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Abstract

The multiplicative structure of the cohomology ring of the moduli
space of stable rank 2 bundles on a smooth projective curve is computed.

INTRODUCTION

Let C be a complete smooth curve of genus g ≥ 2 over the field of complex
numbers C. Consider the moduli space N of stable rank 2 vector bundles on C
with fixed determinant L of odd degree 2k− 1 . Then N is a smooth projective
variety of dimension 3g − 3. On the direct product N × C one has a universal
bundle V with Chern classes (cf. [1])

c1(V ) = pr∗N (A1) + (2k − 1)pr∗C(ω),

c2(V ) = pr∗N (A2) +
2g∑

i=1

pr∗N (Di) ∪ pr∗C(βi) + k · pr∗N (A1) ∪ pr∗C(ω),

where Aj ∈ H2j(N, C), Di ∈ H3(N, C), ω ∈ H2(C, C), and (βi) is a symplectic
basis of H1(C, C) (i.e., βi ∪ βg+s = δisω and βi ∪ βs = 0 for i, s = 1, . . . , s).
One can show that Ai and Dj generate H∗(N, C) as a ring (cf. [1]). Hence to
describe the cohomology ring it suffices to compute the intersection numbers∫

N
An

1Am
2

∏2g
i=1 Dri

i where ri ∈ {0, 1} and all the degrees add up to 6g − 6 (the
real dimension of N), and to determine relations between A1, A2 and Di.

Let W = H3(N, C), and let Λ∗(W ) be the exterior algebra over W . Note
that the symplectic group Sp(2g, C) acts on Λ∗(W ) (a symplectic transformation
of H1(C, C) induces a transformation of W ). The intersection form on N is Sp-
invariant and, if we denote D =

∑g
i=1 Di∪Dg+i, the cohomology ring H∗(N, C)

as a module over C[A1, A2, D] splits into direct sum of submodules generated
by primitive components of the Lefschetz decomposition for Λ∗(W ). We will
show that each of these submodules can be recovered from the cohomology of
the moduli spaces corresponding to smaller genera.

∗The original version of this paper has appeared in Izv. Ross. Akad. Nauk Ser. Mat. 58,
No 4. (1994) (English translation in Russian Acad. Sci. Izv. Math. Vol. 45 , No. 4 (1995)).
Later it was revised by the author in an attempt to make it more readable.
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Let π̃1(C) be the universal central extension of the fundamental group π1(C).
By Narasimhan-Seshadri Theorem, as a topological space, N parametrizes (up
to congugacy) group homomorphisms π̃1(C) → SU(2) mapping the central
element to −1 ∈ SU(2). In particular, the structure of the cohomology ring of
N does not depend on the complex structure of C.

Using the explicit realization of N for hyperelliptic curves given in [2], we
succeed in carrying out the computations within the framework of the classical
Schubert calculus (in particular, we do not use the Verlinde formula). A similar
method was used by Laszlo [4] to compute the dimension of the space of confor-
mal blocks. We refer to [6] for computation of the intersection form using the
Verlinde formula.

In §1 we compute the intersection form on the cohomology of N . In §2
we construct a resolution of H∗(N, C) as a module over the polynomial ring
C[A1, A2, D] (this involves determining relations between A1, A2, Di).

The author is grateful to B. L. Feigin for arousing interest in this problem,
to P. Deligne for useful discussions, and to A. N. Tyurin for valuable suggestions
and support.

§1. THE INTERSECTION FORM

1.1. The moduli space and the Grassmann variety. We recall some
results on the moduli space of bundles on a hyperelliptic curve [2].

Consider a general pencil of quadrics in P2g+1 . A general element of this
pencil is a smooth quadric containing two families of g-dimensional linear sub-
spaces. The degenerate elements of this pencil (there are 2g + 2 of them) have
one singular point and one family of g-dimensional linear subspaces. Hence the
data

{quadric in the pencil + distinguished family of linear subspaces}

defines a double covering of P1 branched at 2g +2 points, that is a hyperelliptic
curve of genus g. Conversely, to each hyperelliptic curve C of genus g there
corresponds a pencil of quadrics {α0Q0 + α1Q1}, (α0 : α1) ∈ P1.

Theorem 1. Let N be the moduli space of rank two bundles with a fixed odd
determinant on a hyperelliptic curve C, and let α0Q0+α1Q1 be the corresponding
pencil of quadrics in P2g+1. Then

N ' {variety of (g-2)-dimensional linear subspaces on Q0 ∩Q1}

The proof is given in [2]. �

Thus, N is naturally embedded in the Grassmann variety Gr(g − 1, 2g + 2). In
what follows this Grassmann variety will be denoted simply by Grg. Let S and
Q denote, respectively, the universal sub- and quotient bundle on Grg.

Let x1, . . . , xg+3 be formal variables. We recall the definitions of some sym-
metric functions in xi: the Newton’s symmetric function pn is equal to

∑
xn

i ,
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while the elementary symmetric functions en and the full symmetric functions
hn are best defined via generating functions:

E(t) =
g+3∑
i=1

entn, H(t) =
g+3∑
i=1

hntn.

By definition

E(t) =
g+3∏
i=1

(1 + xit), H(t) =
g+3∏
i=1

(1− xit)−1.

Recall that the ring of symmetric functions in x1, . . . , xg+3 can be mapped sur-
jectively onto H∗(Grg, C). This map sends en to cn(Q), hn to cn(S∗), and
pn maps to the n-th component of the Chern character chn(Q). Recall fur-
ther that any partition λ = (λi)i=1,...,g−1 gives rise to the Schur symmetric
function det(eλi+j−i), which is mapped to the Schubert class {λ1, . . . , λg−1} =
det(cλi+j−i(Q))1≤i,j≤g−1. In what follows we denote by the same letters pi and
hj the symmetric functions, their images in H∗(Grg, C), as well as restrictions
to H∗(N, C) (this should not lead to confusion).

The quadrics Q0 and Q1 of the pencil in P2g+1 define two sections of the
bundle Sym2(S∗) on Grg , and N is the common zero set of these two sections.
From ([3], Example 14.7.15) we conclude that the class in H∗(Grg, C) Poincaré
dual to N is 22g−2{g − 1, g − 2, . . . , 1}2.

Now we want to express the cohomology classes A1, A2, Di on N , via the
classes pi coming from Grg. By the adjunction formula, we have the following
equality on N :

ch(TGrg
|N ) = ch(TN ) + 2ch(Sym2(S∗|N )).

A direct computation yields:

ch(TN ) = 2
(
(g − 1) +

∞∑
i=1

(−1)i+1pi

i!

)(
2 +

∞∑
i=1

p2i

(2i)!

)
− (g − 1) +

∞∑
i=1

(−2)ipi

i!
.

On the other hand, let π : N×C → C be a projection. Then TN = −π!(End0V )
(cf. [1]). By Grothendieck-Riemann-Roch one has

ch(π!(End0V )) = π∗(ch(EndV )(1− (g − 1)ω)).

Let ∆ = 4A2 −A2
1. Then for k = 1, 2 . . . one has:

ch2k(TN ) =
2(−1)k

(2k)!
(g − 1)∆k,

ch2k−1(TN ) =
2(−1)k

(2k − 1)!
(8(k − 1)D∆k−2 −A1∆k−1).
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Comparing the components of the two formulas for ch(TN ) we get:

A1 = p1, A2 =
1
4
(p2

1 − p2), D =
1
4
(p1p2 − p3). (1)

Moreover, we obtain the following relations between restrictions of cohomology
classes to N :

p2k = pk
2 , p2k−1 = p3p

k−2
2 , k = 2, 3, . . . (2)

Denote by 〈. . .〉g, the intersection form on the moduli space N corresponding to
genus a g curve (for our computations we also need the intersection forms for
smaller genera), and by 〈. . .〉Grg

the intersection form on the Grassman variety
Grg.

1.2. Computation of 〈A3g−3〉g. The Schubert class dual to {g−1, g−2, . . . , 1}
is {g + 2, g + 1, . . . , 4}. Hence to compute

〈A3g−3〉g = 〈22g−2{g − 1, g − 2, . . . , 1}2p3g−3
1 〉Grg

it suffices to find the coefficient of {g + 2, g + 1, . . . , 4} in the decomposition of
{g − 1, g − 2, . . . , 1}p3g−3

1 into Schubert classes. A coefficient of this kind can
be found using the Schubert determinant formula (cf. [31, Example 14.7.11,
formula (iv)). In our case it is equal to

(3g − 3)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
3!

1
1!

0 . . . 0

1
5!

1
3!

1
1!

. . . 0

...
...

...
. . .

...

1
(2g − 3)!

1
(2g − 5)!

1
(2g − 7)!

. . .
1
1!

1
(2g − 1)!

1
(2g − 3)!

1
(2g − 5)!

. . .
1
3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Denote this determinant by ag−1 . Decompose it with respect to the last column.
The second summand in this decomposition is equal to 1

3!ag−2 while the first
can be decomposed again with respect to the last column, and so on. This
procedure leads to a relation

0 = −ag−1 +
1
3!

ag−2 −
1
5!

ag−3 + . . . + (−1)g 1
(2g − 1)!

.
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Put f(t) =
∞∑

g=1

ag−1t
2g−2, where it is assumed that a0 = 1 . The above relation

means that f(t) sin t = 1, i.e.,

f(t) =
∞∑

k=0

(−1)k+1(22k − 2)B2k
t2k

(2k)!
,

where B2k is the Bernoulli number. Finally we get:

〈A3g−3
1 〉g =

(3g − 3)!
(2g − 2)!

(−1)g22g−2(22g−2 − 2)B2g−2.

1.3. Computation of 〈A3r
1 (A1A2)q〉r+q+1 . By virtue of (1) it suffices

to compute 〈p3r
1 (p1p2)q〉r+q+1. To this end we need a multiplication rule for

Schur and Newton functions. For each partition ρ = (ρi)i=1,...,m we put pρ =
pρ1pρ2 . . . pρm . Recall that any partition λ can be represented by a Young dia-
gram which has λi squares in the i-th row. Then, according to [5], we have

{λ1, . . . , λg−1}pρ =
∑
λ′

αλ′{λ′1, . . . , λ′g−1},

and αλ′ =
∑

s∈S(−1)l(s). Here s runs through the set S formed by sequences
of partitions (λ = λ0, λ1, . . . , λm−1, λm = λ′) such that the Young digram of
each λj−1 is contained in the diagram of λj and its complement is a skew ρj-
hook, i.e. a connected set of ρj squares which does not contain any 2 × 2
squares. The length l of a hook is defined as the number of its columns minus
one and l(s) in the previous formula denotes

∑
j l(λj − λj−1). Since we want

to determine the coefficient of {g + 2, g + 1, . . . , 4} in the decomposition of
{g − 1, g − 2, . . . , 1}p3r

1 (p1p2)q into a sum of Schubert classes, in our case:

λ = (g − 1, . . . , 1), p = (2, . . . , 2︸ ︷︷ ︸
q

, 1, . . . , 1︸ ︷︷ ︸
q+3r

), λ′ = (g + 2, g + 1, . . . , 4).

Hence all l(s) are equal to q and the set S represents the number of ways to fill
the space between two “staircases” in Diagram 1, by skew hooks made of 2 or
1 squares:

Diagram 1 Diagram 2 Diagram 3

It is clear from the picture that the hooks with two squares can be added in a
unique way (each of them goes horizontally to the top possible position). The
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1 × 1 squares to the right of them can be added at any point of the sequence
{λ0, . . . , λm} ∈ S. Since this involves choosing q ordered squares out of (3r+q),
the cardinality of S is equal to (3r+q)!

(3r)! ·Nr, where Nr is the number of ways to fill
the remaining space between the Young diagrams with 1× 1-squares (obtaining
a Young diagram at each step). It follows from the above formula for symmetric
functions that Nr, up to a power of 2, coincides with 〈p3r

1 〉r+1 computed in the
previous section. Hence

〈p3r
1 (p1p2)q〉r+q+1 =

(3r + q)!
(3r)!

(−4)q〈p3r
1 〉r+1 =

=
(3r + q)!

(2r)!
(−1)r+q+122(r+q)(22r − 2)B2r.

Similar considerations show that 〈pm
1 pn

2 〉1+(m+2n)/3 vanishes if m < n (there
will be too many skew 2-hooks).

1.4. The remaining intersection numbers. Computation of the inter-
section numbers involving Di is slightly more complicated. Recall that the
intersection form is Sp-invariant; therefore it vanishes on the non-invariant
part of Λ∗(W ). Since the subspace of invariants is generated by the pow-
ers of D =

∑g
i=1 Di ∪ Dg+i, it suffices to compute the intersection numbers

〈p3r
1 (p1p2)qDs〉s+r+q+1. Due to (1) it is enough to evaluate the intersection

numbers involving p1, p2 and p3.
The computation of 〈p3r

1 ps
3〉s+r+1 can be carried out using the skew hooks

formula of 1.3. We will also need another auxiliary intersection number

[p3r
1 ps

3] := 〈p3r
1 ps

3{g − 1, . . . , 4, 3, 3, 3}{g − 1, . . . , 4, 3, 2, 1}〉Grs+r−1

This number can be evaluated as a coefficient of {g + 2, . . . , 5, 4} in the de-
composition of p3r

1 ps
3{g − 1, . . . , 4, 3, 3, 3} into the sum of Schubert classes. As

before, we need to count the number of ways to fill the “snake” shaped figure
in Diagram 2 by skew hooks with 3 or 1 squares.

Introduce the following generating functions

F (t1, t2) =
∑

s,r≥0

〈p3r
1 ps

3〉
t2r
1 ts2

22(s+r)(3r)!s!
,

G(t1, t2) = 1−
∑

s,r≥0
s+r 6=0

[p3r
1 ps

3]
t2r
1 ts2

(3r)!s!

(the numerical coefficients come from the coefficients in the formulas of 1.2).
We have shown in 1.2 that F (t, 0) = f(t) = t/ sin t. In a similar way one can

verify that G(t, 0) = t · cos t/ sin t. Now we compute 〈ps
3p

3r
1 〉s+r+1 by the skew

hooks rule. The first skew 3-hook can be of two types (cf. Diagram 3): either
a “rectangle” (in this case the number or ways to fill the rest with skew hooks
is 1

22(s+r−1) 〈ps−1
3 p3r

1 〉s+r); or a “corner” (in this case the shape is split into two
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pieces as in Diagrams 1 and 2, and the number of ways to fill the rest with hooks

is equal to
∑
s1,r1

(
s−1
s1

)(
3r
3r1

) 1
22(s1+r1)

〈ps1
3 p3r1

1 〉s1+r1+1[ps−s1−1
3 p3r−3r1

1 ]). A similar

argument applies to [ps
3p

3r
1 ]. It is convenient to describe this inductive step in

terms of generating functions:{
∂

∂t2
F = FG,

∂
∂t2

G = t21 + G2.

(The first equation explains why we had to consider [ps
3p

3r
1 ].) We conclude that

F (t1, t2) =
t1

sin(t1 − t1t2)
, G(t1, t2) =

t1 cos(t1 − t1t2)
sin(t1 − t1t2)

.

Expanding the expression for F we get

〈ps
3p

3r
1 〉s+r+1 = (−4)s(2r − 1) . . . (2r − s)〈p3r

1 〉r+1.

To compute 〈ps
3(p1p2)qp3r

1 〉s+r+q+1 we multiply {g − 1, . . . , 1} first by pq
2 and

then by ps
3p

3r
1 . Since we are interested in the coefficient of {g + 2, . . . , 5, 4} in

the resulting product, it follows from the pictures that all the 2-hooks have to
be added in a unique way (only one per each row). Thus we get

〈ps
3(p1p2)qp3r

1 〉s+q+r+1 = (−4)s (3r + q)!
(3r)!

〈ps
3p

3r
1 〉s+r+1.

Again we see that 〈 ps
3p

m
1 pn

2 〉1+s+(m+2n)/3 vanishes if m < n (we need a skew
1-hook to put to the immediate right of each skew 2-hook). Finally, a direct
computation using (1) shows that

〈Ds(p1p2)qp3r
1 〉s+r+q+1 = (−1)s (s + q + r + 1)!

(r + q + 1)!
〈p3r

1 (p1p2)q〉r+q+1.

Put s = 1 and note that the number of summands in the definition of D is equal
to g = q + r + 2. By Sp-invariance of the intersection form we deduce that:

If R(Ai, Dj) is an expression not involving Dg and D2g then

〈DgD2gR(Ai, Dj)〉g = −〈R(Ai, Dj)〉g−1

〈DgR(Ai, Dj)〉g = 〈D2gR(Ai, Dj)〉g−1 = 0.

§2. RELATIONS IN THE COHOMOLOGY RING

Consider H∗(N, C) as a module over the ring of weighted polynomials As we
have already observed, this module splits into a direct sum of submodules gener-
ated by primitive components of the Lefschetz decomposition (this follows from
the fact that the action of the group Sp(2g, C) on them is irreducible). Put

P i = Ker
(
(· ∧Di+1) : Λg−i(W ) → Λg+i+2

)
,
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Ψi = Dg ∧ . . . ∧D1+i −D2g ∧ . . . ∧Dg+1+i, Ψi ∈ P i, i = 0, . . . , g.

Let hi be the cohomology class on N corresponding to the symmetric function
hi. Note that the relations (2) allow us to express hi as a polynomial in p1, p2,
p3. Recall hi are nothing but restrictions of the Chern classes of the universal
subbundle S on the Grassmann variety. Since rk(S) = g − 1, in H∗(N, C)
we have hi = 0 for i ≥ g. In general, let H∗

i be the C[A1, A2, D]-submodule
generated by P i. Using the computations in the end of §1, we see that Ψihj = 0
for j ≥ i and, in view of Sp-invariance P ihj = 0 for j ≥ i. We claim that all the
relations in H∗

i follow from these relations (and in fact it is enough to consider
only j = i, i + 1, i + 2).

To prove this we use the reccurence relation nhn =
∑n

r=1 prhn−r in the ring
of symmetric functions (cf. [5]). In view of (1) and (2) this can be rewritten as
follows:

(i + 3)hi+3 = p1hi+2 + p2hi+1 + p3hi + p2((i + 1)hi+1 − p1hi) =

= p1hi+2 + (i + 2)p2hi+1 − 4Dhi (3)

Thus, we aleady know the relations Di+1 = hi = hi+1 = hi+2 = 0 in H∗
i (those

for h≥i+3 follow from them).

Lemma 1. The relations hi = hi+1 = hi+2 = 0 imply that Di = 0.

Proof. We have h1 = p1, h2 = 1
2 (p2

1 + p2), h3 = 1
6 (p3

1 + 5p1p2 − 8D). Therefore,
our assertion holds for i = 1. Suppose for i = k − 1 we have

Dk−1 = Rk−1hk−1 + Rkhk + Rk+1hk+1,

where Ri are polynomials in p1, p2, D. Then

Dk =
1
4
Rk−1(p1hk+1 + (k + 1)p2hk − (k + 2)hk+2) + DRkhk + DRk+1hk+1.

�
Let h̃i be a polynomial in p1, p2 obtained from hi by substituting D = 0 (or,
equivalently, p3 = p1p2).

Lemma 2. h̃i and h̃i+1 are relatively prime for every i.

Proof. Induction on i. For i = 1 the assertion if true. If it holds for i = k
but h̃k+1 and h̃k+2 have a common factor h′ then (3) shows that h′ is also a
divisor of p2h̃k. It is easy to check that none of h̃i is divisible by p2 (in fact, the
coefficient of pi

1 in h̃i is 1
i! ). Hence p2 does not divide h′ therefore h′ divides h̃k

contrary to the induction hypothesis. �

Lemma 3. hi and hi+1 are relatively prime for every i.

Proof. Suppose h′′ is a common factor of hi and hi+1. Then h′′ is homogeneous
in the grading given by deg p1 = 2, deg p2 = 4, deg D = 6. Therefore its
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reduction modulo D cannot be a non-zero constant. It cannot be zero either,
since none of the hi is divisible by D. Hence the reduction of h′′ modulo D is a
non-trivial common factor of h̃i and h̃i+1 which contradicts Lemma 2. �

Lemma 4. The polynomials hi, hi+1 and hi+2 form a regular sequence for
every i ≥ 1.

Proof. Induction on i. For i = 1 the statement is clearly true. Suppose it is true
for i = k− 1. In view of Lemma 3, to show the regularity for i = k it suffices to
prove that if Ahk+2 = Bhk + Chk+1 then A belongs to the ideal in C[p1, p2, D]
generated by hk and hk+1. In fact, (3) shows that ADhk−1 = B′hk + C ′hk+1

for some polynomials B′ and C ′. By the inductive assumption this implies that

AD = Fhk + Ghk+1 (4)

for some polynomials F , G, and we want to show that a similar decomposition
holds for A itself. To that end, reduce (4) modulo D. By Lemma 2 we have:
F̃ = Hh̃k+1 and G̃ = −Hh̃k for some polynomial H in p1 and p2. Then
F = Hhk+1 + DF ′, G = −Hhk + DG′, for some polynomials F ′ and G′ in p1,
p2 and D. From (4) we conclude that A = F ′hk + G′hk+1. �.

Theorem 2. Let Mi be a graded module over the ring C[A1, A2, D] with gener-
ators P i(Λ∗(W )) and relations hi = hi+1 = hi+2 = 0. Then the Poincaré series
(in fact, a polynomial) of Mi is equal to

Qi(t) =
[(

2g
i

)
−

(
2g

i−2

)]
t3g−3i (1− t2i)(1− t2i+2)(1− t2i+4)

(1− t2)(1− t4)(1− t6)
.

Proof. It follows from Lemmas 1 - 4 that Mi has a graded free resolution

0 → P i ⊗C
(
Λ3U → Λ2U → U → C[A1, A2, D]

)
→ Mi → 0

where U is the free rank 3 graded C[A1, A2, D]-module with generators corre-
sponding to hi, hi+1, hi+2. Since the dimension of P i is equal to the difference
of the binomial coefficients in the formula, the theorem follows from the above
resolution. �.

Theorem 3. As a module over C[A1, A2, D], the cohomology ring H∗(N, C) is

isomorphic to the direct some
g⊕

i=0

Mi of the submodules defined in Theorem 2.

Proof. Since A1, A2 and Di generate H∗(N, C) multiplicatively,
g⊕

i=0

Mi maps

surjectively onto H∗(N, C). Since both spaces have Poincaré polynomial

(1 + t3)2g − t2g(1 + t)2g

(1− t2)(1− t4)
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(due to the formula in [1] and Theorem 2), this map is an isomorphism. In
particular, H∗

i ' Mi. �
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