Updating an Abel-Gauss-Riemann Program

Versions: 1st UC Irvine 05/22/08, 2nd Istanbul 06/18/08

In "What Gauss Told Riemann About Abel's Theorem" (lecture at John Thompson's 70th Birthday) I cited Otto Neuenschwanden on 60-year-old Gauss in conversation with 20-year-old Rieman.

Their goal: Generalize two of Abel's famous results using Gauss' harmonic functions. Notation:

$$\mathbf{g}_{H-M} = (g_1, g_1^{-1}, g_2, g_2^{-1}) \in Ni(G, \mathbf{C})$$
 for an H-M rep.

Two understatements: Riemann went far; but his early death left an incomplete program.

- §I. More modular curve lessons
- ullet §II. Modular curve-like spaces with A_n s replacing D_p s

§I. More modular curve lessons: Extending [Talk₁]

Nielsen class Reminder: Finite G and r conjugacy classes \mathbf{C} : $\mathbf{g} = (g_1, \dots, g_r) \in \text{Ni}(G, \mathbf{C})$ satisfies:

- (generation) $\langle \boldsymbol{g} \rangle = G$;
- ullet (conjugacy classes with multiplicity) $oldsymbol{g} \in oldsymbol{\mathsf{C}}$; and
- (product-one in the given order) $g_1 \dots g_r = 1$.

Dragging a dihedral function by its branch points gives:

 $\mathcal{H}(D_p,\mathbf{C}_{2^4})\stackrel{\mathrm{def}}{=}\{f\in\mathrm{Ni}(D_p,\mathbf{C}_{2^4})\}\$ complex and an analytic map, $\Psi_{D_p,\mathbf{C}_{2^4}}$, to (j_w,j_z) -space with image $Y_0(p)$.

§I.A. Here are the cusps, at all levels

Chow Lemma: Extend $\Psi_{D_p,\mathbf{C}_{2^4}}$ to include cusps \Longrightarrow equations in (j_w,j_z) for $Y_0(p)\cup\operatorname{cusps}\stackrel{\mathrm{def}}{=} X_0(p)$.

Orbits means on $Ni(D_p, \mathbf{C}_{2^4})^{abs} \stackrel{\text{def}}{=} Ni(D_p, \mathbf{C}_{2^4})/N_p$ with

$$N_p = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix} \right) \right\}_{a \in (\mathbb{Z}/p)^*, b \in \mathbb{Z}/p}.$$

- Points on $X_0(p)$ over $j_z \neq \infty \leftrightarrow \mathcal{Q}''$ orbits.
- Cusps (over $j_z = \infty$) \leftrightarrow $\operatorname{Cu}_4 \stackrel{\operatorname{def}}{=} \langle q_2, \mathcal{Q}'' \rangle$ orbits. Just two: H-M rep. $(g_1, g_1^{-1}, g_2, g_2^{-1}) = \boldsymbol{g}_{\text{H-M}}$, in this case a p-cusp; $p|\operatorname{ord}(g_1^{-1}g_2)$);

other by $(\mathbf{g}_{\mathrm{H-M}})$ sh $(\mathbf{g}$ -p' cusp; $p \nmid |\langle g_2, g_2^{-1} \rangle|$ or $|\langle g_1, g_1^{-1} \rangle|)$.

§I.B. Generalize T_p compositions $T_{p^{k+1}}=T_p\circ\cdots\circ T_p$: Use Schur-zassenhaus and Frattini Properties

For $X_0(p^{k+1})$: Exchange $D_{p^{k+1}}$ for D_p , $N_{p^{k+1}}$ for N_p .

Form modular curves $X_1(p^{k+1})$: Replace $\mathrm{Ni}(D_{p^{k+1}}, \mathbf{C}_{2^4})/N_{p^{k+1}}$ by $\mathrm{Ni}(D_{p^{k+1}}, \mathbf{C}_{2^4})/D_{p^{k+1}} = \mathrm{Ni}(\dots)^{\mathrm{in}}$.

Schur-Zassenhaus: Regard C_2 as a conjugacy class in each $D_{n^{k+1}}$.

Generation at level k (Frattini): $\mathbf{g} \in \mathbf{C}_{2^4} \cap D_{p^{k+1}} \Longrightarrow \langle \mathbf{g} \rangle = D_{p^{k+1}}$ iff $\langle \mathbf{g} \mod p \rangle = D_p$. So, to list $\mathrm{Ni}(D_{p^{k+1}}, \mathbf{C}_{2^4})$ track just product-one condition.

§I.C. (product-one) D_p -iterations

Abel Iteration: Functions $f_k: \mathbb{P}^1_w \to \mathbb{P}^1_z$ with branch locus $j' \in U_j$ modulo PGL_2 in $\operatorname{Ni}(D_{p^{k+1}}, \mathbf{C}_{2^4})^{\operatorname{abs,rd}} \Longrightarrow$ projective sequence of covers in $\operatorname{Ni}(D_{p^t}, \mathbf{C}_{2^4})^{\operatorname{abs,rd}}$, $1 \le t \le k+1$.

Lemma: For ${}_0 {m g} \in {
m Ni}(D_p, {m C}_{2^4})^{{
m abs}, {
m rd}}$ a b(ranch)c(yc)d(esc) realized by $f_0: {\mathbb P}^1_w \to {\mathbb P}^1_z$, substitute another group G_t for $D_{p^{t+1}}$ with $\ker(G_t \to G_{t-1}) = {\mathbb Z}/p \stackrel{{
m def}}{=} M_p$ a fixed $G_0 = D_p$ module. Assume product-one $\Leftrightarrow {m g} \in (G_t)^4 \cap {m C}_{2^4}$ over ${}_0 {m g}$ to be in ${
m Ni}(G_k, {m C}_{2^4})$ (generation automatic). Then, $G_k = D_{p^{k+1}}$.

Definition: $\mathbf{g} \in \operatorname{Ni}(D_{p^{k+1}}, \mathbf{C}_{2^4})^{\operatorname{abs,rd}}$ is a (product-one) D_p iteration of f_0 , k+1 times. Warning: We aren't composing f_0 , k+1 times, nor is the iteration unique. Yet, the result is composition of k+1 rational functions

determined by f_0 and \boldsymbol{g} .

$\S I.D.$ Growth of p-cusps with levels from a Spire

Higher Schur-Zassenhaus: A g-p' cusp (here $(\boldsymbol{g}_{\text{H-M}})$ sh) at level 0 \Longrightarrow a projective sequence of g-p' cusps (here $\{({}_k\boldsymbol{g}_{\text{H-M}})$ sh $\in \text{Ni}_k\}_{k=0}^{\infty}$).

Theorem [Fr07b, Princ. 3.3]: In any Nielsen class, if $\boldsymbol{g}_{\text{H-M}}$ is a p-cusp, so is ${}_{k}\boldsymbol{g}_{\text{H-M}}$. Inductively in k, \exists a new p-cusp at level k (no p-cusp below it): the cusp of $(({}_{k+1}\boldsymbol{g}_{\text{H-M}})q_2^{p^k})$ **sh**.

Conclude: # of p-cusps grows with k in a braided spire (See §II.H; Picture App. A₂).

§I.E. 3 reasons to pinpoint Hurwitz space components

- Know precise definition field of components (from the B(ranch) C(ycle) L(emma)). Hone in on those over \mathbb{Q} .
- Know which components support a Modular Tower: analog for Hurwitz spaces of Shimura variety towers (both generalizing modular curve towers).
- Can identify components by their cusps, enabling Serre's arguments on modular curves for his O(pen) I(mage) T(heorem).

Reminder: When r (number of branch points) is 4, all reduced Hurwitz space components are upper half-plane quotients by a finite index subgroup of $\mathrm{PSL}_2(\mathbb{Z})$ [BF02, Prop. 2.3].

§II. Modular curve-like spaces with A_n s replacing D_p s Liu-Osserman: $\mathrm{Ni}_{(\frac{n+1}{2})^4}$: $G=A_n$, $n\equiv 5 \mod 8$

 $D_p \leftrightarrow A_n$, $N_p \leftrightarrow S_n$, $C_2 \leftrightarrow C_{\frac{n+1}{2}}$: class of $\frac{n+1}{2}$ -cycle. General case of Liu-Osserman is of genus 0 covers and pure(one length > 1 disjoint)-cycle conjugacy classes.

Basic facts: Suppose $g \in A_n^4 \cap \mathbf{C}_{(\frac{n+1}{2})^4}$ satisfying productone, with $\langle g \rangle$ transitive. Following hold:

- $\langle \boldsymbol{g} \rangle = A_n$; and unless \boldsymbol{g} is **sh** of an H-M rep., cusp orbit $\mathrm{Cu}_4(\boldsymbol{g})$ is *pure-cycle* (g_2g_3) itself is pure-cycle).
- g-2' cusps have width 1 or 2 and are represented by **sh** applied to an H-M rep. [Fr07b,Prop. 3.10]+[Wm73]: Because $\langle g_2,g_3\rangle$ and $\langle g_1,g_4\rangle$ are A_k , $k\geq 4$, for some $k\leq n$, so not 2', unless they are cyclic groups.

§II.A. sh-incidence for $Ni_{(\frac{n+1}{2})^4}^{abs}$

Notation: $x_{i,j} = (i \ i+1 \ \cdots \ j)$. List of inner H-M reps:

$$\begin{aligned} \text{H-M}_1 &\stackrel{\text{def}}{=} & (x_{\frac{n+1}{2},1}, x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}}) \\ \text{H-M}_2 &= (\text{H-M}_1) q_1 &\stackrel{\text{def}}{=} & (x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}}) \end{aligned}$$

Absolute (resp. inner) cusps represented by Cu_4 orbits in $\operatorname{Ni}_{(\frac{n+1}{2})^4}/S_n$ (resp. $\operatorname{Ni}_{(\frac{n+1}{2})^4}/A_n$). As with modular curves, $\mathcal{Q}'' = \langle \mathbf{sh}^2, q_1q_3^{-1} \rangle$ is trivial on Nielsen classes. Cusp orbit of $\operatorname{H-M}_1$:

$$\{H-M_{1,t} = (x_{\frac{n+1}{2},1}, x_{1+t,\frac{n+1}{2}+t}, x_{\frac{n+1}{2}+t,n+t}, x_{n,\frac{n+1}{2}})\}_{t=0}^{n-1}.$$

$(H-M_{1,t})$ sh, labeled by middle product $\mathbf{mpr}_{\boldsymbol{g}} = \operatorname{ord}(g_2g_3)$:

$$0 \le t \le \frac{n-1}{2}, (\text{H-M}_{1,t}) \mathbf{sh} = [2t+1]_1 :$$

$$= (x_{1+t, \frac{n+2t+1}{2}}, (x_{\frac{n+2t+1}{2}, n}, x_{1,t}), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1})$$

$$\begin{split} t' &= n - 1 - t, \frac{n+1}{2} \leq t \leq n - 1, (\text{H-M}_{1,n-t'}) \text{sh} = [2t'+1]_2 : \\ &= ((x_{n-t'+1,n} \, x_{1,\frac{n-2t'+1}{2}}), x_{\frac{n-2t'+1}{2},n-t'}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}) \end{split}$$

For $0 \le t \le \frac{n-1}{2}$, $[2t+1]_1$ gives a list of absolute cusp reps. So, we can label absolute cusps as ${}_{\mathbf{c}}O_{2t+1}$, $0 \le t \le \frac{n-1}{2}$.

We list cusps in descending width along the rows and columns. In absolute sh-incidence matrix: $\frac{n+1}{2}$ 1's along 1-1 a(nti)-(sub)d(iagonal); $\frac{n-1}{2}$ 2's along 3-3 ad, etc.

§II.B. sh-incidence: r=4 and $\mathrm{Ni}_{34}^{\mathrm{in,abs}}$, n=5

Cusp orbit	$_{\mathbf{c}}O_{5}$	$_{\mathbf{c}}O_3$	$_{\mathbf{c}}O_{1}$
$_{\mathbf{c}}O_{5}$	2	2	1
$_{\mathbf{c}}O_3$	2	1	0
$_{\mathbf{c}}O_{1}$	1	0	0

Three cusps: Along each row or column the sum is the cusp width — order of ramification of the cusp over $j = \infty$.

•
$$\mathcal{H}^{\text{in,rd}}_{(\frac{n+1}{2})^4} \xrightarrow{\text{deg}=2} \mathcal{H}^{\text{abs,rd}}_{(\frac{n+1}{2})^4} \xrightarrow{\text{deg}=(\frac{n+1}{2})^2} \mathbb{P}^1_j$$
 (- includes cusps).

- $\bar{\mathcal{H}}^{\mathrm{abs,rd}}_{(\frac{n+1}{2})^4}$ embeds in $\mathbb{P}^1_{j_w} \times \mathbb{P}^1_{j_z}$ (not modular curve, App. C₂).
- n = 13: Two (resp. one) width 13, 11, 5, 3 (resp. 18, 14, 2) cusps: No 2-cusps ($_{\mathbf{c}}O_1 = (\boldsymbol{g}_{\text{H-M}})\mathbf{sh}$; rest o(nly)-2' cusps).

§II.C. Abs-inn sh-incidence for n=13, $\mathrm{Ni}_{74}^{\mathrm{in,rd}}$

Cusp orbit	cO_{13}	$_{\mathbf{c}}O_{11}$	$_{\mathbf{c}}O_{9}$	$_{\mathbf{c}}O_{7}$	$_{\mathbf{c}}O_{5}$	$_{\mathbf{c}}O_3$	$_{\mathbf{c}}O_{1}$
$_{\mathbf{c}}O_{13}$	<u>02</u> 20	<u>1</u> 1 11	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{02}{20}$	<u>111</u> 111	$\frac{1}{1}$
$_{\mathbf{c}}O_{11}$	<u>11</u> 11	$\frac{02}{20}$	$\frac{2}{2}$	$\frac{2}{2}$	<u>1 1</u> 1 1	$\frac{01}{10}$	$\frac{0}{0}$
$_{\mathbf{c}}O_{9}$	2 2	2 2	4^{0}	4	1 1	0 0	0
$_{\mathbf{c}}O_{7}$	2 2	2 2	4	2^{1}	0 0	0 0	0
$_{f c}O_5$	<u>02</u> 20	<u>11</u> 11	$\frac{1}{1}$	$\frac{0}{0}$	<u>00</u> 00	<u>00</u> 00	$\frac{0}{0}$
$_{\mathbf{c}}O_3$	<u>11</u> 11	<u>01</u> 10	$\frac{0}{0}$	$\frac{0}{0}$	<u>00</u>	<u>00</u> 00	$\frac{0}{0}$
$_{\mathbf{c}}O_1$	1 1	0 0	0	0	0 0	0 0	0

§II.D. Genus $\mathbf{g}_{n,*}$,* = abs/in: [Fr07b,Prop. 5.15]

- Each col. sums to cusp ram. index over \mathbb{P}^1_j : cusp col.s over abs. cusp $_{\mathbf{c}}O_{13}$ sum to 13; only cusp col. over abs. cusp $_{\mathbf{c}}O_9$ sums to 18.
- Only $\gamma_0 = q_1q_2$ (resp. $\gamma_1 = \text{sh}$) fixed points in $_{\mathbf{c}}O_9$ (resp. $_{\mathbf{c}}O_7$) cols. indicated by superscript 0 (resp. 1). sh-incidence matrix same as γ_0 -incidence matrix elliptic fixed points forced.
- $\mathbf{g}_{5,\mathrm{abs}} = \mathbf{g}_{5,\mathrm{in}} = 0$; $\mathbf{g}_{13,\mathrm{abs}} = 1, \mathbf{g}_{13,\mathrm{in}} = 3$; Prop. 5.15 has all $n \equiv 1 \mod 4$. For $n \equiv 1 \mod 8$, two components conjugate over L/\mathbb{Q} quadratic.

II.E. Modular curve analog $Ni(G_{k,ab}, \mathbf{C}_{(\frac{n+1}{2})^4})^{in,rd}$ and (product-one) A_n -iterations

Changing D_p to A_n , for prime p|n!, but $p\not\mid \frac{n+1}{2}$. Want G_0 module $M_{n,p}$ and p-Frattini covers $G_{k,ab} \to A_n = G_0$ so $\ker(G_{k,ab} \to G_{k-1,ab}) = M_{n,p}$.

 \exists universal (abelianized) p-Frattini cover $\tilde{\varphi}: G_{ab}(A_n) \to A_n$. $\ker(\tilde{\varphi})$: fin. dim.tors.-free $\mathbb{Z}_p[A_n]$ module, $m_{n,p} = \ker(\tilde{\varphi})/p\ker(\tilde{\varphi})$.

Defining levels: $G_{k,ab} = \tilde{G}_{ab}(A_n)/p^k \ker(\tilde{\varphi})$: Component \mathcal{H}'_k from a braid orbit Ni'_k on

$$\operatorname{Ni}(G_{k,\mathrm{ab}},\mathbf{C}_{(\frac{n+1}{2})^4})^{\mathrm{in},\mathrm{rd}} \leftrightarrow Y_1(p^{k+1}).$$

As (D_p, p) is to \mathbb{Z}/p , (A_n, p) is to $M_{n,p}$.

 $(A_n, \mathbf{C}_{(\frac{n+1}{2})^4}, p=2)$ Modular Tower: Projective sequence $\{\mathcal{H}_k'\}_{k=0}^{\infty}$.

§II.F. The Spin_n-lifting invariant

When does there exist at least one MT over $\mathcal{H}(A_n, \mathbf{C}, p)$ for a general **C**?

When is there more than one?

When are all levels of a MT defined over \mathbb{Q} ?

Odd $d_1 \leq d_2 \leq \cdots \leq d_r$ pure-cycle A_n lengths, $I_{\mathbf{d}} \stackrel{\text{def}}{=} \sum_{i=1}^r d_i - 1$. [Fr+Se+We] Liu-Osserman case $I_{\mathbf{d}} = 2(n-1)$ ($\mathcal{H}(A_n, \mathbf{C}_{d_1 \cdots d_r})$ irreducible):

For $p \neq 2$, at least one MT. For p = 2, at least one iff (*) $\sum_{i=1}^{r} \frac{d_i^2 - 1}{8} \equiv 0 \mod 2$ (includes if there is a H-M rep.).

§II.G. Listing 2-cusps in $Ni(G_1, \mathbf{C}_{(\frac{n+1}{2})^4})^{in,rd}$.

[Talk₃] explains: If $I_{d} > 2(n-1)$ usually more than one component at level 0 and then at least one supports a (nonempty) MT for all allowed primes.

Call level 0 cusp ${}_{\mathbf{c}}O_{\boldsymbol{g}}$, $\boldsymbol{g} \in \operatorname{Ni}_{(\frac{n+1}{2})^4}$, a 2-T(otal)J(ump) cusp if all cusp orbits on $\operatorname{Ni}(G_1, \mathbf{C}_{(\frac{n+1}{2})^4})$ over it are 2-cusps.

Thm: $_{\mathbf{c}}O_{\mathbf{g}}$ is 2-TJ iff the middle product $\mathbf{mpr}_{\mathbf{g}}$ (p. 9) satisfies

$$(-1)^{\frac{\operatorname{mpr}_{\boldsymbol{g}}^2 - 1}{8}} = -1.$$

Conclusion: In p. 10 listing of cusp reps. by middle products: $0 \le t \le \frac{n-1}{2}, [2t+1]_1$, 2-cusps correspond to

$$(-1)^{\frac{(2t+1)^2-1}{8}} = -1$$
, or $t \equiv 3, 5 \mod 8$.

§II.H. Why an H-M Modular Tower, $\{\mathcal{H}_k'\}_{k=0}^{\infty}$ – each level has an H-M rep. – has a spire

Since $[n]_1$ is an H-M rep., an adjustment to Thm. of §I.D gives a spire on this MT (App. A₂). Conclude: 2-cusps grow with k on each MT over $\operatorname{Ni}(A_n, \mathbf{C}_{(\frac{n+1}{2})^4})^{\operatorname{in,rd}}$, $n \equiv 5 \mod 8$.

Idea: Combine these two facts:

- For $g \in \operatorname{Ni}(G_{i'}, \mathbf{C})^{\operatorname{in,rd}}$ representing a p cusp, with $p^{j'}||\mathbf{mpr}_{g}$, then for any $g' \in \operatorname{Ni}(G_{i'+k'}, \mathbf{C})^{\operatorname{in,rd}}$ over g, $p^{j'+k'}||\mathbf{mpr}_{g}$.
- If g' is an H-M rep. (so g is also), then there is an explicit braid (g')q = g'', with $p||\mathbf{mpr}_{g''}$.

App. §A₂: A modular curve-like Spire

Theorem 1. A MT with a H(arbater)-M(umford) cusp branch of p-cusps has a spire: sub-tree isomorphic to a modular curve cusp tree. Holds for p = 2 at level 1, for Liu-Osserman $n \equiv 5 \mod 8$. Doesn't hold for $n \equiv 1 \mod 8$.

SPIRE: Growth of p cusps with level: Subscript is power of p dividing the middle product.

```
Level 1: \bullet_p

Level 2: \bullet_{p^2} \bullet_p

Level 3: \bullet_{p^3} \bullet_{p^2} \bullet_p

\cdots: ... ... ...
```

App. B₂. p-cusp MT Conjectures

Main Conj. 1: K a number field, then High MT levels have no K points. Cadoret [Ca08]: Showed Strong Torsion Conjecture on abelian varieties implies this.

Cadoret-Tamagawa [CaT08] showed this for $r \leq 4$.

Main Conj. 2: a. High MT levels have general type (for r=4 implies Conj. 1) and are b. relatively p-Frattini over the previous level (\Longrightarrow weak form of Serre's O(pen) I(mage) T(heorem)). This talk shows the a. part for MTs over Liu-Osserman spaces, but hasn't yet shown the b. part.

15 years ago Pierre Debes and I noted relation of dihedral groups to work of Kamienny and Mazur [DFr94].

Compare to Mazur-Meryl

Conjecture: There can't be regular involution realizations over $\mathbb Q$ of all $D_{p^{k+1}}$, k unbounded, p any (fixed) odd prime, with at most r_0 (any number you like), branch points \Leftrightarrow a uniform bound on $\mu(p^{k+1})$ -torsion points on hyperelliptic jacobians of dimension no more than r_0 : with such (involution) realizations necessarily in $\mathrm{Ni}(D_{p^{k+1}}, \mathbf{C}_{2^{r_0}})^{\mathrm{in},\mathrm{rd}}$.

The MT program generalizes that: Replacing dihedral groups by any finite G, p any prime with G p-perfect (has no \mathbb{Z}/p quotient). To date, only a handful of involution realizations of dihedral groups known — most from Mazur's theorem, even without a bound (r_0) on branch points.

App. C₂: Andre's Thm. and Shimura special points

Each space $\bar{\mathcal{H}}^{\mathrm{abs,rd}}_{(\frac{n+1}{2})^4}$, $n \equiv 1 \mod 4$ embeds in $\mathbb{P}^1_{jw} \times \mathbb{P}^1_{jz}$: Each cover with branch points $\{z_1, \ldots, z_4\}$, has a distinguished point w_i over z_i corresponding to the pure-cycle, $i = 1, \ldots, 4$, akin to modular curve case.

The geometric monodromy group of $\mathcal{H}^{\mathrm{abs,rd}}_{(\frac{n+1}{2})^4} \to \mathbb{P}^1_{jz}$ is $A_{(\frac{n+1}{2})^2}$ (easily seen from the pure-cycle cusps described \S II.A). So, $\mathcal{H}^{\mathrm{abs,rd}}_{(\frac{n+1}{2})^4}$ cannot possibly be a modular curve.

The points of form $(j(\tau'), j(\tau''))$ with τ' and τ'' fixed by "complex multiplications" are *(Shimura) special* [Sh71, §4.4]. Andre's Thm: There are only finitely many such points on a non-modular curve embedded in $\mathbb{P}^1_{jw} \times \mathbb{P}^1_{jz}$.

Bibliography:

[BiF86] R. Biggers and M. D. Fried, Irreducibility of moduli spaces of cyclic unramified covers of genus

g curves, TAMS **295** (1986), 59–70. [BF02] P. Bailey and M. D. Fried, Hurwitz monodromy, spin separation and higher levels of a modular tower, Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), Proc. Sympos. Pure Math., vol. 70, Amer. Math. Soc., Providence, RI, 2002, pp. 79–220. MRMR1935406

(2005b:14044) [Ca08] A. Cadoret, Rational points on Hurwitz towers, preprint as of Jan. 2008, 1–30. [CaT08] A. Cadoret and A. Tamagawa, Uniform boundedness of p-Torsion of Abelian Schemes, preprint

as of June 2008, 1–25. [D06] P. Dèbes, *Modular Towers: Construction and Diophantine Questions*, same vol. as [?]. [DE06] P. Dèbes and M. Emsalem, *Harbater-Mumford Components and Towers of Moduli Spaces*, Journal de l'Institut Mathématique de Jussieu, **5/03** (2006), 351–371.

[DFr94] P. Débes and M. Fried, Nonrigid situations in constructive Galois theory, Pacific Journal 163

(1994). 81–122.

Fr95 M. Fried, Introduction to Modular Towers: Generalizing dihedral groupmodular curve connections, Recent Developments in the Inverse Galois Problem, Cont. Math., proceedings of AMS-NSF Summer

Conference 1994, Seattle **186** (1995), 111-171. [Fr06] M. D. Fried, *The Main Conjecture of Modular Towers and its higher rank generalization*, in *Groupes* de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et

Congres, Vol. **13** (2006), 165–233. [Fr07a] M. Fried, *Alternating groups and moduli space lifting invariants*, Out for refereeing (2007), 1–36, at http://www.math.uci.edu/~mfried/paplist-mt/hf-can0611591.pdf.

- [Fr07b] M. Fried, Connectedness of families of sphere covers of A_n -Type, 1–56, preprint 04/29/08 http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.pdf.
- [FK97] M. Fried and Y. Kopeliovic, *Applying Modular Towers to the inverse Galois problem*, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups and Moduli, vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, pp. 172–197.
- [FV91] M. D. Fried and H. Völklein, *The inverse Galois problem and rational points on moduli spaces*, Math. Ann. **290** (1991), no. 4, 771–800. MRMR1119950 (93a:12004)
- [FV92] M. D. Fried and H. Völklein, *The embedding problem over an Hilbertian-PAC field*, Annals of Math **135** (1992), 469-481.
- [Mu72] D. Mumford, An analytic construction of degenerating curves over complete local rings, Comp. Math. **24** (1972), 129–174.
- [Ser90] J.-P. Serrè, *Relèvements dans* \tilde{A}_n , C. R. Acad. Sci. Paris Sér. I Math. **311** (1990), no. 8, 477–482. MRMR1076476 (91m:20010)
- [Ser92] J.-P. Serre, *Topics* in *Galois Theory*, Res. Notes in Math. Notes written by H. Darmon, Jones and Bartlett, 1992.
- [Ser96] J.-P. Serre, *Galois Cohomology*, 4th Edition, Springer: Translated from the French by Patrick Ion; original from Springer LN5 (1964), 1996.
- [Se68] J.-P. Serre, Abelian ℓ-adic representations and elliptic curves, 1st ed., McGill University Lecture Notes, Benjamin, New York Amsterdam, 1968, in collaboration with Willem Kuyk and John Labute.
- [Sh71] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Pub. of Math. Soc. of Japan 11, Princeton U. Press, 1971.
- [Talk₁] Extending www.math.uci.edu/~mfried/talklist-mt/London1-ModCurves.pdf.
- [Talk3] www.math.uci.edu/~mfried/talklist-mt/London2-AltGps.pdf.
- [Vo96] H. Völklein, Groups as Galois Groups, an Introduction, Cambridge Studies in Mathematics 1996
 53, ISBN 0-521-56280-5.

• [WS] Modular Tower web site: http://www.math.uci.edu/~mfried → §I.a, 5th line down [Articles: Generalizing modular curve properties to Modular Towers] and $\rightarrow \S I.b$, 3rd listing down: Definitions: Modular Towers and Profinite Geometry.

• [Wei05] T. Weigel, $Maximal \ \ell$ -frattini quotients of ℓ -poincare duality groups of dimension 2, volume for

O. H. Kegel on his 70th birthday, Arkiv der Mathematik-Basel, 2005.

• [Wm73] A. Williamson, On primitive permutation groups containing a cycle, Math. Zeit. 130 (1973), 159–162.