
Updating an Abel-Gauss-Riemann Program

Versions: 1st UC Irvine 05/22/08, 2nd Istanbul 06/18/08

In “What Gauss Told Riemann About Abel’s Theorem”

(lecture at John Thompson’s 70th Birthday) I cited Otto

Neuenschwanden on 60-year-old Gauss in conversation with

20-year-old Rieman.

Their goal: Generalize two of Abel’s famous results using

Gauss’ harmonic functions. Notation:

gggH-M = (g1, g
−1
1 , g2, g

−1
2 ) ∈ Ni(G,C) for an H-M rep.

Two understatements: Riemann went far; but his early death

left an incomplete program.

• §I. More modular curve lessons

• §II. Modular curve-like spaces with An s replacing Dp s
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§I. More modular curve lessons: Extending [Talk1]

Nielsen class Reminder: Finite G and r conjugacy

classes C: ggg = (g1, . . . , gr) ∈ Ni(G,C) satisfies:

• (generation) 〈ggg〉 = G;

• (conjugacy classes – with multiplicity) ggg ∈ C; and

• (product-one – in the given order) g1 . . . gr = 1.

Dragging a dihedral function by its branch points gives:

H(Dp,C24) def= {f ∈ Ni(Dp,C24)} complex and an analytic

map, ΨDp,C
24

, to (jw, jz)-space with image Y0(p).
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§I.A. Here are the cusps, at all levels

Chow Lemma: Extend ΨDp,C
24

to include cusps =⇒ equations

in (jw, jz) for Y0(p) ∪ cusps
def= X0(p).

Orbits means on Ni(Dp,C24)abs def= Ni(Dp,C24)/Np with

Np = {
( a b

0 1

)
}a∈(Z/p)∗,b∈Z/p.

• Points on X0(p) over jz �= ∞ ↔ Q′′ orbits.

• Cusps (over jz = ∞) ↔ Cu4
def= 〈q2,Q′′〉 orbits. Just two:

H-M rep. (g1, g
−1
1 , g2, g

−1
2 ) = gggH-M, in this case a p-cusp;

p|ord(g−1
1 g2));

other by (gggH-M)sh (g-p′ cusp; p � | |〈g2, g
−1
2 〉| or |〈g1, g

−1
1 〉|).
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§I.B. Generalize Tp compositions Tpk+1 = Tp ◦ · · · ◦ Tp: Use

Schur-zassenhaus and Frattini Properties

For X0(pk+1): Exchange Dpk+1 for Dp, Npk+1 for Np.

Form modular curves X1(pk+1): Replace Ni(Dpk+1,C24)/Npk+1

by Ni(Dpk+1,C24)/Dpk+1 = Ni(. . . )in.

Schur-Zassenhaus: Regard C2 as a conjugacy class in

each Dpk+1.

Generation at level k (Frattini): ggg ∈ C24∩Dpk+1 =⇒
〈ggg〉 = Dpk+1 iff 〈ggg mod p〉 = Dp. So, to list

Ni(Dpk+1,C24) track just product-one condition.
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§I.C. (product-one) Dp-iterations
Abel Iteration: Functions fk : P1

w → P1
z with branch locus

j′ ∈ Uj modulo PGL2 in Ni(Dpk+1,C24)abs,rd =⇒ projective

sequence of covers in Ni(Dpt,C24)abs,rd, 1 ≤ t ≤ k+1.

Lemma: For 0ggg ∈ Ni(Dp,C24)abs,rd a b(ranch)c(yc)d(esc)

realized by f0 : P1
w → P1

z, substitute another group Gt for

Dpt+1 with ker(Gt → Gt−1) = Z/p
def= Mp a fixed G0 = Dp

module. Assume product-one ⇔ ggg ∈ (Gt)4 ∩C24 over 0ggg to be

in Ni(Gk,C24) (generation automatic). Then, Gk = Dpk+1.

Definition: ggg ∈ Ni(Dpk+1,C24)abs,rd is a (product-one) Dp-

iteration of f0, k+1 times. Warning: We aren’t composing

f0, k+1 times, nor is the iteration unique. Yet, the result is

composition of k+1 rational functions

determined by f0 and ggg.
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§I.D. Growth of p-cusps with levels from a Spire

Higher Schur-Zassenhaus: A g-p′ cusp ( here

(gggH-M)sh) at level 0 =⇒ a projective sequence

of g-p′ cusps (here {(kgggH-M)sh ∈ Nik}∞k=0).

Theorem [Fr07b, Princ. 3.3]: In any Nielsen class, if

gggH-M is a p-cusp, so is kgggH-M. Inductively in k, ∃ a

new p-cusp at level k (no p-cusp below it): the cusp

of ((k+1gggH-M)qpk

2 )sh.

Conclude: # of p-cusps grows with k in a braided

spire (See §II.H; Picture App. A2).
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§I.E. 3 reasons topinpointHurwitz space components

• Know precise definition field of components (from the

B(ranch) C(ycle) L(emma)). Hone in on those over Q.

• Know which components support a Modular Tower: analog

for Hurwitz spaces of Shimura variety towers (both

generalizing modular curve towers).

• Can identify components by their cusps, enablingSerre’s arg-

uments onmodular curves for hisO(pen) I(mage)T(heorem).

Reminder: When r (number of branch points) is 4, all reduced

Hurwitz space components are upper half-plane quotients by a

finite index subgroup of PSL2(Z) [BF02, Prop. 2.3].
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§II. Modular curve-like spaces withAns replacingDps

Liu-Osserman: Ni(n+1
2 )4: G= An,n ≡ 5 mod 8

Dp↔An, Np↔Sn, C2↔Cn+1
2

: class of n+1
2 -cycle.

General case of Liu-Osserman is of genus 0 covers and pure(one

length > 1 disjoint)-cycle conjugacy classes.

Basic facts: Suppose ggg ∈ A4
n ∩ C(n+1

2 )4 satisfying product-

one, with 〈ggg〉 transitive. Following hold:

• 〈ggg〉 = An; and unless ggg is sh of an H-M rep., cusp orbit

Cu4(ggg) is pure-cycle (g2g3 itself is pure-cycle).

• g-2′ cusps have width 1 or 2 and are represented by sh applied

to an H-M rep. [Fr07b,Prop. 3.10]+[Wm73]: Because

〈g2, g3〉 and 〈g1, g4〉 are Ak, k ≥ 4, for some k ≤ n, so not

2′, unless they are cyclic groups.

– Typeset by FoilTEX – 8



§II.A. sh-incidence for Niabs
(n+1

2 )4

Notation: xi,j =(i i+1 · · · j).List of innerH-M reps:

H-M1
def= (xn+1

2 ,1, x1,n+1
2

, xn+1
2 ,n, xn,n+1

2
)

H-M2 = (H-M1)q1
def= (x1,n+1

2
, xn+1

2 ,1, xn+1
2 ,n, xn,n+1

2
)

Absolute (resp. inner) cusps represented by Cu4
orbits in Ni(n+1

2 )4/Sn (resp. Ni(n+1
2 )4/An). As with

modular curves, Q′′ = 〈sh2, q1q
−1
3 〉 is trivial on

Nielsen classes. Cusp orbit of H-M1:
{H-M1,t = (xn+1

2 ,1, x1+t,n+1
2 +t, xn+1

2 +t,n+t, xn,n+1
2

)}n−1
t=0 .
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(H-M1,t)sh , labeled by middle product mprggg = ord(g2g3):

0 ≤ t ≤ n−1
2 , (H-M1,t)sh = [2t+1]1 :

= (x1+t,n+2t+1
2

, (xn+2t+1
2 ,n, x1,t), xn,n+1

2
, xn+1

2 ,1)

t′ = n−1−t, n+1
2 ≤ t ≤ n−1, (H-M1,n−t′)sh = [2t′+1]2 :

= ((xn−t′+1,n x
1,n−2t′+1

2
), xn−2t′+1

2 ,n−t′, xn,n+1
2

, xn+1
2 ,1)

For 0 ≤ t ≤ n−1
2 , [2t+1]1 gives a list of absolute cusp reps.

So, we can label absolute cusps as cO2t+1, 0 ≤ t ≤ n−1
2 .
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We list cusps in descending width along the rows and

columns. In absolute sh-incidence matrix: n+1
2 1’s along

1-1 a(nti)-(sub)d(iagonal); n−1
2 2’s along 3-3 ad, etc.

§II.B. sh-incidence: r = 4 and Niin,abs
34 , n = 5

Cusp orbit cO5 cO3 cO1

cO5 2 2 1

cO3 2 1 0

cO1 1 0 0

Three cusps: Along each row or column the sum is the cusp

width — order of ramification of the cusp over j = ∞.
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• H̄in,rd

(n+1
2 )4

deg=2−−→H̄abs,rd

(n+1
2 )4

deg = (n+1
2 )2

−−−−−−→P1
j (̄ includes cusps).

• H̄abs,rd

(n+1
2 )4

embeds in P1
jw

× P1
jz

(not modular curve, App. C2).

• n=13: Two (resp. one) width 13, 11, 5, 3 (resp. 18, 14, 2)

cusps: No 2-cusps (cO1 = (gggH-M)sh; rest o(nly)-2′ cusps).

§II.C. Abs-inn sh-incidence for n = 13, Niin,rd
74

Cusp orbit cO13 cO11 cO9 cO7 cO5 cO3 cO1

cO13
0
2+2
0

1
1+1
1

2
2̄

2
2̄

0
2+2
0

1
1+1
1

1
1̄

cO11
1
1+1
1

0
2+2
0

2
2̄

2
2̄

1
1+1
1

0
1+1
0

0
0̄

cO9 2|2 2|2 40 4 1|1 0|0 0
cO7 2|2 2|2 4 21 0|0 0|0 0
cO5

0
2+2
0

1
1+1
1

1
1̄

0
0̄

0
0+0
0

0
0+0
0

0
0̄

cO3
1
1+1
1

0
1+1
0

0
0̄

0
0̄

0
0+0
0

0
0+0
0

0
0̄

cO1 1|1 0|0 0 0 0|0 0|0 0
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§II.D. Genus gn,∗,∗ = abs/in: [Fr07b,Prop. 5.15]

• Each col. sums to cusp ram. index over P1
j :

cusp col.s over abs. cusp cO13 sum to 13;

only cusp col. over abs. cusp cO9 sums to 18.

• Only γ0 = q1q2 (resp. γ1 = sh) fixed points in cO9 (resp. cO7)

cols. indicated by superscript 0 (resp. 1). sh-incidence matrix

same as γ0-incidence matrix - elliptic fixed points forced.

• g5,abs = g5,in = 0; g13,abs = 1, g13,in = 3; Prop. 5.15 has

all n ≡ 1 mod 4. For n ≡ 1 mod 8, two components

conjugate over L/Q quadratic.
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II.E. Modular curve analog Ni(Gk,ab,C(n+1
2 )4)

in,rd

and (product-one) An-iterations
Changing Dp to An, for prime p|n!, but p � |n+1

2 . Want

G0 module Mn,p and p-Frattini covers Gk,ab → An = G0 so

ker(Gk,ab → Gk−1,ab) = Mn,p.

∃ universal (abelianized) p-Frattini cover ϕ̃ : G̃ab(An) → An.

ker(ϕ̃): fin. dim.tors.-freeZp[An] module,mn,p=ker(ϕ̃)/pker(ϕ̃).
Defining levels: Gk,ab = G̃ab(An)/pk ker(ϕ̃): Component

H′
k from a braid orbit Ni′k on

Ni(Gk,ab,C(n+1
2 )4)

in,rd ↔ Y1(pk+1).

As (Dp, p) is to Z/p, (An, p) is to Mn,p.

(An,C(n+1
2 )4,p= 2)ModularTower: Projectivesequence{H′

k}∞k=0.
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§II.F. The Spinn-lifting invariant

When does there exist at least one MT over

H(An,C, p) for a general C?

When is there more than one?

When are all levels of a MT defined over Q?

Odd d1 ≤ d2 ≤ · · · ≤ dr pure-cycle An lengths, Iddd
def=∑r

i=1 di−1. [Fr+Se+We] Liu-Osserman case Iddd = 2(n−1)
(H(An,Cd1···dr) irreducible):

For p �= 2, at least one MT. For p = 2, at least one iff

(*)
∑r

i=1
d2

i−1

8 ≡ 0 mod 2 (includes if there is a H-M rep.).
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§II.G. Listing 2-cusps in Ni(G1,C(n+1
2 )4)

in,rd.

[Talk3] explains: If Iddd > 2(n−1) usually more than one

component at level 0 and then at least one supports a

(nonempty) MT for all allowed primes.

Call level 0 cusp cOggg, ggg ∈ Ni(n+1
2 )4, a 2-T(otal)J(ump) cusp

if all cusp orbits on Ni(G1,C(n+1
2 )4) over it are 2-cusps.

Thm: cOggg is 2-TJ iff the middle product mprggg (p. 9) satisfies

(−1)
mpr2ggg−1

8 = −1.

Conclusion: In p. 10 listing of cusp reps. by middle products:

0 ≤ t ≤ n−1
2 , [2t+1]1, 2-cusps correspond to

(−1)
(2t+1)2−1

8 = −1, or t ≡ 3, 5 mod 8.
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§II.H. Why an H-M Modular Tower, {H′
k}∞k=0 –

each level has an H-M rep. – has a spire

Since [n]1 is an H-M rep., an adjustment to Thm. of

§I.D gives a spire on this MT (App. A2). Conclude:

2-cusps grow with k on each MT over

Ni(An,C(n+1
2 )4)

in,rd, n ≡ 5 mod 8.

Idea: Combine these two facts:

• For ggg ∈ Ni(Gi′,C)in,rd representing a p cusp, with pj′||mprggg,

then for any ggg′ ∈ Ni(Gi′+k′,C)in,rd over ggg, pj′+k′||mprggg.

• If ggg′ is an H-M rep. (so ggg is also), then there is an explicit

braid (ggg′)q = ggg′′, with p||mprggg′′.
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App. §A2: A modular curve-like Spire
Theorem 1.A MT with a H(arbater)-M(umford) cusp branch
of p-cusps has a spire: sub-tree isomorphic to a modular
curve cusp tree. Holds for p = 2 at level 1, for Liu-Osserman
n ≡ 5 mod 8. Doesn’t hold for n ≡ 1 mod 8.
SPIRE: Growth of p cusps with level: Subscript is power of p

dividing the middle product.

Level 1 : •p

Level 2 : •p2 •p

Level 3 : •p3 •p2 •p

· · · : . . . . . . . . . . . .
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App. B2. p-cusp MT Conjectures

Main Conj. 1: K a number field, then High MT levels

have no K points. Cadoret [Ca08]: Showed Strong Torsion

Conjecture on abelian varieties implies this.

Cadoret-Tamagawa [CaT08] showed this for r ≤ 4.

Main Conj. 2: a. High MT levels have general type (for

r = 4 implies Conj. 1) and are b. relatively p-Frattini over

the previous level ( =⇒ weak form of Serre’s O(pen) I(mage)

T(heorem)). This talk shows the a. part for MTs over Liu-

Osserman spaces, but hasn’t yet shown the b. part.

15 years ago Pierre Debes and I noted relation of dihedral

groups to work of Kamienny and Mazur [DFr94].
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Compare to Mazur-Meryl

Conjecture: There can’t be regular involution realizations

over Q of all Dpk+1, k unbounded, p any (fixed) odd prime, with

at most r0 (any number you like), branch points ⇔ a uniform

bound on μ(pk+1)-torsion points on hyperelliptic jacobians of

dimension no more than r0: with such (involution) realizations

necessarily in Ni(Dpk+1,C2r0)in,rd.

The MT program generalizes that: Replacing dihedral

groups by any finite G, p any prime with G p-perfect (has

no Z/p quotient). To date, only a handful of involution

realizations of dihedral groups known — most from Mazur’s

theorem, even without a bound (r0) on branch points.
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App. C2: Andre’s Thm. and Shimura special points

Each space H̄abs,rd

(n+1
2 )4

, n ≡ 1 mod 4 embeds in P1
jw

× P1
jz

:

Each cover with branch points {z1, . . . , z4}, has a distinguished

point wi over zi corresponding to the pure-cycle, i = 1, . . . , 4,

akin to modular curve case.

The geometric monodromy group of H̄abs,rd

(n+1
2 )4

→ P1
jz

is

A(n+1
2 )2 (easily seen from the pure-cycle cusps described § II.A).

So, H̄abs,rd

(n+1
2 )4

cannot possibly be a modular curve.

The points of form (j(τ ′), j(τ ′′)) with τ ′ and τ ′′ fixed by

“complex multiplications” are (Shimura) special [Sh71, §4.4].

Andre’s Thm: There are only finitely many such points on a

non-modular curve embedded in P1
jw

× P1
jz

.
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