The Cohomology Ring of the Moduli Space of Stable Vector Bundles with Odd Determinant *

Vladimir BARANOVSKY

Abstract

The multiplicative structure of the cohomology ring of the moduli space of stable rank 2 bundles on a smooth projective curve is computed.

INTRODUCTION

Let C be a complete smooth curve of genus $g \ge 2$ over the field of complex numbers \mathbb{C} . Consider the moduli space N of stable rank 2 vector bundles on C with fixed determinant L of odd degree 2k - 1. Then N is a smooth projective variety of dimension 3g - 3. On the direct product $N \times C$ one has a universal bundle V with Chern classes (cf. [1])

$$c_{1}(V) = pr_{N}^{*}(A_{1}) + (2k - 1)pr_{C}^{*}(\omega),$$

$$c_{2}(V) = pr_{N}^{*}(A_{2}) + \sum_{i=1}^{2g} pr_{N}^{*}(D_{i}) \cup pr_{C}^{*}(\beta_{i}) + k \cdot pr_{N}^{*}(A_{1}) \cup pr_{C}^{*}(\omega),$$

where $A_j \in H^{2j}(N, \mathbb{C}), D_i \in H^3(N, \mathbb{C}), \omega \in H^2(C, \mathbb{C})$, and (β_i) is a symplectic basis of $H^1(C, \mathbb{C})$ (i.e., $\beta_i \cup \beta_{g+s} = \delta_{is}\omega$ and $\beta_i \cup \beta_s = 0$ for $i, s = 1, \ldots, s$). One can show that A_i and D_j generate $H^*(N, \mathbb{C})$ as a ring (cf. [1]). Hence to describe the cohomology ring it suffices to compute the intersection numbers $\int_N A_1^n A_2^m \prod_{i=1}^{2g} D_i^{r_i}$ where $r_i \in \{0, 1\}$ and all the degrees add up to 6g - 6 (the real dimension of N), and to determine relations between A_1, A_2 and D_i .

Let $W = H^3(N, \mathbb{C})$, and let $\Lambda^*(W)$ be the exterior algebra over W. Note that the symplectic group $Sp(2g, \mathbb{C})$ acts on $\Lambda^*(W)$ (a symplectic transformation of $H^1(C, \mathbb{C})$ induces a transformation of W). The intersection form on N is Spinvariant and, if we denote $D = \sum_{i=1}^{g} D_i \cup D_{g+i}$, the cohomology ring $H^*(N, \mathbb{C})$ as a module over $\mathbb{C}[A_1, A_2, D]$ splits into direct sum of submodules generated by primitive components of the Lefschetz decomposition for $\Lambda^*(W)$. We will show that each of these submodules can be recovered from the cohomology of the moduli spaces corresponding to smaller genera.

^{*}The original version of this paper has appeared in *Izv. Ross. Akad. Nauk Ser. Mat.* **58**, No 4. (1994) (English translation in *Russian Acad. Sci. Izv. Math.* Vol. **45**, No. 4 (1995)). Later it was revised by the author in an attempt to make it more readable.

Let $\tilde{\pi}_1(C)$ be the universal central extension of the fundamental group $\pi_1(C)$. By Narasimhan-Seshadri Theorem, as a topological space, N parametrizes (up to congugacy) group homomorphisms $\tilde{\pi}_1(C) \to SU(2)$ mapping the central element to $-1 \in SU(2)$. In particular, the structure of the cohomology ring of N does not depend on the complex structure of C.

Using the explicit realization of N for hyperelliptic curves given in [2], we succeed in carrying out the computations within the framework of the classical Schubert calculus (in particular, we do not use the Verlinde formula). A similar method was used by Laszlo [4] to compute the dimension of the space of conformal blocks. We refer to [6] for computation of the intersection form using the Verlinde formula.

In §1 we compute the intersection form on the cohomology of N. In §2 we construct a resolution of $H^*(N, \mathbb{C})$ as a module over the polynomial ring $C[A_1, A_2, D]$ (this involves determining relations between A_1, A_2, D_i).

The author is grateful to B. L. Feigin for arousing interest in this problem, to P. Deligne for useful discussions, and to A. N. Tyurin for valuable suggestions and support.

§1. THE INTERSECTION FORM

1.1. The moduli space and the Grassmann variety. We recall some results on the moduli space of bundles on a hyperelliptic curve [2].

Consider a general pencil of quadrics in \mathbb{P}^{2g+1} . A general element of this pencil is a smooth quadric containing two families of g-dimensional linear subspaces. The degenerate elements of this pencil (there are 2g + 2 of them) have one singular point and one family of g-dimensional linear subspaces. Hence the data

{quadric in the pencil + distinguished family of linear subspaces}

defines a double covering of \mathbb{P}^1 branched at 2g + 2 points, that is a hyperelliptic curve of genus g. Conversely, to each hyperelliptic curve C of genus g there corresponds a pencil of quadrics $\{\alpha_0 Q_0 + \alpha_1 Q_1\}, (\alpha_0 : \alpha_1) \in \mathbb{P}^1$.

Theorem 1. Let N be the moduli space of rank two bundles with a fixed odd determinant on a hyperelliptic curve C, and let $\alpha_0 Q_0 + \alpha_1 Q_1$ be the corresponding pencil of quadrics in \mathbb{P}^{2g+1} . Then

 $N \simeq \{ variety of (g-2) \text{-} dimensional linear subspaces on } Q_0 \cap Q_1 \}$

The proof is given in [2]. \Box

Thus, N is naturally embedded in the Grassmann variety Gr(g-1, 2g+2). In what follows this Grassmann variety will be denoted simply by Gr_g . Let S and Q denote, respectively, the universal sub- and quotient bundle on Gr_g .

Let x_1, \ldots, x_{g+3} be formal variables. We recall the definitions of some symmetric functions in x_i : the Newton's symmetric function p_n is equal to $\sum x_i^n$,

while the elementary symmetric functions e_n and the full symmetric functions h_n are best defined via generating functions:

$$E(t) = \sum_{i=1}^{g+3} e_n t^n, \qquad H(t) = \sum_{i=1}^{g+3} h_n t^n.$$

By definition

$$E(t) = \prod_{i=1}^{g+3} (1+x_i t), \qquad H(t) = \prod_{i=1}^{g+3} (1-x_i t)^{-1}$$

Recall that the ring of symmetric functions in x_1, \ldots, x_{g+3} can be mapped surjectively onto $H^*(Gr_g, \mathbb{C})$. This map sends e_n to $c_n(Q)$, h_n to $c_n(S^*)$, and p_n maps to the *n*-th component of the Chern character $ch_n(Q)$. Recall further that any partition $\lambda = (\lambda_i)_{i=1,\ldots,g-1}$ gives rise to the Schur symmetric function $det(e_{\lambda_i+j-i})$, which is mapped to the Schubert class $\{\lambda_1,\ldots,\lambda_{g-1}\} = det(c_{\lambda_i+j-i}(Q))_{1\leq i,j\leq g-1}$. In what follows we denote by the same letters p_i and h_j the symmetric functions, their images in $H^*(Gr_g, \mathbb{C})$, as well as restrictions to $H^*(N, \mathbb{C})$ (this should not lead to confusion).

The quadrics Q_0 and Q_1 of the pencil in \mathbb{P}^{2g+1} define two sections of the bundle $Sym^2(S^*)$ on Gr_g , and N is the common zero set of these two sections. From ([3], Example 14.7.15) we conclude that the class in $H^*(Gr_g, \mathbb{C})$ Poincaré dual to N is $2^{2g-2}\{g-1, g-2, \ldots, 1\}^2$.

Now we want to express the cohomology classes A_1, A_2, D_i on N, via the classes p_i coming from Gr_g . By the adjunction formula, we have the following equality on N:

$$ch(T_{Gr_{q}}|_{N}) = ch(T_{N}) + 2ch(Sym^{2}(S^{*}|_{N})).$$

A direct computation yields:

$$ch(T_N) = 2\left((g-1) + \sum_{i=1}^{\infty} \frac{(-1)^{i+1}p_i}{i!}\right) \left(2 + \sum_{i=1}^{\infty} \frac{p_{2i}}{(2i)!}\right) - (g-1) + \sum_{i=1}^{\infty} \frac{(-2)^i p_i}{i!}.$$

On the other hand, let $\pi : N \times C \to C$ be a projection. Then $T_N = -\pi_!(End_0V)$ (cf. [1]). By Grothendieck-Riemann-Roch one has

$$ch(\pi_{!}(End_{0}V)) = \pi_{*}(ch(End_{V})(1-(g-1)\omega)).$$

Let $\Delta = 4A_2 - A_1^2$. Then for k = 1, 2... one has:

$$ch_{2k}(T_N) = \frac{2(-1)^k}{(2k)!}(g-1)\Delta^k,$$

$$ch_{2k-1}(T_N) = \frac{2(-1)^k}{(2k-1)!}(8(k-1)D\Delta^{k-2} - A_1\Delta^{k-1}).$$

Comparing the components of the two formulas for $ch(T_N)$ we get:

$$A_1 = p_1, \qquad A_2 = \frac{1}{4}(p_1^2 - p_2), \qquad D = \frac{1}{4}(p_1p_2 - p_3).$$
 (1)

Moreover, we obtain the following relations between restrictions of cohomology classes to N:

$$p_{2k} = p_2^k, \quad p_{2k-1} = p_3 p_2^{k-2}, \quad k = 2, 3, \dots$$
 (2)

÷

Denote by $\langle \ldots \rangle_g$, the intersection form on the moduli space N corresponding to genus a g curve (for our computations we also need the intersection forms for smaller genera), and by $\langle \ldots \rangle_{Gr_g}$ the intersection form on the Grassman variety Gr_g .

1.2. Computation of $\langle \mathbf{A}^{3\mathbf{g}-3} \rangle_{\mathbf{g}}$. The Schubert class dual to $\{g-1, g-2, \ldots, 1\}$ is $\{g+2, g+1, \ldots, 4\}$. Hence to compute

$$\langle A^{3g-3} \rangle_g = \langle 2^{2g-2} \{g-1, g-2, \dots, 1\}^2 p_1^{3g-3} \rangle_{Gr_g}$$

it suffices to find the coefficient of $\{g + 2, g + 1, \ldots, 4\}$ in the decomposition of $\{g - 1, g - 2, \ldots, 1\}p_1^{3g-3}$ into Schubert classes. A coefficient of this kind can be found using the Schubert determinant formula (cf. [31, Example 14.7.11, formula (iv)). In our case it is equal to

.

$$(3g-3)! \begin{vmatrix} \frac{1}{3!} & \frac{1}{1!} & 0 & \dots & 0 \\ \\ \frac{1}{5!} & \frac{1}{3!} & \frac{1}{1!} & \dots & 0 \\ \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \\ \frac{1}{(2g-3)!} & \frac{1}{(2g-5)!} & \frac{1}{(2g-7)!} & \dots & \frac{1}{1!} \\ \\ \\ \frac{1}{(2g-1)!} & \frac{1}{(2g-3)!} & \frac{1}{(2g-5)!} & \dots & \frac{1}{3!} \end{vmatrix}$$

Denote this determinant by a_{g-1} . Decompose it with respect to the last column. The second summand in this decomposition is equal to $\frac{1}{3!}a_{g-2}$ while the first can be decomposed again with respect to the last column, and so on. This procedure leads to a relation

$$0 = -a_{g-1} + \frac{1}{3!}a_{g-2} - \frac{1}{5!}a_{g-3} + \ldots + (-1)^g \frac{1}{(2g-1)!}$$

Put $f(t) = \sum_{g=1}^{\infty} a_{g-1} t^{2g-2}$, where it is assumed that $a_0 = 1$. The above relation means that $f(t) \sin t = 1$, i.e.,

$$f(t) = \sum_{k=0}^{\infty} (-1)^{k+1} (2^{2k} - 2) B_{2k} \frac{t^{2k}}{(2k)!},$$

where B_{2k} is the Bernoulli number. Finally we get:

$$\langle A_1^{3g-3} \rangle_g = \frac{(3g-3)!}{(2g-2)!} (-1)^g 2^{2g-2} (2^{2g-2}-2) B_{2g-2}.$$

1.3. Computation of $\langle \mathbf{A}_{1}^{3r}(\mathbf{A}_{1}\mathbf{A}_{2})^{\mathbf{q}} \rangle_{\mathbf{r}+\mathbf{q}+1}$. By virtue of (1) it suffices to compute $\langle p_{1}^{3r}(p_{1}p_{2})^{q} \rangle_{r+q+1}$. To this end we need a multiplication rule for Schur and Newton functions. For each partition $\rho = (\rho_{i})_{i=1,...,m}$ we put $p_{\rho} = p_{\rho_{1}}p_{\rho_{2}}\ldots p_{\rho_{m}}$. Recall that any partition λ can be represented by a Young diagram which has λ_{i} squares in the *i*-th row. Then, according to [5], we have

$$\{\lambda_1,\ldots,\lambda_{g-1}\}p_\rho=\sum_{\lambda'}\alpha_{\lambda'}\{\lambda'_1,\ldots,\lambda'_{g-1}\},\$$

and $\alpha_{\lambda'} = \sum_{s \in S} (-1)^{l(s)}$. Here s runs through the set S formed by sequences of partitions $(\lambda = \lambda^0, \lambda^1, \dots, \lambda^{m-1}, \lambda^m = \lambda')$ such that the Young digram of each λ^{j-1} is contained in the diagram of λ^j and its complement is a skew ρ_j hook, i.e. a connected set of ρ_j squares which does not contain any 2×2 squares. The length l of a hook is defined as the number of its columns minus one and l(s) in the previous formula denotes $\sum_j l(\lambda^j - \lambda^{j-1})$. Since we want to determine the coefficient of $\{g + 2, g + 1, \dots, 4\}$ in the decomposition of $\{g - 1, g - 2, \dots, 1\}p_1^{3r}(p_1p_2)^q$ into a sum of Schubert classes, in our case:

$$\lambda = (g - 1, \dots, 1), \qquad p = (\underbrace{2, \dots, 2}_{q}, \underbrace{1, \dots, 1}_{g+3r}), \qquad \lambda' = (g + 2, g + 1, \dots, 4).$$

Hence all l(s) are equal to q and the set S represents the number of ways to fill the space between two "staircases" in Diagram 1, by skew hooks made of 2 or 1 squares:

It is clear from the picture that the hooks with two squares can be added in a unique way (each of them goes horizontally to the top possible position). The

 1×1 squares to the right of them can be added at any point of the sequence $\{\lambda^0, \ldots, \lambda^m\} \in S$. Since this involves choosing q ordered squares out of (3r+q), the cardinality of S is equal to $\frac{(3r+q)!}{(3r)!} \cdot N_r$, where N_r is the number of ways to fill the remaining space between the Young diagrams with 1×1 -squares (obtaining a Young diagram at each step). It follows from the above formula for symmetric functions that N_r , up to a power of 2, coincides with $\langle p_1^{3r} \rangle_{r+1}$ computed in the previous section. Hence

$$\langle p_1^{3r}(p_1p_2)^q \rangle_{r+q+1} = \frac{(3r+q)!}{(3r)!} (-4)^q \langle p_1^{3r} \rangle_{r+1} = = \frac{(3r+q)!}{(2r)!} (-1)^{r+q+1} 2^{2(r+q)} (2^{2r}-2) B_{2r}.$$

Similar considerations show that $\langle p_1^m p_2^n \rangle_{1+(m+2n)/3}$ vanishes if m < n (there will be too many skew 2-hooks).

1.4. The remaining intersection numbers. Computation of the intersection numbers involving D_i is slightly more complicated. Recall that the intersection form is *Sp*-invariant; therefore it vanishes on the non-invariant part of $\Lambda^*(W)$. Since the subspace of invariants is generated by the powers of $D = \sum_{i=1}^{g} D_i \cup D_{g+i}$, it suffices to compute the intersection numbers $\langle p_1^{3r}(p_1p_2)^q D^s \rangle_{s+r+q+1}$. Due to (1) it is enough to evaluate the intersection numbers involving p_1 , p_2 and p_3 .

The computation of $\langle p_1^{3r} p_3^s \rangle_{s+r+1}$ can be carried out using the skew hooks formula of 1.3. We will also need another auxiliary intersection number

$$[p_1^{3r}p_3^s] := \langle p_1^{3r}p_3^s \{g-1, \dots, 4, 3, 3, 3\} \{g-1, \dots, 4, 3, 2, 1\} \rangle_{Gr_{s+r-1}}$$

This number can be evaluated as a coefficient of $\{g + 2, \ldots, 5, 4\}$ in the decomposition of $p_1^{3r}p_3^s\{g - 1, \ldots, 4, 3, 3, 3\}$ into the sum of Schubert classes. As before, we need to count the number of ways to fill the "snake" shaped figure in Diagram 2 by skew hooks with 3 or 1 squares.

Introduce the following generating functions

$$F(t_1, t_2) = \sum_{s, r \ge 0} \langle p_1^{3r} p_3^s \rangle \frac{t_1^{2r} t_2^s}{2^{2(s+r)} (3r)! s!},$$
$$G(t_1, t_2) = 1 - \sum_{\substack{s, r \ge 0\\s+r \ne 0}} [p_1^{3r} p_3^s] \frac{t_1^{2r} t_2^s}{(3r)! s!},$$

(the numerical coefficients come from the coefficients in the formulas of 1.2).

We have shown in 1.2 that $F(t, 0) = f(t) = t/\sin t$. In a similar way one can verify that $G(t, 0) = t \cdot \cos t/\sin t$. Now we compute $\langle p_3^s p_1^{3r} \rangle_{s+r+1}$ by the skew hooks rule. The first skew 3-hook can be of two types (cf. Diagram 3): either a "rectangle" (in this case the number or ways to fill the rest with skew hooks is $\frac{1}{2^{2(s+r-1)}} \langle p_3^{s-1} p_1^{3r} \rangle_{s+r}$); or a "corner" (in this case the shape is split into two

pieces as in Diagrams 1 and 2, and the number of ways to fill the rest with hooks is equal to $\sum_{s_1,r_1} {\binom{s-1}{s_1} \binom{3r}{3r_1} \frac{1}{2^{2(s_1+r_1)}} \langle p_3^{s_1} p_1^{3r_1} \rangle_{s_1+r_1+1} [p_3^{s-s_1-1} p_1^{3r-3r_1}] \rangle$. A similar

argument applies to $[p_3^s p_1^{3r}]$. It is convenient to describe this inductive step in terms of generating functions:

$$\begin{cases} \frac{\partial}{\partial t_2}F = FG,\\ \frac{\partial}{\partial t_2}G = t_1^2 + G^2 \end{cases}$$

(The first equation explains why we had to consider $[p_3^s p_1^{3r}]$.) We conclude that

$$F(t_1, t_2) = \frac{t_1}{\sin(t_1 - t_1 t_2)}, \qquad G(t_1, t_2) = \frac{t_1 \cos(t_1 - t_1 t_2)}{\sin(t_1 - t_1 t_2)}.$$

Expanding the expression for F we get

$$\langle p_3^s p_1^{3r} \rangle_{s+r+1} = (-4)^s (2r-1) \dots (2r-s) \langle p_1^{3r} \rangle_{r+1}$$

To compute $\langle p_3^s(p_1p_2)^q p_1^{3r} \rangle_{s+r+q+1}$ we multiply $\{g-1,\ldots,1\}$ first by p_2^q and then by $p_3^s p_1^{3r}$. Since we are interested in the coefficient of $\{g+2,\ldots,5,4\}$ in the resulting product, it follows from the pictures that all the 2-hooks have to be added in a unique way (only one per each row). Thus we get

$$\langle p_3^s(p_1p_2)^q p_1^{3r} \rangle_{s+q+r+1} = (-4)^s \frac{(3r+q)!}{(3r)!} \langle p_3^s p_1^{3r} \rangle_{s+r+1}.$$

Again we see that $\langle p_3^s p_1^m p_2^n \rangle_{1+s+(m+2n)/3}$ vanishes if m < n (we need a skew 1-hook to put to the immediate right of each skew 2-hook). Finally, a direct computation using (1) shows that

$$\langle D^s(p_1p_2)^q p_1^{3r} \rangle_{s+r+q+1} = (-1)^s \frac{(s+q+r+1)!}{(r+q+1)!} \langle p_1^{3r}(p_1p_2)^q \rangle_{r+q+1}$$

Put s = 1 and note that the number of summands in the definition of D is equal to g = q + r + 2. By Sp-invariance of the intersection form we deduce that:

If $R({\cal A}_i, D_j)$ is an expression not involving D_g and D_{2g} then

$$\langle D_g D_{2g} R(A_i, D_j) \rangle_g = -\langle R(A_i, D_j) \rangle_{g-1}$$
$$\langle D_g R(A_i, D_j) \rangle_g = \langle D_{2g} R(A_i, D_j) \rangle_{g-1} = 0.$$

§2. RELATIONS IN THE COHOMOLOGY RING

Consider $H^*(N, \mathbb{C})$ as a module over the ring of weighted polynomials As we have already observed, this module splits into a direct sum of submodules generated by primitive components of the Lefschetz decomposition (this follows from the fact that the action of the group $Sp(2g, \mathbb{C})$ on them is irreducible). Put

$$P^{i} = Ker\left((\cdot \wedge D^{i+1}) : \Lambda^{g-i}(W) \to \Lambda^{g+i+2}\right),$$

$$\Psi_i = D_q \wedge \ldots \wedge D_{1+i} - D_{2q} \wedge \ldots \wedge D_{q+1+i}, \qquad \Psi_i \in P^i, \qquad i = 0, \ldots, g.$$

Let h_i be the cohomology class on N corresponding to the symmetric function h_i . Note that the relations (2) allow us to express h_i as a polynomial in p_1, p_2, p_3 . Recall h_i are nothing but restrictions of the Chern classes of the universal subbundle S on the Grassmann variety. Since rk(S) = g - 1, in $H^*(N, \mathbb{C})$ we have $h_i = 0$ for $i \geq g$. In general, let H_i^* be the $\mathbb{C}[A_1, A_2, D]$ -submodule generated by P^i . Using the computations in the end of §1, we see that $\Psi_i h_j = 0$ for $j \geq i$ and, in view of Sp-invariance $P^i h_j = 0$ for $j \geq i$. We claim that all the relations in H_i^* follow from these relations (and in fact it is enough to consider only j = i, i + 1, i + 2).

To prove this we use the reccurence relation $nh_n = \sum_{r=1}^n p_r h_{n-r}$ in the ring of symmetric functions (cf. [5]). In view of (1) and (2) this can be rewritten as follows:

$$(i+3)h_{i+3} = p_1h_{i+2} + p_2h_{i+1} + p_3h_i + p_2((i+1)h_{i+1} - p_1h_i) =$$
$$= p_1h_{i+2} + (i+2)p_2h_{i+1} - 4Dh_i$$
(3)

Thus, we already know the relations $D^{i+1} = h_i = h_{i+1} = h_{i+2} = 0$ in H_i^* (those for $h_{\geq i+3}$ follow from them).

Lemma 1. The relations $h_i = h_{i+1} = h_{i+2} = 0$ imply that $D^i = 0$.

Proof. We have $h_1 = p_1$, $h_2 = \frac{1}{2}(p_1^2 + p_2)$, $h_3 = \frac{1}{6}(p_1^3 + 5p_1p_2 - 8D)$. Therefore, our assertion holds for i = 1. Suppose for i = k - 1 we have

$$D^{k-1} = R_{k-1}h_{k-1} + R_kh_k + R_{k+1}h_{k+1},$$

where R_i are polynomials in p_1, p_2, D . Then

$$D^{k} = \frac{1}{4}R_{k-1}(p_{1}h_{k+1} + (k+1)p_{2}h_{k} - (k+2)h_{k+2}) + DR_{k}h_{k} + DR_{k+1}h_{k+1}.$$

Let \tilde{h}_i be a polynomial in p_1 , p_2 obtained from h_i by substituting D = 0 (or, equivalently, $p_3 = p_1 p_2$).

Lemma 2. \tilde{h}_i and \tilde{h}_{i+1} are relatively prime for every *i*.

Proof. Induction on *i*. For i = 1 the assertion if true. If it holds for i = k but \tilde{h}_{k+1} and \tilde{h}_{k+2} have a common factor h' then (3) shows that h' is also a divisor of $p_2\tilde{h}_k$. It is easy to check that none of \tilde{h}_i is divisible by p_2 (in fact, the coefficient of p_1^i in \tilde{h}_i is $\frac{1}{i!}$). Hence p_2 does not divide h' therefore h' divides \tilde{h}_k contrary to the induction hypothesis.

Lemma 3. h_i and h_{i+1} are relatively prime for every *i*.

Proof. Suppose h'' is a common factor of h_i and h_{i+1} . Then h'' is homogeneous in the grading given by deg $p_1 = 2$, deg $p_2 = 4$, deg D = 6. Therefore its

reduction modulo D cannot be a non-zero constant. It cannot be zero either, since none of the h_i is divisible by D. Hence the reduction of h'' modulo D is a non-trivial common factor of \tilde{h}_i and \tilde{h}_{i+1} which contradicts Lemma 2.

Lemma 4. The polynomials h_i , h_{i+1} and h_{i+2} form a regular sequence for every $i \ge 1$.

Proof. Induction on *i*. For i = 1 the statement is clearly true. Suppose it is true for i = k - 1. In view of Lemma 3, to show the regularity for i = k it suffices to prove that if $Ah_{k+2} = Bh_k + Ch_{k+1}$ then A belongs to the ideal in $\mathbb{C}[p_1, p_2, D]$ generated by h_k and h_{k+1} . In fact, (3) shows that $ADh_{k-1} = B'h_k + C'h_{k+1}$ for some polynomials B' and C'. By the inductive assumption this implies that

$$AD = Fh_k + Gh_{k+1} \tag{4}$$

for some polynomials F, G, and we want to show that a similar decomposition holds for A itself. To that end, reduce (4) modulo D. By Lemma 2 we have: $\widetilde{F} = H\widetilde{h}_{k+1}$ and $\widetilde{G} = -H\widetilde{h}_k$ for some polynomial H in p_1 and p_2 . Then $F = Hh_{k+1} + DF'$, $G = -Hh_k + DG'$, for some polynomials F' and G' in p_1 , p_2 and D. From (4) we conclude that $A = F'h_k + G'h_{k+1}$. \Box .

Theorem 2. Let M_i be a graded module over the ring $\mathbb{C}[A_1, A_2, D]$ with generators $P^i(\Lambda^*(W))$ and relations $h_i = h_{i+1} = h_{i+2} = 0$. Then the Poincaré series (in fact, a polynomial) of M_i is equal to

$$Q_i(t) = \left[\binom{2g}{i} - \binom{2g}{i-2}\right] t^{3g-3i} \frac{(1-t^{2i})(1-t^{2i+2})(1-t^{2i+4})}{(1-t^2)(1-t^4)(1-t^6)}$$

Proof. It follows from Lemmas 1 - 4 that M_i has a graded free resolution

$$0 \to P^i \otimes_{\mathbb{C}} \left(\Lambda^3 U \to \Lambda^2 U \to U \to \mathbb{C}[A_1, A_2, D] \right) \to M_i \to 0$$

where U is the free rank 3 graded $\mathbb{C}[A_1, A_2, D]$ -module with generators corresponding to h_i, h_{i+1}, h_{i+2} . Since the dimension of P^i is equal to the difference of the binomial coefficients in the formula, the theorem follows from the above resolution. \Box .

Theorem 3. As a module over $\mathbb{C}[A_1, A_2, D]$, the cohomology ring $H^*(N, \mathbb{C})$ is isomorphic to the direct some $\bigoplus_{i=0}^{g} M_i$ of the submodules defined in Theorem 2.

Proof. Since A_1, A_2 and D_i generate $H^*(N, \mathbb{C})$ multiplicatively, $\bigoplus_{i=0}^{\mathcal{I}} M_i$ maps surjectively onto $H^*(N, \mathbb{C})$. Since both spaces have Poincaré polynomial

$$\frac{(1+t^3)^{2g} - t^{2g}(1+t)^{2g}}{(1-t^2)(1-t^4)}$$

(due to the formula in [1] and Theorem 2), this map is an isomorphism. In particular, $H_i^* \simeq M_i$.

BIBLIOGRAPHY

[1] M. F. Attyah and R. Bott, *The Yang-Mills equations over Riemann surfaces*, Philos. Trans. Roy Soc. London Ser A 308 (1983), 523-615.

[2] U. V. Desale and S. Ramanan, *Classification of vector bundles of rank 2 on hyperelliptic curves*, Invent. Math. **38** (1976/77), 161-185.

[3] W. Fulton, *Intersection theory*, Springer-Verlag, Berlin, 1984.

 [4] Y. Laszlo, La dimension de l'espace des sections du diviseur theta généralisé, Bull. Soc. Math. France 119 (1991), 293-306.

[5] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, Oxford, 1979.

[6] M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differential Geom. **35** (1992), 131-149.

Received Feb. 23, 1994

Translated by F. L. ZAK, English version revised by the author.

Additional References (appeared after the publication of this paper):

[7] King A.D., Newstead P.E.: On the cohomology ring of the moduli space of rank 2 vector bundles on a curve *Topology* **37** (1998), no. 2, 407-418.

[8] Siebert T., Tian G.: Recursive realtion for the cohomology ring of moduli spaces of stable bundles. *Turkish J. Math.* **9** (1995), no. 2, 131-144.

[9] Thaddeus M.: An introduction to the topology of the moduli space of stable bundles on a Riemann surface. *Geometry and physics (Aarhus, 1995)*, 71–99, Lecture Notes in Pure and Appl. Math., 184.

[10] Zagier D.: On the cohomology of moduli spaces of rank two vector bundles over curves. *The moduli space of curves*, 533–563, Progr. Math., 129.