langle\mathbf{A}_{\mathbf{1}}^{\mathbf{3 r}}\left(\mathbf{A}_{\mathbf{1}} \mathbf{A}_{\mathbf{2}}\right)^{\mathbf{q}}\right\rangle_{\mathbf{r}+\mathbf{q}+\mathbf{1}}$. By virtue of (1) it suffices to compute $\left\langle p_{1}^{3 r}\left(p_{1} p_{2}\right)^{q}\right\rangle_{r+q+1}$. To this end we need a multiplication rule for Schur and Newton functions. For each partition $\rho=\left(\rho_{i}\right)_{i=1, \ldots, m}$ we put $p_{\rho}=$ $p_{\rho_{1}} p_{\rho_{2}} \ldots p_{\rho_{m}}$. Recall that any partition $\lambda$ can be represented by a Young diagram which has $\lambda_{i}$ squares in the $i$-th row. Then, according to [5], we have

$$
\left\{\lambda_{1}, \ldots, \lambda_{g-1}\right\} p_{\rho}=\sum_{\lambda^{\prime}} \alpha_{\lambda^{\prime}}\left\{\lambda_{1}^{\prime}, \ldots, \lambda_{g-1}^{\prime}\right\}
$$

and $\alpha_{\lambda^{\prime}}=\sum_{s \in S}(-1)^{l(s)}$. Here $s$ runs through the set $S$ formed by sequences of partitions $\left(\lambda=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{m-1}, \lambda^{m}=\lambda^{\prime}\right)$ such that the Young digram of each $\lambda^{j-1}$ is contained in the diagram of $\lambda^{j}$ and its complement is a skew $\rho_{j}$ hook, i.e. a connected set of $\rho_{j}$ squares which does not contain any $2 \times 2$ squares. The length $l$ of a hook is defined as the number of its columns minus one and $l(s)$ in the previous formula denotes $\sum_{j} l\left(\lambda^{j}-\lambda^{j-1}\right)$. Since we want to determine the coefficient of $\{g+2, g+1, \ldots, 4\}$ in the decomposition of $\{g-1, g-2, \ldots, 1\} p_{1}^{3 r}\left(p_{1} p_{2}\right)^{q}$ into a sum of Schubert classes, in our case:

$$
\lambda=(g-1, \ldots, 1), \quad p=(\underbrace{2, \ldots, 2}_{q}, \underbrace{1, \ldots, 1}_{q+3 r}), \quad \lambda^{\prime}=(g+2, g+1, \ldots, 4) .
$$

Hence all $l(s)$ are equal to $q$ and the set $S$ represents the number of ways to fill the space between two "staircases" in Diagram 1, by skew hooks made of 2 or 1 squares:


It is clear from the picture that the hooks with two squares can be added in a unique way (each of them goes horizontally to the top possible position). The
$1 \times 1$ squares to the right of them can be added at any point of the sequence $\left\{\lambda^{0}, \ldots, \lambda^{m}\right\} \in S$. Since this involves choosing $q$ ordered squares out of $(3 r+q)$, the cardinality of $S$ is equal to $\frac{(3 r+q)!}{(3 r)!} \cdot N_{r}$, where $N_{r}$ is the number of ways to fill the remaining space between the Young diagrams with $1 \times 1$-squares (obtaining a Young diagram at each step). It follows from the above formula for symmetric functions that $N_{r}$, up to a power of 2 , coincides with $\left\langle p_{1}^{3 r}\right\rangle_{r+1}$ computed in the previous section. Hence

$$
\begin{aligned}
\left\langle p_{1}^{3 r}\left(p_{1} p_{2}\right)^{q}\right\rangle_{r+q+1}=\frac{(3 r+q)!}{(3 r)!} & (-4)^{q}\left\langle p_{1}^{3 r}\right\rangle_{r+1}= \\
& =\frac{(3 r+q)!}{(2 r)!}(-1)^{r+q+1} 2^{2(r+q)}\left(2^{2 r}-2\right) B_{2 r}
\end{aligned}
$$

Similar considerations show that $\left\langle p_{1}^{m} p_{2}^{n}\right\rangle_{1+(m+2 n) / 3}$ vanishes if $m<n$ (there will be too many skew 2 -hooks).
1.4. The remaining intersection numbers. Computation of the intersection numbers involving $D_{i}$ is slightly more complicated. Recall that the intersection form is $S p$-invariant; therefore it vanishes on the non-invariant part of $\Lambda^{*}(W)$. Since the subspace of invariants is generated by the powers of $D=\sum_{i=1}^{g} D_{i} \cup D_{g+i}$, it suffices to compute the intersection numbers $\left\langle p_{1}^{3 r}\left(p_{1} p_{2}\right)^{q} D^{s}\right\rangle_{s+r+q+1}$. Due to (1) it is enough to evaluate the intersection numbers involving $p_{1}, p_{2}$ and $p_{3}$.

The computation of $\left\langle p_{1}^{3 r} p_{3}^{s}\right\rangle_{s+r+1}$ can be carried out using the skew hooks formula of 1.3 . We will also need another auxiliary intersection number

$$
\left[p_{1}^{3 r} p_{3}^{s}\right]:=\left\langle p_{1}^{3 r} p_{3}^{s}\{g-1, \ldots, 4,3,3,3\}\{g-1, \ldots, 4,3,2,1\}\right\rangle_{G r_{s+r-1}}
$$

This number can be evaluated as a coefficient of $\{g+2, \ldots, 5,4\}$ in the decomposition of $p_{1}^{3 r} p_{3}^{s}\{g-1, \ldots, 4,3,3,3\}$ into the sum of Schubert classes. As before, we need to count the number of ways to fill the "snake" shaped figure in Diagram 2 by skew hooks with 3 or 1 squares.

Introduce the following generating functions

$$
\begin{gathered}
F\left(t_{1}, t_{2}\right)=\sum_{s, r \geq 0}\left\langle p_{1}^{3 r} p_{3}^{s}\right\rangle \frac{t_{1}^{2 r} t_{2}^{s}}{2^{2(s+r)}(3 r)!s!}, \\
G\left(t_{1}, t_{2}\right)=1-\sum_{\substack{s, r \geq 0 \\
s+r \neq 0}}\left[p_{1}^{3 r} p_{3}^{s}\right] \frac{t_{1}^{2 r} t_{2}^{s}}{(3 r)!s!}
\end{gathered}
$$

(the numerical coefficients come from the coefficients in the formulas of 1.2).
We have shown in 1.2 that $F(t, 0)=f(t)=t / \sin t$. In a similar way one can verify that $G(t, 0)=t \cdot \cos t / \sin t$. Now we compute $\left\langle p_{3}^{s} p_{1}^{3 r}\right\rangle_{s+r+1}$ by the skew hooks rule. The first skew 3 -hook can be of two types (cf. Diagram 3): either a "rectangle" (in this case the number or ways to fill the rest with skew hooks is $\frac{1}{2^{2(s+r-1)}}\left\langle p_{3}^{s-1} p_{1}^{3 r}\right\rangle_{s+r}$ ); or a "corner" (in this case the shape is split into two
pieces as in Diagrams 1 and 2, and the number of ways to fill the rest with hooks is equal to $\left.\sum_{s_{1}, r_{1}}\binom{s-1}{s_{1}}\binom{3 r}{3 r_{1}} \frac{1}{2^{2\left(s_{1}+r_{1}\right)}}\left\langle p_{3}^{s_{1}} p_{1}^{3 r_{1}}\right\rangle_{s_{1}+r_{1}+1}\left[p_{3}^{s-s_{1}-1} p_{1}^{3 r-3 r_{1}}\right]\right)$. A similar argument applies to $\left[p_{3}^{s} p_{1}^{3 r}\right]$. It is convenient to describe this inductive step in terms of generating functions:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t_{2}} F=F G, \\
\frac{\partial}{\partial t_{2}} G=t_{1}^{2}+G^{2} .
\end{array}\right.
$$

(The first equation explains why we had to consider $\left[p_{3}^{s} p_{1}^{3 r}\right]$.) We conclude that

$$
F\left(t_{1}, t_{2}\right)=\frac{t_{1}}{\sin \left(t_{1}-t_{1} t_{2}\right)}, \quad G\left(t_{1}, t_{2}\right)=\frac{t_{1} \cos \left(t_{1}-t_{1} t_{2}\right)}{\sin \left(t_{1}-t_{1} t_{2}\right)} .
$$

Expanding the expression for $F$ we get

$$
\left\langle p_{3}^{s} p_{1}^{3 r}\right\rangle_{s+r+1}=(-4)^{s}(2 r-1) \ldots(2 r-s)\left\langle p_{1}^{3 r}\right\rangle_{r+1} .
$$

To compute $\left\langle p_{3}^{s}\left(p_{1} p_{2}\right)^{q} p_{1}^{3 r}\right\rangle_{s+r+q+1}$ we multiply $\{g-1, \ldots, 1\}$ first by $p_{2}^{q}$ and then by $p_{3}^{s} p_{1}^{3 r}$. Since we are interested in the coefficient of $\{g+2, \ldots, 5,4\}$ in the resulting product, it follows from the pictures that all the 2-hooks have to be added in a unique way (only one per each row). Thus we get

$$
\left\langle p_{3}^{s}\left(p_{1} p_{2}\right)^{q} p_{1}^{3 r}\right\rangle_{s+q+r+1}=(-4)^{s} \frac{(3 r+q)!}{(3 r)!}\left\langle p_{3}^{s} p_{1}^{3 r}\right\rangle_{s+r+1}
$$

Again we see that $\left\langle p_{3}^{s} p_{1}^{m} p_{2}^{n}\right\rangle_{1+s+(m+2 n) / 3}$ vanishes if $m<n$ (we need a skew 1 -hook to put to the immediate right of each skew 2 -hook). Finally, a direct computation using (1) shows that

$$
\left\langle D^{s}\left(p_{1} p_{2}\right)^{q} p_{1}^{3 r}\right\rangle_{s+r+q+1}=(-1)^{s} \frac{(s+q+r+1)!}{(r+q+1)!}\left\langle p_{1}^{3 r}\left(p_{1} p_{2}\right)^{q}\right\rangle_{r+q+1}
$$

Put $s=1$ and note that the number of summands in the definition of $D$ is equal to $g=q+r+2$. By $S p$-invariance of the intersection form we deduce that:

If $R\left(A_{i}, D_{j}\right)$ is an expression not involving $D_{g}$ and $D_{2 g}$ then

$$
\begin{gathered}
\left\langle D_{g} D_{2 g} R\left(A_{i}, D_{j}\right)\right\rangle_{g}=-\left\langle R\left(A_{i}, D_{j}\right)\right\rangle_{g-1} \\
\left\langle D_{g} R\left(A_{i}, D_{j}\right)\right\rangle_{g}=\left\langle D_{2 g} R\left(A_{i}, D_{j}\right)\right\rangle_{g-1}=0 .
\end{gathered}
$$

## §2. RELATIONS IN THE COHOMOLOGY RING

Consider $H^{*}(N, \mathbb{C})$ as a module over the ring of weighted polynomials As we have already observed, this module splits into a direct sum of submodules generated by primitive components of the Lefschetz decomposition (this follows from the fact that the action of the group $S p(2 g, \mathbb{C})$ on them is irreducible). Put

$$
P^{i}=\operatorname{Ker}\left(\left(\cdot \wedge D^{i+1}\right): \Lambda^{g-i}(W) \rightarrow \Lambda^{g+i+2}\right)
$$

$$
\Psi_{i}=D_{g} \wedge \ldots \wedge D_{1+i}-D_{2 g} \wedge \ldots \wedge D_{g+1+i}, \quad \Psi_{i} \in P^{i}, \quad i=0, \ldots, g
$$

Let $h_{i}$ be the cohomology class on $N$ corresponding to the symmetric function $h_{i}$. Note that the relations (2) allow us to express $h_{i}$ as a polynomial in $p_{1}, p_{2}$, $p_{3}$. Recall $h_{i}$ are nothing but restrictions of the Chern classes of the universal subbundle $S$ on the Grassmann variety. Since $\operatorname{rk}(S)=g-1$, in $H^{*}(N, \mathbb{C})$ we have $h_{i}=0$ for $i \geq g$. In general, let $H_{i}^{*}$ be the $\mathbb{C}\left[A_{1}, A_{2}, D\right]$-submodule generated by $P^{i}$. Using the computations in the end of $\S 1$, we see that $\Psi_{i} h_{j}=0$ for $j \geq i$ and, in view of $S p$-invariance $P^{i} h_{j}=0$ for $j \geq i$. We claim that all the relations in $H_{i}^{*}$ follow from these relations (and in fact it is enough to consider only $j=i, i+1, i+2)$.

To prove this we use the reccurence relation $n h_{n}=\sum_{r=1}^{n} p_{r} h_{n-r}$ in the ring of symmetric functions (cf. [5]). In view of (1) and (2) this can be rewritten as follows:

$$
\begin{align*}
(i+3) h_{i+3}=p_{1} h_{i+2}+p_{2} h_{i+1}+ & p_{3} h_{i}+p_{2}\left((i+1) h_{i+1}-p_{1} h_{i}\right)= \\
& =p_{1} h_{i+2}+(i+2) p_{2} h_{i+1}-4 D h_{i} \tag{3}
\end{align*}
$$

Thus, we aleady know the relations $D^{i+1}=h_{i}=h_{i+1}=h_{i+2}=0$ in $H_{i}^{*}$ (those for $h_{\geq i+3}$ follow from them).

Lemma 1. The relations $h_{i}=h_{i+1}=h_{i+2}=0$ imply that $D^{i}=0$.
Proof. We have $h_{1}=p_{1}, h_{2}=\frac{1}{2}\left(p_{1}^{2}+p_{2}\right), h_{3}=\frac{1}{6}\left(p_{1}^{3}+5 p_{1} p_{2}-8 D\right)$. Therefore, our assertion holds for $i=1$. Suppose for $i=k-1$ we have

$$
D^{k-1}=R_{k-1} h_{k-1}+R_{k} h_{k}+R_{k+1} h_{k+1}
$$

where $R_{i}$ are polynomials in $p_{1}, p_{2}, D$. Then

$$
D^{k}=\frac{1}{4} R_{k-1}\left(p_{1} h_{k+1}+(k+1) p_{2} h_{k}-(k+2) h_{k+2}\right)+D R_{k} h_{k}+D R_{k+1} h_{k+1}
$$

Let $\widetilde{h}_{i}$ be a polynomial in $p_{1}, p_{2}$ obtained from $h_{i}$ by substituting $D=0$ (or, equivalently, $p_{3}=p_{1} p_{2}$ ).

Lemma 2. $\widetilde{h}_{i}$ and $\widetilde{h}_{i+1}$ are relatively prime for every $i$.
Proof. Induction on $i$. For $i=1$ the assertion if true. If it holds for $i=k$ but $\breve{h}_{k+1}$ and $\widetilde{h}_{k+2}$ have a common factor $h^{\prime}$ then (3) shows that $h^{\prime}$ is also a divisor of $p_{2} \widetilde{h}_{k}$. It is easy to check that none of $\widetilde{h}_{i}$ is divisible by $p_{2}$ (in fact, the coefficient of $p_{1}^{i}$ in $\widetilde{h}_{i}$ is $\frac{1}{i!}$ ). Hence $p_{2}$ does not divide $h^{\prime}$ therefore $h^{\prime}$ divides $\widetilde{h}_{k}$ contrary to the induction hypothesis.

Lemma 3. $h_{i}$ and $h_{i+1}$ are relatively prime for every $i$.
Proof. Suppose $h^{\prime \prime}$ is a common factor of $h_{i}$ and $h_{i+1}$. Then $h^{\prime \prime}$ is homogeneous in the grading given by $\operatorname{deg} p_{1}=2, \operatorname{deg} p_{2}=4, \operatorname{deg} D=6$. Therefore its
reduction modulo $D$ cannot be a non-zero constant. It cannot be zero either, since none of the $h_{i}$ is divisible by $D$. Hence the reduction of $h^{\prime \prime}$ modulo $D$ is a non-trivial common factor of $\widetilde{h}_{i}$ and $\widetilde{h}_{i+1}$ which contradicts Lemma 2.

Lemma 4. The polynomials $h_{i}, h_{i+1}$ and $h_{i+2}$ form a regular sequence for every $i \geq 1$.

Proof. Induction on $i$. For $i=1$ the statement is clearly true. Suppose it is true for $i=k-1$. In view of Lemma 3, to show the regularity for $i=k$ it suffices to prove that if $A h_{k+2}=B h_{k}+C h_{k+1}$ then $A$ belongs to the ideal in $\mathbb{C}\left[p_{1}, p_{2}, D\right]$ generated by $h_{k}$ and $h_{k+1}$. In fact, (3) shows that $A D h_{k-1}=B^{\prime} h_{k}+C^{\prime} h_{k+1}$ for some polynomials $B^{\prime}$ and $C^{\prime}$. By the inductive assumption this implies that

$$
\begin{equation*}
A D=F h_{k}+G h_{k+1} \tag{4}
\end{equation*}
$$

for some polynomials $F, G$, and we want to show that a similar decomposition holds for $A$ itself. To that end, reduce (4) modulo $D$. By Lemma 2 we have: $\widetilde{F}=H \widetilde{h}_{k+1}$ and $\widetilde{G}=-H \widetilde{h}_{k}$ for some polynomial $H$ in $p_{1}$ and $p_{2}$. Then $F=H h_{k+1}+D F^{\prime}, G=-H h_{k}+D G^{\prime}$, for some polynomials $F^{\prime}$ and $G^{\prime}$ in $p_{1}$, $p_{2}$ and $D$. From (4) we conclude that $A=F^{\prime} h_{k}+G^{\prime} h_{k+1}$.

Theorem 2. Let $M_{i}$ be a graded module over the ring $\mathbb{C}\left[A_{1}, A_{2}, D\right]$ with generators $P^{i}\left(\Lambda^{*}(W)\right)$ and relations $h_{i}=h_{i+1}=h_{i+2}=0$. Then the Poincaré series (in fact, a polynomial) of $M_{i}$ is equal to

$$
Q_{i}(t)=\left[\binom{2 g}{i}-\binom{2 g}{i-2}\right] t^{3 g-3 i} \frac{\left(1-t^{2 i}\right)\left(1-t^{2 i+2}\right)\left(1-t^{2 i+4}\right)}{\left(1-t^{2}\right)\left(1-t^{4}\right)\left(1-t^{6}\right)} .
$$

Proof. It follows from Lemmas 1-4 that $M_{i}$ has a graded free resolution

$$
0 \rightarrow P^{i} \otimes_{\mathbb{C}}\left(\Lambda^{3} U \rightarrow \Lambda^{2} U \rightarrow U \rightarrow \mathbb{C}\left[A_{1}, A_{2}, D\right]\right) \rightarrow M_{i} \rightarrow 0
$$

where $U$ is the free rank 3 graded $\mathbb{C}\left[A_{1}, A_{2}, D\right]$-module with generators corresponding to $h_{i}, h_{i+1}, h_{i+2}$. Since the dimension of $P^{i}$ is equal to the difference of the binomial coefficients in the formula, the theorem follows from the above resolution.

Theorem 3. As a module over $\mathbb{C}\left[A_{1}, A_{2}, D\right]$, the cohomology ring $H^{*}(N, \mathbb{C})$ is isomorphic to the direct some $\bigoplus_{i=0}^{g} M_{i}$ of the submodules defined in Theorem 2. Proof. Since $A_{1}, A_{2}$ and $D_{i}$ generate $H^{*}(N, \mathbb{C})$ multiplicatively, $\bigoplus_{i=0}^{g} M_{i}$ maps surjectively onto $H^{*}(N, \mathbb{C})$. Since both spaces have Poincaré polynomial

$$
\frac{\left(1+t^{3}\right)^{2 g}-t^{2 g}(1+t)^{2 g}}{\left(1-t^{2}\right)\left(1-t^{4}\right)}
$$

(due to the formula in [1] and Theorem 2), this map is an isomorphism. In particular, $H_{i}^{*} \simeq M_{i}$.

## BIBLIOGRAPHY

[1] M. F. Attyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy Soc. London Ser A 308 (1983), 523-615.
[2] U. V. Desale and S. Ramanan, Classification of vector bundles of rank 2 on hyperelliptic curves, Invent. Math. 38 (1976/77), 161-185.
[3] W. Fulton, Intersection theory, Springer-Verlag, Berlin, 1984.
[4] Y. Laszlo, La dimension de l'espace des sections du diviseur theta généralisé, Bull. Soc. Math. France 119 (1991), 293-306.
[5] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, Oxford, 1979.
[6] M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differential Geom. 35 (1992), 131-149.

Received Feb. 23, 1994
Translated by F. L. ZAK, English version revised by the author.

Additional References (appeared after the publication of this paper):
[7] King A.D., Newstead P.E.: On the cohomology ring of the moduli space of rank 2 vector bundles on a curve Topology 37 (1998), no. 2, 407-418.
[8] Siebert T., Tian G.: Recursive realtion for the cohomology ring of moduli spaces of stable bundles. Turkish J. Math. 9 (1995), no. 2, 131-144.
[9] Thaddeus M.: An introduction to the topology of the moduli space of stable bundles on a Riemann surface. Geometry and physics (Aarhus, 1995), 71-99, Lecture Notes in Pure and Appl. Math., 184.
[10] Zagier D.: On the cohomology of moduli spaces of rank two vector bundles over curves. The moduli space of curves, 533-563, Progr. Math., 129.


[^0]:    ${ }^{*}$ The original version of this paper has appeared in Izv. Ross. Akad. Nauk Ser. Mat. 58, No 4. (1994) (English translation in Russian Acad. Sci. Izv. Math. Vol. 45, No. 4 (1995)). Later it was revised by the author in an attempt to make it more readable.

