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Singularity Formation in Free-Surface Stokes Flows

Qing Nie, Saleh Tanveer, Todd F. Dupont, and Xiaofan Li

ABSTRACT. Two cases of evolution of interfaces in axi-symmetric Stokes flow
are considered: 1) a bubble whose volume changes with time and 2) a viscous
drop whose interior and exterior fluids have different viscosities. Direct numer-
ical simulations for Stokes equations with moving boundaries are performed
by using boundary integral formulations. It is found that, for the bubble with
volumetric change, the surface can from (near) cusps or undergo topological
changes (break-up of the surface). The dynamics of these bubbles are quali-
tatively similar to the exact solutions previously found in a two-dimensional
study, and a self-similar process of pinching is observed. For a viscous drop
surrounded by another viscous fluid, the interface develops a cone around the
pinching region, the angles of the cone in this model agree with the physical
experiments for a wide range viscosity ratios.

1. Introduction

Singularity formation in fluids is a challenging scientific problem of great tech-
nological importance. In particular the break-up of a bubble or a drop through
topological changes has been a subject of considerable interest [1] [2] [3]. The
understanding of detailed dynamics during break-up has application in practical
situations such as in ink jet printers and disk atomizers.

Following the work by Lord Rayleigh [4] on the capillary instability of a viscous
thread, there has been a great deal of research on bubbles and drops in a viscous
flow [5] [6] [7] [8]. Most of the detailed studies of the dynamic break-up of drops
have focused on the cases for which either the exterior fluid has zero viscosity or
the viscosity ratio A between the interior and exterior fluids is equal to one [9] [2]
[10]. In this paper, we will investigate 1) the break-up of a Stokes bubble (A = 0)
and 2) the break-up of a drop of A # 1.

For the first case, we are interested in the evolution of a Stokes bubble with
volumetric change. A number of physical mechanisms can cause changes in bubble
size. For instance, a bubble shrinks when the gas inside the bubble dissolves in the
ambient liquid without significantly affecting the exterior fluid flow. In cases where
the fluid inside the bubble is sufficiently compressible, a fluctuating pressure field
imposed at infinity could alter bubble volume.
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For two-dimensional Stokes flow, analytical and numerical solutions have shown
that, in general, a shrinking bubble forms cusps or near cusps, or it undergoes
topological changes before its area reduces to zero [11] [12] [13]. A expanding
bubble, on the other hand, is found to approach an expanding circle.

In the first part of the paper, we study the stability and singularity formation
for an axi-symmetric bubble with volumetric change and compare its behavior with
that of a 2-D bubble. A priori, the differences between two and three dimensions
might be expected to have substantial effects on the observed phenomena. Our
results suggest that while the quantitative the singularities associated with bubble
pinching are different in 2-D and 3-D, the qualitative behavior is the same. Further,
numerical calculation indicates that pinching is a locally self-similar process, and
the similarity variables close to pinching are studied.

In the second part, we investigate the break-up of a Stokes drop for a range
of viscosity ratios A\. Recently, Lister and Stone [10] studied break-up of a viscous
thread surrounded by another viscous fluid. They found a self-similar pinching
region through scaling arguments and numerical simulations of Stokes equations. In
their study, the viscous thread is modeled by a potion of drop and the viscosity ratio
is assumed to be one. Later, Cohen et al. [14] performed the physical experiments
for drops with a range of viscosity ratios. They compared the experiments with
the theory in [10] for the case with A = 1, and found that the surface develops
canonical cones at the pinch-off for all values of A studied. In this paper, we perform
numerical simulations of axi-symmetric Stokes flow for several cases of A # 1. It is
found that the angles of the cone around the pinch-off region of the viscous thread
agree with the experiments [14] for large and medium-sized A, however there are
some discrepancies for very small .

The paper is organized as follows: The equations and boundary integral formu-
lations of the free-surface motion are presented in Section 2. The numerical meth-
ods for solving the equations are briefly discussed in Section 3. A linear stability
analysis of an arbitrary contracting or expanding spherical bubble, and numerical
results of the evolution of a bubble and a viscous thread are shown in Section 4. A
summary is presented in Section 5.

2. Equations and Boundary Integral Formulations

2.1. A Stokes Bubble with Volumetric Change. In low Reynolds number
limit, the flow outside the bubble satisfies the Stokes equation and the continuity
equation

(1) puViu = Vp and V-u=0,

where u is the fluid velocity, p is the fluid pressure and p is the fluid viscosity.
We consider the situation in which the bubble surface is the only boundary and
suppose that

(2) u—0 as X — 00,

The stress on the bubble surface S is balanced by the interfacial tension force
as

(3) T -n=7(V-n)n,
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where T = —pI + p [Vu+ (Vu)?], n is the unit outward normal at the bubble
boundary and 7 is the surface tension. The interfacial kinematic condition requires

d
(4) d_)t( ‘n=u-n on S
Finally, the volume of the bubble is required to change at a constant prescribed

nonzero rate A, i.e.

(5) Luqms_A

We use L, the radius of the initial bubble, as the length scale, |A|/L? as the velocity
scale. The pressure is non-dimensionalized by u|A|/L?3, and the time scale is chosen
as L3/|A|. Therefore,the equations contain only one non-dimensional parameter,

2
(6) _ T
pulA

With this non-dimensionalization, the rate of change of non-dimensional bubble
volume is either 1 or —1, corresponding to an expanding or a contracting bubble,
respectively. Henceforth, all physical variables are considered non-dimensional.

The numerical method, which we use to follow the evolution of an axi-symmetric
bubble, is based on a boundary integral formulation for solving Stokes equations
with a moving boundary [15] [5] [16]. The velocities of the bubble surface satisfy
the Fredholm integral equation of the second kind,

(7) u;(x) +f wi(y) Kijr (%, y)ne(y)dS(y) = f;(x)
s

where

(8) Kijk(x,y) = 3 (yi — i) (y; — =) (yr — k)

27 ly —x[?
9) 760 = ([ n)m) sy ) 6
1 < 1 n (yi—zi)(yj—fcj))

dr \ |y — x| ly —x[?
J and K are the Green’s functions for the velocity and stress fields, respectively. P
indicates the principal-value integral. Equation (5) implies that

(11) /S wi(y)ni (y)dS(y) = sen(A).

The eigenvalue problem for the homogeneous equation associated with (7) has
an eigenvalue one with multiplicity one. For (7) to have a solution, f; must satisfy
the Fredholm alternative condition. Note that the corresponding adjoint problem
is

(12) w;j(x) + nk(x)ﬁ w;(y)Kjir (y,x)dS(y) = 0.

It is easy to check that w;(x) = n;(x) is the eigenfunction of (12) by using the
identity

(13) Kl ymy (<)dS(x) = ~bi

(10) Jij(x,y) = —
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Also, it can be shown that

(14) /S fi(y)mi(y)dS(y) =0

by using
(15) /Sin(x,y)ni(x)dS(x) =0.

Thus f; indeed satisfies the Fredholm alternative condition. The arbitrary constant
in the solution of (7) corresponds to the freedom of choice of bubble volume. By
demanding (11), a unique solution to (7) can be obtained. In fact (7) and (11) can
be combined into one equation as

uj (%) + ﬁ wi(3) Kk (5,3 (v)dS ()

(16) = 560+ 1,60 ([ wm)as) -seaca) )

It is clear that (7, 11) itself implies (16). We now show that (16) implies (7, 11). We
multiply (16) by n,(x) and integrate over S, the left-hand side of (16) vanishes by
using (13), and the first term on the right vanishes due to (15). Consequently, we
obtain equation (11). From (16, 11), clearly (7) follows. The advantage in having
equations in the form (16) is that the resulting integral equation has a unique
solution for ;.

2.2. Dynamics of a Viscous Drop. Consider the dynamics of a Stokes drop
of viscosity 1, density pi1, and surface tension v in a surrounding fluid of viscosity
pe and density pa2. Let the drop surface S have outward normal n so that the flow
is driven by a capillary jump in stress v(V - n) n across S. We make all velocities
dimensionless with respect to the scale v/us and use the initial radius of the drop
for length scales. Denote the viscosity ratio A = pq/pe. The velocity u,(x) on S
has the following boundary integral representation [5] [16]:

;—i Sui(Y)Kijk(X,y)nk(y)dS(y)

a7) = o3 LV n@)n) T (. y)as(y)

The drop surface S then is updated using the equation (4).

uj(x) +

3. Numerical Method

When the flow is assumed to be axi-symmetric, the surface integrals can be
reduced to line integrals by performing the azimuthal integration analytically. The
resulting complete elliptic integrals of the first and second kind can computed by
recursive formulae [17].

The numerical technique of solving the system of equations is similar to those
studied in [16] [18]. First of all, the free surface S is approximated by a set of
boundary nodes along the contour in the (r,z) meridional plane. The boundary
integral equation (16) or (17) is solved using a collocation method. The principal
integrals are first de-singularized using simple integral identities [16] and approxi-
mated by six-point Gaussian quadratures. The position at the quadrature points is
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1.0 ; ;

FIGURE 1. Comparison between the numerical solutions (the solid
curves) and the linear solutions (the dotted ones) for a contracting
bubble with G = 0.02. The initial shape is given by (37) and (38)
with € = —0.3. The solid curves correspond to the axi-symmetric
bubble profiles in the (z, r)-plane at times t = ¢x0.5,7 =0, ..., 8 and
t = 4.15 while the dotted ones are associated with ¢ =17 x 0.5,7 =
1,...,6.

obtained by quintic spline interpolation based on the corresponding position of the
nodes [19]. The resulting linear systems from the discretization of the boundary
integral equations are solved using iterative procedures such as GMRES [20]. To
accelerate convergence of the iteration, the initial guess for the iteration procedure
at each time step is obtained by a fourth-order extrapolation from solutions at
earlier time steps.

Once the velocity of free surface is calculated the free surface is advanced ac-
cording to (4). The time integration is carried out using a fourth-order Adams-
Moulton predictor-corrector scheme with the starting values obtained through a
fourth-order Runge-Kutta scheme. All computations are performed using 64-bit
arithmetic.

4. Results

4.1. Linear Stability for a Stokes Bubble with Volumetric Change.
A trivial solution to (1-6) is a contracting or expanding spherical bubble. In the
spherical polar coordinates (R, 6, ¢), with the assumption of axi-symmetry, the
bubble interface may be represented as R = R(6,t) = Ro(t). The two components
of the velocities are
R3R,
R2

(18) ur(R,0,t) = ug(R,0,t) =0,
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FIGURE 2. Comparison between the numerical solutions (the solid
curves) and the linear solutions (the dotted ones) for the same
conditions described in Figure 1 except ¢ = 0.3. The solid curves
are plotted at times t = ¢ x 0.5,7 =0, ...,8 and ¢ = 4.29 while the
dotted ones at t =i x 0.5, =1,...,6.

and the pressure is
(19) P(R,0,t) = poo(t) = —2 <2@ + E)

Ry (t) is determined by

(20) % (%Rg(t)) = sgn(A).

where sgn(A) =1 for A > 0 and = —1 for A < 0. However, the results of the linear
stability analysis prescribed in this section transcend the restriction (20) on Ro(t)
and can be applied to any spherical bubble with specified radius Ry(t). Therefore,
the restriction (20) will not be imposed in this section.

We are now in a position to analyze the evolution of small axi-symmetric per-
turbations on a spherical bubble. The analysis is similar in spirit to any linear
stability analysis on a spherical bubble, such as [21] except that unlike previous
cases, the bubble volume is changed. Since Legendre polynomials, { Py (cos(6))} -,
form a complete set in describing any function of @, it is enough to consider bubble
shape perturbations in the form

(21) R = R(8,1) = Ro(t) (1 + ep(t) Pi(cos(6))) + O(),
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FIGURE 3. The evolution of a bubble surface for initial condition
(39) with G=0att=(i—1),i=1,..,4,and t =3+4+ix0.1,i =
1,....4.

where € is a small constant. It is easily seen that the corresponding velocities must
take the form,

(22) ur(R,0,t) = g + eU(R,t)Py(cos(0)) + O(e*)

(23) ug(R, 0,t) = eW (R, t)sin(8) Py, (cos()) + O(e?)
while pressure is
(24) p(R,0,t) =+ eq(R, t)Py(cos(h)) + O(€?).

For disturbances not affecting the volume, it is clear that the £ = 0 mode needs
to be excluded. So we will assume k > 1. Substituting (21-24) into the equations
of motion (1-4), we obtain the linearized Stokes and continuity equations:

oq 9*U 20U k2+k+2U_2k(k+1)

2 = - - —

(25) R T oR: T ROR e V=0
¢ W 20w k(k+1) . 2U

2% 4 oW 20W  EEE Dy 20

(26) R orz TROR R ez

U 2 k(k+1)
97 A 5 A G sl S
(27) R TR T R

Linearization of normal and tangential components of stress about R = Ro(t)
results in the following O(€) equations:

(28)  ¢qg—2 <6R—]?p(t)+g—}Uz> +G%?(k+2)(k—l):0 at R = Ro(t),
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FIGURE 4. The neck distance vs. time for initial condition (39)

with G = 0.
(29)
Spt) 1(U 1 0?U U 2
3Ro— — =4 = R 2——-—U) ;=0 t R= Ro(t
Ry 2\ R B+ D \"orZ TR Ry @ o(®),
while the O(e) kinematic equation is
) U Ry
t) = — —3p— = t).
(30) PO =g —3rp At R=HRo(0)
After eliminating W and ¢ among (25-27), we obtain
otU o3U 0*U
— — + (12— 2k(k+1)) ==
R6R4+8R6R3+( (k + ))6R2
4k(k +1) oU 9 U
31 - ————+k(k+1)(k k—2)— =0.
The general solutions of (31) are
t t
(32) U(R,t) = ao(t) + a(?) +az(t)R*! + as(t)RF?

Rk Rk+2
where a;(t),i = 0,...,3 are as yet undetermined. Since k > 1, the relation (2)
implies az(t), az(t) = 0. From (26, 27), it follows that

1 ka 2—k)a
(33) W(R ) = k(k+1) (R’Hl? - Rk) 0)
&2 ot = 205

Finally, we use (32-34) in (28, 29) with aa = 0 = a3 to eliminate ag and a; in
terms of p. Using these resulting expressions in (30), we obtain a first order ODE
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1.0 T T T T

z(oit)/(t—t)

2.0 2.2 2.4 2.6 2.8 1.0
r(ot)/(t—t)"?

FIGURE 5. Local behavior of F(y) near y = 0 for initial condition
(39) with G =0

for p(t) which is readily integrated to give

3k(2k—1)
B Ro(0)\ @2+ (2k +1)(k* —1) (' ds
(35) p(t)—p<o>(R§(t)) exp{—G Y RO(S)}

Notice that the surface tension correction factor is 1 for £ = 1. For any fixed
k > 1, this correction is small for small G unless fot Ry '(s)ds is large. Also, any
non-zero G is seen to stabilize disturbances corresponding to sufficiently large k.
It is clear from (35) that the spherical solution is unstable when Ry(t) decreases,
i.e. for a contracting bubble; on the other hand, it is stable when Ry(t) increases
for an expanding bubble. In essence, the sign of A, sgn(A), determines the linear
stability. For the case of constant rate of volume change according to (20), Ro(t)
appearing in (35) has to be replaced by

), )

™

(36) Ro(t) = (1 +

4.2. Numerical Studies for a Stokes Bubble with Volumetric Change.
First of all, we compare the numerical solutions with those from the linear stability
analysis in Section 2. Consider the following initial condition

(37) r(0) = R(0)sin(0) 2(0) = R(0)cos(0)
where
(38) R(0) = 1+ ¢p(0) Py (cos(0)) + €%d

with d chosen to ensure that the initial volume of the bubble is %w. Also we set

p(0) = 1 without loss of generality.
From linear stability analysis, for sgn(A) = 1 any small disturbance on the
bubble surface should decrease to zero. This is found to be true for the nonlinear
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0.8 T T T T T T T

FIGURE 6. The evolution of a bubble surface for initial condition
(39) withG=0.1latt=(i—1)fori=1,..,4,and t =3.4+ix0.1
fori=1,...,5.

numerical solutions for € ranging from small to order one. For sgn(A) = —1, the
bubble surface evolves away from a sphere for small perturbations. The evolution of
the bubble is plotted in Figure 1 for G = 0.02 and an initial condition: & = 2, and
e = —0.3 in (38). The linear solutions and the numerical solutions agree well until
the bubble evolves significantly away from a sphere around ¢ = 2. The nonlinear
effect slows down the contracting of the surface around r = 0. Notice that at later
time, as shown Figure 1, in the three-dimensional bubble shape is similar to that
of a dimpled pancake.

In Figure 2, we plot the evolution of a bubble with an initial condition: k& = 2
and € = 0.3. The other parameters are chosen to be the same as in Figure 1.
Similar to Figure 1, the nonlinear and linear solutions agree well at early times,
and the nonlinear effect tends to slow down the pinch-off of the bubble. However,
the three-dimensional shape of the bubble in Figure 2 at later time resembles a
peanut shape, in contrast to a dimpled pancake in Figure 1. In other words, the
bubble surface collapses onto z = 0 plane for the case depicted in Figure 1 while
the surface shrinks onto the z-axis for the case in Figure 2. As shown later, these
two pinching processes behave differently.

The computations for Figure 1 and 2 have to be stopped due to the loss of the
resolution when the bubble surface comes close to pinching. For a boundary integral
method, the accuracy of calculation deteriorates when two parts of the interface
approach each other. For an accurate calculation of the principal integrals, it is
necessary to maintain a large value of ¢, which is defined as the ratio of the smallest
distance between the two parts of the bubble surfaces over the distance between
the neighboring nodes closest to the pinching point on the same side of the surface.
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2.5 ,

FIGURE 7. The evolution of a bubble surface for initial condition
(46) with G=0att=(i—1) fori=1,...,4.

Computation has to be stopped when ( fails to be sufficiently large, as is the case
when pinching is approached.

In order to study the detailed behavior of the bubble surface near pinch-off,
we start with initial bubble surfaces that resemble later time profiles in Figures 1
and 2. By doing this, we can choose a surface parameterization that concentrates
points around the pinching-off areas.

In particular, for the case of a dimpled pancake we choose

(39) r(v) = (b — a)sin(v) + ¢ sin(3v) z(v) = (b + a)cos(v) + ¢ cos(3v)

where a = —d, b = 0.4d, ¢ = 0.1d, with the constant d chosen to ensure that the
initial volume of the bubble is %w. Further, we use a stretching transformation

(40) v =a — 0.5y sin(2a),

where v = 0.8. For equally spacing «, the collocation points generated by (39, 40)
cluster near r = 0 initially, and it is found that they remain clustered near pinching
as time advances. With this parameterization (40), it is possible to calculate the
surface evolution more accurately around pinching than the calculation shown in
Figure 1.

In Figure 3, it shows the evolution of a bubble subjected to the initial condition
(39) with G = 0. The bubble surface comes close to pinching well before the bubble



12 QING NIE, SALEH TANVEER, TODD F. DUPONT, AND XIAOFAN LI

2.5 ,

FIGURE 8. The evolution of a bubble surface for initial condition
(46) with G =05att=(i—1) fori=1,...,5, and t = 4.06.

volume becomes zero. In this case, N = 257 and At = 0.0025 are used for the
calculation. The error tolerance for solving the integral equation (16) is set to
10710, and the typical iteration number in GMRES is 9 and it increases to as many
as 30 as the bubble surface is near pinch-off. Resolution studies in space and time,
as well as the error in volume of bubble have been shown in [22].

We now turn to investigating a possible self similar process describing pinching.
For this initial condition, we assume a self-similar relationship near pinch-off:

r(a,t)
41 t)~(te—t)'F | ——= ).
(41) 00) ~ =07 F (1)
with ¢ > 0. To obtain p, ¢ and t., we fit the numerically calculated z(0,t) and

Zaa(0,t) to the following forms,

(42) Z(O7 t) ~ (tc - t)pF(0)§

(43) Zaal0,8) ~ (te — P29 (0)r2(0, t.).

Numerically, r4(0,t.) is found to be nonzero. Now we briefly describe the
procedure for estimating p, ¢ and t.. First we apply a nonlinear least square fit to
(42) over M (> 3) consecutive points in time to determine p, ¢, and F(0). Once p
is determined, ¢ is determined from using (43) over two adjacent time steps. The
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FIGURE 9. The neck distance vs. time for initial condition (46)
with G = 0.5.

N iy te D q F(0) | deviation
33| 3.253.4245 [ 0.9684 | 0.5119 | 0.1692 | 9,2x10~ %
65 | 3.35 | 3.4271 | 0.9837 | 0.5041 | 0.1714 | 1.7 x10~7
129 | 3.40 | 3.4277 | 0.9913 | 0.5004 | 0.1732 | 3.8 x10~6
257 | 3.415 | 3.4283 | 0.9966 | 0.4997 | 0.1746 | 5.4 x10~6
TABLE 1. The estimation of p, g, t. for (39) and different N using
30 time steps

largest time t; used for the purpose of this fit depends on the estimated accuracy
of the solutions. As measured by comparing with higher resolution, the accuracy
of the solution close to pinching depends on the ratio ¢ of the neck distance over
the local spacing. In the computation, we require that both ¢ > 2 and the spatial
accuracy < 107% One of these criteria fails for the first time past ¢ = ty. We
define “deviation” in Tables 1 and 2 as the least square error, corresponding to the
estimated p, t. and F'(0). In Table 1, p, ¢ , t., F(0), t; and deviation are shown
for different N, where M = 30, i.e. 30 pairs of consecutive values (t;,z(0,¢;))
are used to compute the least square with ¢; = ¢, — (i — 1) x 0.0025,¢ = 1...30.
Similarly in Table 2, the first 15 pairs of values from the computation in Table 1
is employed. The convergence of the computed p, ¢, t. and F(0) is easily observed
from both tables and the results indicate consistency between M = 15 and 30.
Up to three digit precision, we determine p = 1, ¢ = 1/2, t. = 3.428 +£ 1073, and
F(0)=0.174 £ 1073

To check the consistency of the form-fit, both computed neck distance of the
bubble as well as the the right-hand side of (42), denoted as the “fitted” in Figure
4, are plotted as functions of the time. Both curves agree with each other very well
when ¢ > 3 (see the close-up). To check if indeed the similarity hypothesis (41) for
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N iy te D q F(0) | deviation
33| 3.25(3.4251]0.9712] 0.5133 | 0.1695 | 8.6x10~%
65| 3.35|3.4274 | 0.9863 | 0.5054 | 0.1719 | 1.6 x10~7
129 | 3.40 | 3.4279 | 0.9940 | 0.5015 | 0.1742 | 6.5 x10~6
257 | 3.415 | 3.4283 | 0.9972 | 0.5000 | 0.1749 | 4.3 x10~°
TABLE 2. The estimation of p, ¢, t. for (39) and different N using
15 time steps

t close to t. is valid, z(a, t)/(t. — t) is plotted as a function of r(a,t)/(t. — )= at
t=27+0.1x¢fori=1,.. 7in Figure 5. The upper curves correspond to later
times. Note that ¢t = 3.3, 3.4 curves are almost on top of each other as is expected
if (41) is valid for ¢ approaching ..

Adding surface-tension has no significant effect on the pinching behavior for
this case because curvature is small near the pinching point. As shown in Figure 6,
which has the same initial condition as in Figure 3 but G = 0.1, the bubble breaks
up as in Figure 3. A similar study demonstrates thatp =1, ¢ = %, te = 3.911£1073,
and F(0) = 0.247 & 1073 for this case. The neck distance as a function of time,
and the local behavior of F(y) are similar to those in Figures 4 and 5 [22]. They
are not shown here.

The results in the case of an initial dimpled pancake is not surprising because
the surface pinches as z — 0. In other words, the fluid on top and bottom of
the bubble are “unaware” of each other as they are drawn together by the global
condition of volume reduction. This is similar to the 2-D case [11] [12]. The
pinching is consistent with a local quadratic behavior

(44) 2~ agr? +bo(te —t)
which implies
z r ?
(45) tc—tNGO (7(12:—05) +bo
This is consistent with (42) with p = 1 and ¢ = 4. Confirmation of this result

suggests the reliability of the form-fit and indirectly the accuracy of the numerics,
even close to pinching.
We turn now to studying another set of initial condition.

(46) r(v) = (b+ a)sin(v) — ¢ sin(3v) 2(v) = (a — b)cos(v) + ¢ cos(3v)

where a = —d, b = 0.5d, ¢ = 0.2d, and d is a constant such that the initial volume
of the bubble is %w. This initial bubble, unlike the previous case, has the shape
of a peanut and qualitatively resemble the t = 4 curve in Figure 2. The evolution
of a bubble (only half of the profile plotted) for G = 0 is shown in Figure 7. Here
the bubble surface develops a cusp, within numerical precision. Such cusps have
been observed earlier for exact 2-D solutions in [11]. In that case a small nonzero
surface tension smoothes out the cusp locally, but the shapes are near cusps. This
is expected for the axi-symmetric case as well for small G, though numerically
calculation becomes difficult. Not surprisingly, when G = 0.5, the cusp formation
with initial condition (46) is smoothed out over a large scale. The bubble then tends
to pinch at the origin as seen in Figure 8. In order to better resolve the pinching, we
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FIGURE 10. Local behavior of F'(y) near y = 0 for initial condition
(46) with G = 0.5.

N | ty te p g | F(0)
129 | 4.050 | 4.1495 | 0.9828 | 0.3988 | 0.3175
257 | 4.060 | 4.1508 | 0.9921 | 0.4000 | 0.3234
TABLE 3. The estimation of p, ¢, t. for (46) and different N

cluster the collocation points around z = 0 initially by choosing uniformly spaced
points in o and choosing

(47) v =a+ 0.5y sin(2a),

with v = 0.8.

Before proceeding with discussion of the pinching behavior, we remind the
reader once again about the essential difference between the two initial conditions
(39) and (46). Although both initial bubble shapes look similar in the meridional
plane with r and z interchanged, their actual 3-D shapes are significantly different as
discussed above (one is pancake shaped and the other resembles a peanut). ;jFrom
a computational point view, the second case provides more numerical difficulties
due to the presence of term 1/r in the curvature, which is sensitive to round-off
and computational errors as r approaches 0. Next we show a preliminary study to
investigate a possible self-similar pinching process.

As in the previous case, the self similar form (41) is assumed, except that r
and z are interchanged. In order to keep errors acceptable (< 107%), it is found
that we need ¢ > 5. Since there are not enough available time steps near pinching
where asymptotic behavior (41) is valid, we abandon the least square fit approach
in favor of a direct fit to (42).

Specifically, we enforce (42) at three adjacent time steps ending at ¢, and solve
the nonlinear equations through Newton iteration to obtain p, t. and F(0). The
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FIGURE 11. Profiles of a drop for A = 0.1. (a) Initial and final (at
pinch-off) shapes of half of a drop; (b) Close-up near pinch-off.

computation of ¢ is similar to the previous case. In Table 3, a estimate of p, ¢,
and t. are given. The difference between the two solutions N = 129 and N = 257
agree up to 10~ at t = 4.06, and the volume of the bubble is accurate to 1076 for
N =129 and 1078 for N = 257 respectively.

Based on the data in Table 3, we estimate that p =1, ¢ = 2/5, t. = 4.15+1072
and F(0) = 0.32410~2. In Figure 9 and Figure 10, graphs similar to Figures 4 and 5
are shown for this initial condition (46) . In Figure 10, the bottom curve corresponds
to t = 3.9 while all other curves overlap corresponding to ¢ = 4.0 4+ (: — 1) x 0.01
for i = 1,...,7. We note different similarity exponent in this case compared to the
previous case.

An analytic similarity solution describing this pinching appears to be difficult
as the far-field behavior must come into play since the fluid velocity and pressure
at any part of the interface is globally dependent on values at other parts of the
interface. For instance, it is known within the context of 2-D Stokes flow that the
interface between a zero viscosity fluid displacing a viscous fluid can be stable for an
expanding inviscid bubble [11] or unstable for a contracting viscous blob [23]. This
observation suggests that the far-field plays a very important role on the similarity
process; and this makes it difficult to obtain a locally self-similar analytic solution.
Further computational and analytic studies are in progress [24].

4.3. Numerical Studies for Pinch-off of a Viscous Drop. When a fluid
droplet breaks, a singularity develops due to the infinite curvature at the point
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FIGURE 12. The large angle of the cone as a function of . (a) the
angles in degree; (b) the tangent of the angles.

of pinch-off. For a viscous drop surrounded by another viscous fluid, physical
experiments [14] indicate that two canonical cones meet at the pinch-off point, and
the sizes of the two angles of the cones are independent of the initial shape of the
droplet and depend only on the viscosity ratio of the interior and exterior fluids of
the drop: A.

In this work, we compute the numerical solutions of (17) in an axi-symmetric
geometry for different values of A\. We choose an initial condition similar to the one
in [10]. Figure 11 shows the calculation for A = 0.1, in which the drop is represented
by 1025 points. In Figure 11 (a), the initial shape of the drop and the final shape
of the drop near pinching are plotted for half of the drop. Notice that the radial
direction r is chosen to be vertical for convenience of presentation. Figure 11 (b)
shows a close-up near pinch-off. As seen in the figure, locally near the pinch-off the
drop develops a cone of a larger angle on the left and a cone of smaller angle on
the right.

In order to estimate the angles of the cone, we first extrapolate a temporal
sequence of the profiles of the drop surface to estimate the pinch-off time and
location. Next we estimate the angles at several time-steps before pinch-off using
various portions of the surface. Then we extrapolate the obtained angles to obtain
the cone angles at the pinch-off. For A = 1, the sizes of the two angles are found
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consistent with those in [10]. However, we notice that angle of the small cone is
more prone to numerical errors and more difficult to estimate than the larger one.

In Figure 12, we display the larger cone angles obtained from our numerical
simulations and the physical experiments in [14] for different values of A\. The
numerically estimated angles are consistently smaller than the experimentally esti-
mated angles. However, for A > 0.018, the numerical values are within or close to
the error bars of those physical ones, and the agreement is better for larger values
of A\. For the two smallest A = 0.002,0.004, it is clear that the numerical result
does not agree with the experiments. It is interesting to notice that the numerical
solutions show a monotonic decay as a function of A, and the angle of the larger
cone may have a slope of A'/3. Further study on the angle of the smaller cone and
the asymptotic behavior of the solutions for A — 0 is in progress.

5. Summary

We have studied the evolution of a contracting or expanding bubble and the
pinch-off of a viscous drop in axi-symmetric Stokes flows. The linear stability
analysis suggests that an expanding bubble is stable while a contracting bubble is
unstable to arbitrary axi-symmetric disturbances. Numerical computations show
that an axi-symmetric bubble has the same behavior under large disturbances,
though the growth of the instability is weakened by nonlinear effects. Numerical
computations also suggest that, for a certain class of disturbances, a contracting
bubble undergoes topological changes as different parts of the interface touch each
other. This pinch-off appears to be a self-similar process, though the forms of
the pinch-off depend on whether the pinch-off occurs as 2z — 0 or r — 0. For a
viscous drop surrounded by another viscous fluid, it is found that the drop surface
develops a canonical cone shape near pinch-off. The cone angles (for the wider cone)
from our numerical simulations agree well with the physical experiment for large
and medium-sized viscosity ratio \. However, the difference between the physical
experiments and numerical solutions are visible for very small \.
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