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Abstract. We study, analytically and numerically, singularity formation in an interface flow
driven by a multipole for a two-dimensional Hele–Shaw cell with surface tension. Our analysis
proves that singularity formation is inevitable in the case of a dipole. For a multipole of a higher
order, we show that the solution does not tend to any stationary solution as time goes to infinity
if its initial center of mass is not at the multipole; it is therefore very likely that this solution will
develop finite time singularities. Our extensive numerical studies suggest that a solution develops
finite time singularities via the interface reaching the multipole while forming a corner at the tip of
the finger that touches the multipole. In addition, it is observed that the interface approaches the
multipole from directions which can be predicted beforehand. We also estimate as a function of time
the distance between the finger tip and multipole, and the results are in excellent agreement with
numerical computations.
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1. Introduction. Flow in a porous medium is a challenging scientific problem
of great technological importance. For the case of two immiscible fluids, it is well
known that the interface will be unstable when the less viscous fluid drives the more
viscous fluid [2]. This instability is responsible for water flooding of oil wells and is of
great interest to oil reservoir engineering and many other applications.

In order to study this instability, experiments have been performed in a Hele–Shaw
cell: a channel formed by two closely spaced parallel glass plates. For simplicity, we
consider two fluids within the cell: one with high viscosity and the other with low
viscosity (regarded as inviscid). The viscous fluid is governed by three-dimensional
Stokes equations. For a gap that is sufficiently small compared with the radial di-
mension, the three-dimensional Stokes equations may be averaged across the gap to
give Darcy’s law [2]. This provides a model of two-dimensional flow through a porous
medium. The pressure jump across the interface which separates these two fluids is
balanced by the surface tension. By the use of sinks and sources in the viscous fluid,
we may model the behavior of flows in porous media in and around oil wells. The
fluid velocity potential has logarithmic singularities at the sinks and sources. When
these sinks and sources have large intensity and lie close to each other, the logarithmic
singularities become multipole singularities [4].

When the flow is driven by a sink, generic Hele–Shaw solutions break down before
all the fluid is sucked out. In the absence of surface tension, all solutions except the
circular ones develop singularities, which include formation of cusps at the interface,
topological changes, and the interface’s reaching the sink [7, 16]. In the presence
of surface tension, analytic, numerical, and experimental evidence show that generic
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solutions form singularities via the interface’s reaching the sink before all the fluid is
gone [8, 10, 3, 11, 15].

In this paper, we study Hele–Shaw flows driven by a multipole. Because a mul-
tipole produces no net mass change in the fluid, intuitively it may be possible that a
flow solution can exist for all time. However, in the absence of surface tension it is
found that all flow solutions must become singular in finite times [4].

Surface tension is therefore included to mimic realistic physical situations and
to regularize the singularities mathematically. For some solutions, singularity for-
mation is immediately prevented. Indeed, there exist stationary solutions. These
time-independent solutions were constructed by Entov, Etingof, and Kleinbock [4].
The solutions possess the following important properties:

1. The order of the multipole is greater than 1.
2. The center of the fluid domain is at the multipole.
3. The surface tension is sufficiently large.

The purpose of this paper is to study the time-dependent solution driven by a
multipole in the presence of surface tension. We would like to understand whether
and how the solution will form singularities in a finite time.

Since stationary solutions can be considered as equilibrium solutions, it is likely
that some time-dependent solutions satisfying the above properties approach them as
time goes to the infinity. Indeed, Kelley and Hinch’s computations suggest that this
is true in the case of a quadrupole [9]. In this paper, we will also present numerical
evidence to confirm this large time behavior not only in the case of a quadrupole but
also in the case of a multipole of order 3.

It is also plausible that violation of any of the above three properties will lead to
finite time singularities. The main part of this paper presents strong analytical and
computational evidence to support this observation.

The organization of this paper is as follows. In section 2, rigorous analysis is
carried out mainly for the nonzero surface tension case. We prove that singularity
formation is inevitable in the case of a dipole. For a multipole of a higher order, we
show that the solution does not approach any stationary solution as t → +∞ if its
initial center of mass is not at the multipole; it is therefore very likely that the solution
will develop finite time singularities for this case. In addition, new exact solutions for
zero surface tension are presented. In section 3, the numerical method for computing
this system is described. In section 4, we discuss the numerical results for nonzero
surface tension with various initial interfaces. These include those initial interfaces
presented in section 2 for zero surface tension. We point out the main phenomena:
the development of long fingers on the interface, the movement of the fingers towards
the multipole from predictable directions, and the formation of corners at the finger
tips as they reach the sink. Finally, we derive an asymptotic formula for the distance
between the finger tip and multipole as they get close to each other.

2. Breakdown of solutions. The dynamics of a two-dimensional Hele–Shaw
flow driven by a multipole are determined as follows [2, 12, 15]. First, one solves a
Dirichlet problem for the Laplace equation in a domain with a given singularity at a
fixed interior point, say the origin:

φxx + φyy = 0 in Ω(t)\(0, 0),(1)

φ = τκ on ∂Ω(t),(2)

φ ∼ −MRe

{

1

(x+ iy)p

}

+O(1) as (x, y) −→ (0, 0),(3)
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where Ω(t) is a simply connected domain with a smooth boundary ∂Ω(t), κ is the
curvature with the requirement that it is negative when Ω(t) is convex, τ is the surface
tension parameter, and the positive integer p is the order of the multipole. The
solution uniquely exists and depends smoothly on time. One then uses the solution
φ(x, y, t) to determine the motion of the boundary ∂Ω(t) by

Vn =
∂φ

∂
n
on ∂Ω(t),(4)

where 
n is the outward normal vector to ∂Ω(t), and Vn is the normal component of
the velocity of ∂Ω(t).

Physically, the viscous fluid occupies the domain Ω(t), and the inviscid one its
complement. The function φ is the viscous fluid velocity potential identified with
the fluid-pressure field (Darcy’s law). Equation (1) follows from the facts that φ is
the velocity potential and that the viscous fluid is incompressible. The pressure in
the nonviscous fluid is taken to be constant, say zero. Relation (2), which is the
Laplace–Young relation, thus represents the jump of pressure across the interface
∂Ω(t). Equation (3) indicates that the origin is a multipole of order p. Finally, (4)
expresses the concept that ∂Ω(t) is a material curve.

A multipole can be viewed as the limiting case of a combination of sinks and
sources. Namely, a simple calculation shows that

−MRe

{

1

(x+ iy)p

}

= lim
ε→0

2p−1
∑

k=0

(−1)k
M

2εp
log |x+ iy − εe

ikπ
p |.(5)

Each term in the sum is a sink or source of strength (−1)k M
2εp located at the point

z = εeikπ/p; odd k corresponds to a sink and even k to a source [4]. This viewpoint
will later be used to determine the preferred directions in the motion of the interface.

Hele–Shaw flows driven by sinks and sources have been extensively studied. One
of the ideas is to capture the motion of the interface by following the evolution of the
complex moments of the fluid domain Ω(t) [12, 16]:

∫∫

Ω(t)

zmdx dy, z = x+ iy,

for m = 0, 1, 2, . . .. This idea has also been used to study flows driven by a multipole
[4]. In this paper we employ this approach.

We first calculate the time derivative of the moments in the standard way. More
precisely,

d

dt

[

∫∫

Ω(t)

zmdx dy

]

=

∫

∂Ω(t)

zmVnds =

∫

∂Ω(t)

zm
∂φ

∂
n
ds(6)

for nonnegative integer m, where we have used (4) in generating the last equality.
Choosing a small circular diskD(ε) with radius ε and center at the origin, and applying
Green’s theorem to the region Ω(t)\D, we get

∫

∂Ω(t)∪∂D

zm
∂φ

∂
n
ds =

∫

∂Ω(t)∪∂D

φ
∂zm

∂
n
ds

=

∫

∂D

φ
∂zm

∂
n
ds+

∫

∂Ω(t)

τκ
∂zm

∂
n
ds,
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where we have used (2) in the last equality. Exploiting (3) and letting ε → 0 yields

∫

∂Ω(t)

zm
∂φ

∂
n
ds = τ

∫

∂Ω(t)

κ
∂zm

∂
n
ds+ 2pMπδmp, m = 0, 1, 2, . . . .

Here δmp = 1 for m = p and vanishes otherwise. This together with (6) gives

d

dt

[

∫∫

Ω(t)

zmdx dy

]

= τ

∫

∂Ω(t)

κ
∂zm

∂
n
ds+ 2pMπδmp, m = 0, 1, 2, . . . .(7)

Conversely, we shall use a simple argument similar to that of [16] to show that if
the moments satisfy (7), then the corresponding {Ω(t)} is a solution.

Indeed, if φ(x, y, t) denotes the solution to the Dirichlet problem (1), (2), and (3),
the argument before (7) shows that

∫

∂Ω(t)

zm
∂φ

∂
n
ds = τ

∫

∂Ω(t)

κ
∂zm

∂
n
ds+ 2pMπδmp, m = 0, 1, 2, . . . .

This, combined with the assumption that

∫

∂Ω(t)

zmVnds =
d

dt

[

∫∫

Ω(t)

zmdx dy

]

= τ

∫

∂Ω(t)

κ
∂zm

∂
n
ds+ 2pMπδmp, m = 0, 1, 2, . . . ,

gives

∫

∂Ω(t)

zm
[

∂φ

∂
n
− Vn

]

ds = 0, m = 0, 1, 2, . . . .

Continuous function [∂φ∂�n − Vn] can be uniformly approximated by harmonic polyno-

mials on ∂Ω(t) as closely as possible; this thus implies Vn = ∂φ
∂�n on ∂Ω(t). Therefore

{Ω(t)} is a Hele–Shaw solution.
We have therefore established the following theorem.
Theorem 1. Suppose that {Ω(t)} is a smooth family of simply connected do-

mains. {Ω(t)} is a solution of the initial value problem for the Hele–Shaw flow if and

only if its complex moments satisfy (7).
We observe from (7) that a Hele–Shaw flow driven by a multipole with surface

tension has two physical quantities whose time evolution is simple. The first one is
the area of the fluid domain, which, in view of (7) at m = 0, is independent of time t.
The second quantity is the linear complex moment of the fluid domain. Introducing
the tangent angle θ, we evaluate the right-hand side of (7) when m = 1 to get

d

dt

∫∫

Ω(t)

zdx dy = −iτ

∮

∂Ω(t)

κ[x′(s) + iy′(s)]ds+ 2pMπδ1p

= iτ

∮

∂Ω(t)

θse
iθds+ 2pMπδ1p(8)

= 2pMπδ1p,

where in the last equality we have used κ = −θs and zs = eiθ; here s is the arclength.
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In the case of a dipole, i.e., p = 1, (8) says that the linear moment is linear in
time t. Since the area of the fluid domain is independent of t, the center of mass of
the fluid domain is also linear in t and thus moves towards infinity when t becomes
large. Therefore either the Hele–Shaw solution develops finite time singularities or
the boundary of the fluid domain extends to infinity as t goes to infinity.

Theorem 2. For a Hele–Shaw flow driven by a dipole with surface tension, the

boundary of the fluid domain either develops finite time singularities or extends to

infinity as t goes to infinity.

Theorem 2 indicates that, even when surface tension is present, singularity for-
mation is inevitable if the flow is driven by a dipole. However, Theorem 2 does
not determine the mechanism of the breakdown. It could be caused by topological
changes of the fluid domain, by the interface’s reaching the multipole, or perhaps
by some other means. In the next two sections, we shall use numerical studies to
determine possible types of singularity formation.

In the case of p ≥ 2, (8) shows that the linear moment is time-independent. The
area of the fluid domain is independent of time, and therefore so is the center of mass.

Theorem 3. For a Hele–Shaw flow driven by a multipole of order p ≥ 2 with

surface tension, the center of mass of the fluid domain is time-independent.

The main implication of Theorem 3 is that a Hele–Shaw flow driven by a mul-
tipole of order ≥ 2 cannot approach any stationary solutions of Entov, Etingof, and
Kleinbock if the initial center of mass of the fluid domain is away from the multipole.
This follows from the facts that the center is time-independent and that all the sta-
tionary solutions have their centers of mass at the multipole [4]. It is therefore likely
that such a flow will form singularities sooner or later, either in a finite time or in
infinite time. We will use numerical computations to check whether this is true.

Special solutions of (7) can be easily found in the case of τ = 0. Integrating (7)
with τ = 0 gives

∫ ∫

Ω(t)

zmdxdy =

∫ ∫

Ω(0)

zmdxdy + 2pMπtδmp, m = 0, 1, 2, . . . .(9)

We consider a family of domains {Ω(t)} which are the images of the unit disk
|w| < 1 under the conformal maps of the form

f(w) = a1(t)w + a2(t)w
2 + a3(t)w

3.(10)

For simplicity, we want the coefficients to be real; this implies that the interface should
have upper/lower symmetry.

The moment integral of (9) can be written as a contour integral,
∫ ∫

Ω

zmdxdy =
1

2i

∮

∂Ω

zmzdz.

We then calculate the contour integral with the boundary ∂Ω(t) given by the confor-
mal mapping (10). Equation (9) reduces to three algebraic equations:

a2
1(t) + 2a2

2(t) + 3a2
3(t) = a2

1(0) + 2a2
2(0) + 3a2

3(0),(11)

a2
1(t)a2(t) + 3a1(t)a2(t)a3(t) = a2

1(0)a2(0) + 3a1(0)a2(0)a3(0) + 2pMtδ1p,(12)

a3
1(t)a3(t) = a3

1(0)a3(0) + 2pMtδ2p.(13)

As a special case of (10)–(13), we obtain solutions for the case in which the initial
fluid domain is a disk centered at the multipole. Namely, the domain is given by the
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conformal mapping

f(w) = a1(t)w + ap+1(t)w
p+1(14)

whose coefficients are governed by

a2
1(t) + (p+ 1)a2

p+1(t) = a2
1(0),(15)

ap+1
1 (t)ap+1(t) = 2pMt.(16)

In the above calculations, p = 1 or 2. However, (14)–(16) also hold for p ≥ 3.
Indeed, (14)–(16) were first found by Entov, Etingof, and Kleinbock [4]. They also
showed that a Hele–Shaw solution given by (14)–(16) develops p symmetric cusps in
a finite time. This breaking time can also be easily calculated [4].

3. Numerical methods. The numerical method for solving this free bound-
ary problem is based on a boundary integral formulation. We first parameterize the
boundary ∂Ω as (x(λ, t), y(λ, t)) with time-independent λ ∈ [0, 2π). Then the bound-
ary condition (2) can be written in terms of a singular integral equation,

−
σ(λ)

2
+ Re

{

1

2πi
P.V.

∫ 2π

0

σ(λ′)

z(λ) − z(λ′)
zλ′dλ′

}

= τκ+MRe

{

1

zp(λ)

}

,(17)

which is, in fact, a Fredholm equation of the second kind. “P.V.” stands for the
principal integral, and σ(λ) is the dipole strength. Once σ(λ) is known, the normal
component Vn of (4) can be calculated through the following integral:

Vn = Im

{

zλ
2πi|zλ|

P.V.

∫ 2π

0

σλ(λ
′)

z(λ) − z(λ′)
dλ′ +

pM

zp+1(λ)

zλ
|zλ|

}

.(18)

After Vn is calculated, the motion of the interface is determined through

(xt, yt) = Vn
n+ T
s,(19)

with Vn given by (17) and (18), where 
s is the unit tangent vector and T is the
tangential component of the interface velocity. Notice that the tangential component
T affects only the parameterization of Lagrangian points and does not affect the actual
motion of the interface.

In order to overcome the difficulties of the strong stability constraints on the
time-step due to the presence of surface tensions, we adapt the method developed by
Hou, Lowengrub, and Shelley [6] to compute the evolution of the interface.

Let θ denote the tangent angle to the interface; then (19) in the complex form
becomes

∂

∂t
|zλ| = Tλ + Vnθλ,(20)

θt =
Tθλ − Vnλ

|zλ|
.

In particular, T of (19) is chosen such that |zλ| is everywhere equal to its mean, that
is,

|zλ(λ, t)| =
1

2π

∫ 2π

0

|zλ′(λ′, t)|dλ′ =
1

2π
L(t),(21)
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where L(t) is the length of the interface. By differentiating (21) with respect to t and
using (20) we find

T (λ, t) =
λ

2π

∫ 2π

0

θλ′Vndλ
′ −

∫ λ

0

θλVndλ
′.(22)

Consequently, the evolution of the interface is now given in terms of L and θ by

Lt =

∫ 2π

0

θλVndλ,

θt =
2π

L
(Tθλ − Vnλ).(23)

Since σ of (17) is dominated by −2τκ [6], we substitute these into (23) to obtain

θt = τ

(

2π

L

)3

H(θλλλ) +A(λ, t),(24)

where A(λ, t) is the remaining term with lower-order derivatives. In Fourier space,
(24) is of the form

θ̂t(k) = −τ

(

2π

L

)3

|k|3θ̂(k) + Â(k),

which is linear for the term with the highest derivative. This form is convenient for a
semi-implicit temporal integration. A straightforward Crank–Nicholson discretization
on the linear term and a leapfrog on the nonlinearity give

θ̂n+1(k) − θ̂n−1(k)

2∆t
= −

τ |k|3

2

[

(

2π

Ln+1

)3

θ̂n+1(k) +

(

2π

Ln−1

)3

θ̂n−1(k)

]

+ Ân(k).

The arclength Ln+1 is computed through an explicit time integrator: the second-order
Adams–Bashforth method. Together we have an explicit expression for θ̂n+1(k).

A pseudospectral method is applied to the spatial discretization [1, 10]. The
numerical derivatives and integrations are taken through the discrete fast Fourier
transform [5]. The integrals of (17) and (18) are approximated by the spectrally
accurate trapezoidal method [14]. The Fredholm integral equation (17) is solved by
the iterative procedure of the GMRES algorithm [13].

4. Description of numerical studies. We have done numerical computations
for three kinds of multipoles: p = 1, 2, and 3. The strength of the multipole is
normalized to be M = 1, and the length scale is determined by choosing the area of
the fluid blob to be π. The Hele–Shaw solutions for τ = 0 were plotted by solving
the corresponding algebraic equations, and those for τ �= 0 were computed using the
numerical method of section 3.

Figures 1–6 depict solutions whose initial interface is the unit circle centered at
the dipole. Figure 1 depicts the solution for τ = 0 at different times, and tcritical
stands for the time when a cusp is formed; the solution is given by (14)–(16). As
proved by the analysis, a cusp is formed at the interface [4]. Figure 2 displays the
solution for τ = 1 at various times. The computation was performed starting with
N = 513 and 
t = 5×10−5 and was refined to N = 4096 and 
t = 5×10−8. Here N



392 QING NIE AND FEI-RAN TIAN

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

  

Fig. 1. Time evolution of the initial circular interface for p = 1 with τ = 0 at t = 0.025× i, i =
0, 5, and t = 0.136082 with 0.136082 < tcritical < 0.136083.
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Fig. 2. Time evolution of the initial circular interface for p = 1 with τ = 1 at t = 0.04× (i−
1), i = 1, . . . , 7, and final time t = 0.2427555.

is the number of points used for spatial discretization. The behavior of the solution is
rather similar to that of a sink flow [10]: The interface is seen to develop a finger that
approaches the dipole as time evolves. As it touches the dipole, the finger appears to
form a corner at its tip. The final time in our computation is t = 0.24276, which is
far beyond the breaking time for τ = 0.

The accuracy of the computations was studied by checking the resolution in the
spatial variable and monitoring the evolution of the area and center of mass of the
fluid blob. As mentioned in section 2, the area is time-independent, and the center
moves in a constant velocity.
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Fig. 3. Spatial resolution study for p = 1 with τ = 1. *: N = 129, o: N = 256, x: N = 512,
and the highest resolution solution is computed using N = 1024. In all computations, �t = 5×10−5.

Figure 3 presents as a function of t the number of digits in the difference be-
tween computed solutions. The spatial convergence is demonstrated by comparing
computations from N = 129, 256, or 512 with those from N = 1024. The errors are
plotted on a negative logarithm vertical scale with a base 10. It is found that at earlier
times the solution computed using N = 512 is accurate up to 10−11, which is around
the level of tolerance we specify for solving the integral equation (17). The accuracy
deteriorates to about 10−8 when a finger is formed. The convergence of solutions is
clearly demonstrated in Figure 3 as N increases.

We now estimate how fast the finger approaches the multipole. We will carry out
our calculations for an arbitrary order p of the multipole. Since the finger is supposed
to be very close to the multipole, in view of (3) we may assume that the velocity
potential φ behaves like

φ(x, y) = O

(

1

rp

)

as r =
√

x2 + y2 → 0

in the neighborhood of the finger tip. We then use (4) to calculate the speed of the
finger tip

Vn = O

(

1

rp+1

)

.

Denoting the distance between the finger tip and multipole at the origin by D(t), we
then have

dD(t)

dt
= O

(

1

[D(t)]p+1

)

.

Integrating that equation yields

[D(t)]p+2 = O(t∗ − t),

where t∗ is the time at which the finger tip reaches the multipole. Consequently, we
have

[D(t)]p+2 ≈ C(t∗ − t);(25)
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Fig. 4. Distance between the finger tip and dipole with τ = 1. Here time = 0.24270 + shifted
time; “ *” represent the computed solutions, while the solid curve is the graph of [Distance]3 =
0.39(0.2427559− t).

here C is a time-independent constant.
We would like to mention that applying the above argument to Hele–Shaw flows

driven by a sink will lead to a simple square root formula for the distance between
the finger tip and sink. This parabolic behavior has been numerically confirmed in
our previous paper [10].

Figure 4 shows the distance between the finger tip and dipole as a function of
time. We can estimate t∗ = 0.2427559 through extrapolation. By taking an average of
the pointwise form-fit, we estimate C = 0.39 in (25) with p = 1. The solid curve is the
graph of (25) as a function of a linearly shifted time. The “*” represent the distances
obtained from the numerically computed solutions. The last computed solution is at
t = 0.2427555. These two distances are seen to be in excellent agreement.

Figure 5 depicts the tangent angle θ as a function of λ around the tip at various
times close to t = 0.24276. The interface is parameterized by a time-independent λ.
The tangent angle displays a jump discontinuity at the tip when the finger touches
the dipole. A linear extrapolation in time shows that the jump is about 
θ = 1.9
radians. Hence the finger appears to form a corner at the tip with an acute angle
π −
θ.

Figure 6 presents the solution whose initial data is exactly that of Figures 1 and
2; however, we now use a larger surface tension τ = 3. The interface was computed
by using N = 512 and 
t = 10−4 at first, and by N = 2048 with 
t = 10−5 at last.
The distance between the last interface and dipole is about 0.028. For larger τ , the
finger appears to be fatter and to approach the dipole at a slower pace. The finger
also seems to form a corner with a larger angle at the tip.

Figures 7–9 show the solutions whose initial interface is given by (10) with a1(0) =
√

11/12, a2(0) = 0, and a3(0) = 1/6. Figure 7 depicts the solution for τ = 0. Two
cusps are produced at the interface, and the breaking time is about tcritical = 0.1601.
For τ = 0.02, the two cusps are “regularized” by surface tension, and the interface
forms two long fingers as shown in Figure 8. Eventually, the interface has the shape
of a spade as the fingers reach the dipole. If larger τ is used, the interface dynamics
are different. Figure 9 displays the solution for τ = 1 at various times. Instead of two
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Fig. 5. Tangent angle θ as a function of λ around the finger tip for p = 1 with τ = 1 at
t = 0.2427 + 10−5 × i, i = 0, . . . , 5, and final time t = 0.2427555.
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Fig. 6. Time evolution of the initial circular interface for p = 1 with a larger surface tension
τ = 3 at t = 0.06× (i− 1), i = 1, . . . , 6, and final time t = 0.331.

fingers, one finger is developed and it reaches the sink at about t = 0.2564. For this
case we also observe that the angle of the finger in Figure 9 is about the same as the
one in Figure 2.

Why do the interfaces of Figures 2, 6, 8, and 9 always approach the dipole from
the left? This can be explained by examining (5). Namely, that equation suggests
that a dipole can be considered as a system with a source of strength 1

2ε at z = ε and
a sink of the same strength at z = −ε in the limit ε → 0. This amounts to putting a
“source” to the immediate right of the origin and a “sink” to the immediate left. The
“sink” will suck the fluid, causing the interface to reach the dipole from the left.

We now turn our attention to the case of p = 2. According to (5), a quadrupole
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Fig. 7. Time evolution of the “two cusps” initial interface for p = 1 with τ = 0 at t =
0.0125× i, i = 0, 5, and t = 0.16005234; 0.16005234 < tcritical < 0.16005235.
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Fig. 8. Time evolution of the “two cusps” initial interface for p = 1 with τ = 0.02 at t =
0.05× i, i = 0, . . . , 4, and t = 0.21, 0.215, 0.2165.

at the origin is equivalent to a system of two sources and two sinks of large intensity.
The sources are to the immediate left and right of the origin, and the sinks are just
above and below the origin. Hence when it approaches the quadrupole the interface
is expected to do so from above or below.

Figures 10–14 depict solutions whose initial interface is a unit circle centered at the
quadrupole. Figures 10 and 11 display the solutions for τ = 0 and τ = 1, respectively.
The τ = 0 interface moves towards the quadrupole from the top and bottom, and
eventually develops two cusps. These two cusps are regularized by the surface tension
τ = 1 in Figure 11. Instead, two fingers are formed to reach the quadrupole from



SINGULARITIES IN HELE–SHAW FLOWS 397

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

  

Fig. 9. Time evolution of the “two cusps” initial interface for p = 1 with τ = 1 at t =
0.05× i, i = 0, . . . , 5, and t = 0.256425.
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Fig. 10. Time evolution of the initial circular interface for p = 2 with τ = 0 at t = 0.01× i, i =
0, . . . , 4, and t = 0.0468750; 0.0468750 < tcritical < 0.0468751.

both above and below the origin, as predicted by (5). The computation was started
with N = 512 and 
t = 5 × 10−5 and then was refined up to N = 4096 with

t = 2 × 10−8. The use of very small time-steps is essential in order to resolve the
extremely fast motion of the interface when the two parts of the interfaces pinch.

Figure 12 shows the tangent angle as a function of the parameter λ around a
finger tip at various times. Again we see a jump discontinuity in the tangent angle,
and it is at about 2.8. Hence the finger forms a corner when it touches the quadrupole.

Figure 13 depicts the distances between the finger tip and quadrupole. The
distances are obtained in two ways: One is from the direct numerical simulation and
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Fig. 11. Time evolution of the initial circular interface for p = 2 with τ = 1 at t = 0.03× i, i =
0, . . . , 6, for t = 0.146 and t = 0.1468164.
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Fig. 12. Tangent angle θ as a function of λ around a finger tip for p = 2 with τ = 1 at
t = 0.146795 + 5× 10−6 × i, i = 0, . . ., and t = 0.1468164.

the other from (25) with p = 2. We obtain t∗ = 0.07566766 and C = 12.72 by an
extrapolation and estimate similar to the case for p = 1. The agreement between the
direct simulation and (25) seems to be very good.

Figure 14 represents the solution whose initial interface is exactly that of Fig-
ure 11; however, we now use a larger surface tension τ = 3. The computation was
performed using N = 129 and ∆t = 5 × 10−5. The interface seems to approach a
fixed interface as t increases. One expects this equilibrium interface to be a time-
independent Hele–Shaw solution; indeed, this is the case. In Figure 14 we also display
one of the stationary solutions found by Entov, Etingof, and Kleinbock [4]. The
stationary solution matches the fixed interface very well. The convergence of the
time-dependent solution to the stationary solution is shown in Figure 15. Figure
15(a) plots the distance between the time-dependent and time-independent interfaces
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Fig. 13. Distance between the finger tips and quadrupole for τ = 1. Here time = 0.07566 +
shifted time; “*” indicates the computed solution; and the solid curve is the graph of [Distance]4 =
12.72(0.07566766− t).
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Fig. 14. Large time evolution of the initial circular interface for p = 2 with a larger surface
tension τ = 3. o: the exact stationary solution; curves: time-dependent solutions at time = 0.1×i/3,
i = 0, . . . , 28.

on a logarithmic vertical scale with base 10. The former interface is seen to approach
the latter one exponentially fast. This is consistent with what Kelly and Hinch found
in their numerical computations [9]. To check the accuracy of this large time compu-
tation, we monitor the evolution of the area and center of mass. Figure 15(b) displays
the errors between the computed area and center and the exact ones. The latter are
in theory independent of time. The errors are also plotted on a logarithmic vertical
scale. The computation of the center is accurate to around 10−6, and that of area to
around 10−7.

We now move the initial interface of Figure 14 a little bit so that its center is away
from the quadrupole and then compute the solution for the same τ . Now singularity
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Fig. 15. Error in large surface tension computations: (a) The distance between the stationary
solution and time-dependent solution as a function of time . “ *”: at the intersection of the positive
x-axis, o: at the intersection of positive y-axis. (b) The errors in conserved quantities as functions
of time. “ *”: area, o: center.
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Fig. 16. Time evolution of the initial circular interface centered at (0.2, 0.2) for p = 2 with
τ = 3 at t = 0.05× i, i = 0, . . . , 7, and t = 0.366745.

formation is observed again. Figure 16 depicts the solution for τ = 3 when the initial
interface is a unit circle centered not at the origin but at (0.2, 0.2). A finger is seen
to reach the quadrupole from below.

Figures 17 and 18 depict the solutions whose initial interface is given by (10) with
a1(0) =

√

11/12, a2(0) =
√

1/24, and a3(0) = 0. Figure 17 displays the solutions
at various times for τ = 0, and Figure 18 for τ = 1. When τ = 1, two fingers are
formed, and they move to the quadrupole from above and below. The behavior of the
interface is very similar to that of Figure 10 even though their initial interfaces are
quite different.
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Fig. 17. Time evolution of the “two cusps” initial interface for p = 2 with τ = 0 at t =
0.008× i, i = 0, . . . , 5, and t = 0.0438048; 0.0438048 < tcritical < 0.0438049.
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Fig. 18. Time evolution of the “two cusps” initial interface for p = 2 with τ = 1 at t =
0.02× i, i = 0, . . . , 7, and t = 0.14025.

Finally, we will present numerical results for the case of p = 3. Figure 19 shows
the τ = 0 solution whose initial interface is a circle centered at the multipole. The
interface moves towards the multipole from the directions whose polar angles are π

3 ,
π, and 5π

3 , and it eventually develops three cusps. Figure 20 depicts the solution with
τ = 1 for the same initial interface. Three symmetric fingers are formed, and they
reach the multipole from the above three directions. As before, these directions are
predicted by (5).

Figure 21 displays the tangent angle of the interface as a function of the parameter
λ around a finger tip at various times. We clearly see a jump in the tangent angle when
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Fig. 19. Time evolution of the initial circular interface for p = 3 with τ = 0 at t = 0.004×i, i =
0, 5, and t = 0.0238513; 0.0238513 < tcritical < 0.0238514.
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Fig. 20. Time evolution of the initial circular interface for p = 3 with τ = 1 at t = 0.03× (i−
1), i = 1, . . . , 5, t = 0.1328, and t = 0.1329345.

the finger touches the multipole. The jump is about 3.0 radians, and the resulting
angle for the corner is as small as π − 3.0 radians. This angle is obviously smaller
than its counterparts for p = 1 and 2 when other physical parameters, namely the
intensity of the multipole and surface tension, are kept the same. This small angle
explains why we observe a “cusp-like” shape at the tip of the finger when it touches
the multipole, as shown in Figure 20.

Figure 22 depicts as a function of time the distance between the finger tip and
multipole. Again we plot both the distances obtained from computed solutions and
that obtained from (25) with p = 3. In this case, it is found that t∗ = 0.13829351
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Fig. 21. Tangent angle θ as a function of λ around a finger tip for p = 3 with τ = 1 at
t = 0.13293 + 5× 10−7 × i, i = 0, . . . , 9.
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Fig. 22. Distance between the finger tips and multipole for p = 3 with τ = 1. Time =
0.13829 + shifted time, “ *” represents the computed solution, while the solid curve is the graph of
[Distance]5 = 24.48(0.13829351− t).

and C = 2.04 in (25). Since the interface accelerates to the multipole much faster
than the cases for p = 1 and p = 2, and since the finger appears to be narrower, we
cannot continue to compute the interface as close to the multipole as in the other
cases. Nevertheless, the agreement between the direct numerical simulation and (25)
is still very good up to the final time in our computed solutions.

We now increase the surface tension to τ = 3 without changing the initial interface
of Figure 20. The solution is seen to approach a stationary solution when time is large,
as shown in Figure 23.

We then move the initial interface of Figure 23 so that the center is at the point
(−0.2,−0.2) and compute the solution for the same surface tension τ = 3. Figure 24
depicts the resulting solution at various times. This time only one finger is developed,
and it reaches the multipole from the direction whose polar angle is π

3 .
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Fig. 23. Large time evolution of the initial circular interface for p = 3 with a larger surface
tension τ = 3 at t = 0.05 × i, i = 0, . . . , 10. The final interfaces are not distinguishable from the
stationary interface.
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Fig. 24. Time evolution of the initial circular interface centered at (−0.2,−0.2) for p = 3 with
τ = 3 at t = 0, 0.05, 0.1, 0.128, 0.1308, and 0.13087.

From our numerical calculations, we observe that the size of the corner is indepen-
dent of the initial shape of the interfaces, with all other parameters being the same.
For example, for p = 1 and τ = 1, three initial shapes have been studied: a circle with
the center at the pole, a circle with the center not at the pole, and an initial shape as
shown in Figure 9. It is found that the corner has a size of π −
θ, where 
θ = 1.9
is accurate to two digits. Similar calculations are also performed for p = 2, 3, with
τ = 1, and the results are consistent with the case for p = 1. In particular, for τ = 1
we obtain 
θ = 2.8 for p = 2 and 
θ = 3.0 for p = 3. Both of the estimates are
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Fig. 25. The angle of the corner as a function of the surface tension for p = 1.

accurate to two digits. Moreover, for fixed p it is found that the size of the corner is
an increasing function of τ . In Figure 25 we plot the angle of the corner as a function
of τ for p = 1. How the angle depends on τ analytically is still an open problem.
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