Connectedness of spaces of Riemann Surface covers Mike Fried, UCI and MSU-Billings 10/17/06 Connections between these topics

- R(egular)I(nverse)G(alois)P(roblem), and
- S(trong)T(orsion)C(onjecture) on abelian varieties

arise from inspecting properties of Hurwitz spaces: families of sphere covers of a specific type.

The I(nverse)G(alois)P(roblem): Is finite group G the Galois group of an extension of every number field?

Number Theory \leftrightarrow Geometry \leftrightarrow Combinatorics

The R(egular)IGP: Is there one Galois extension $L_G/\mathbb{Q}(z)$ with group G containing only \mathbb{Q} for constants? From Hilbert's irreducibility Theorem, RIGP \implies IGP. The RIGP has provided most successes through *braid monodromy* ([Fr77], [FrV]). *Riemann's Existence Theorem*: A combinatorial tool for describing regular extensions over $\overline{\mathbb{Q}}$.

Describing Hurwitz spaces is a big RET.

Part I: Conjugacy classes and covers

G a group, **C** is r conjugacy classes in G.

• $\boldsymbol{g} = (g_1, \dots, g_r) \in \mathbf{C}$ means $g_{(i)\pi}$ is in C_i , for some π permuting $\{1, \dots, r\}$.

•
$$\Pi(\boldsymbol{g}) \stackrel{\text{def}}{=} \prod_{i=1}^{r} g_i$$
 (order matters).

An analytic cover, $\varphi : X \to \mathbb{P}_z^1$ of compact Riemann surfaces, ramifies over a finite set of points $\boldsymbol{z} = z_1, \ldots, z_r \subset \mathbb{P}_z^1 : \mathbb{P}_z^1 \setminus \{\boldsymbol{z}\} = U_{\boldsymbol{z}}.$ Then, $\varphi \implies (G, \boldsymbol{C}, \boldsymbol{z}), G \leq S_n$, with $n = \deg(\varphi)$: G the monodromy group of φ .

– Typeset by Foil $T_{\!E\!} X$ –

Nielsen classes/ R(iemann's)E(xistence)T(heorem) Fix $\boldsymbol{z} = \boldsymbol{z}^0$ and *classical generators* of $\pi_1(U_{\boldsymbol{z}^0}, \boldsymbol{z}_0)$. Combinatorial description of all $\varphi \implies (G, \mathbf{C})$: Nielsen classes:

 $\{\boldsymbol{g} \in \boldsymbol{\mathsf{C}} \mid \langle \boldsymbol{g} \rangle = G, \Pi(\boldsymbol{g}) = 1\} \stackrel{\text{def}}{=} \operatorname{Ni}(G, \boldsymbol{\mathsf{C}}).$ Projective r space $\mathbb{P}^r \Leftrightarrow \text{degree} \leq r$, monic polynomials; deg < r - 1 or with equal zeros form its *discriminant* locus D_r . Denote $\mathbb{P}^r \setminus D_r$ by U_r .

Hurwitz combinatorics: Deformations (r branch points) of $\varphi \implies$ paths in U_r based at z^0 .

One cover defines a family: $\varphi : X \to \mathbb{P}^1_z \Longrightarrow$ 1. Permutation representation of $\pi_1(U_r, \mathbf{z}^0) \stackrel{\text{def}}{=} H_r$ *Hurwitz monodromy* on orbit $\operatorname{Ni}'_{\varphi}$ —independent of classical generators — of $[\varphi] \in \operatorname{Ni}(G, \mathbf{C})$.

2. An unramified connected cover $\mathcal{H}(G, \mathbf{C})_{\varphi} \to U_r$: Hurwitz space component containing φ . Equivalences of covers and Nielsen classes.

[Abs.]
$$\varphi': X' \to \mathbb{P}^1_z \sim \varphi \Leftrightarrow \boldsymbol{g} = h \boldsymbol{g}' h^{-1}, h \in N_{S_n, \mathbf{C}}(G).$$

[Inn.] φ Galois with $\mu : \operatorname{Aut}(X/\mathbb{P}^1_z) \xrightarrow{\text{isom}} G \sim (\varphi', u') \Leftrightarrow$ $\boldsymbol{g} = h\boldsymbol{g}'h^{-1}, h \in G.$

Part II: Two Connectedness Results: II.A. Constellations of $\mathcal{H}(A_n, \mathbf{C}_{3^r})^{\text{abs}}$ [AGLI, §1]

$\xrightarrow{g \ge 1}$	$\ominus \oplus$	$\ominus \oplus$	 $\ominus \oplus$	$\ominus \oplus$	$\stackrel{1 \leq g}{\longleftarrow}$
$\xrightarrow{g=0}$	\ominus	\oplus	 \ominus	\oplus	$\stackrel{0=g}{\longleftarrow}$
$n \ge 4$	n = 4	n = 5	 n even	n odd	$4 \le n$

Theorem 1 (tag $\xrightarrow{g=0}$, r = n - 1, $n \geq 5$). $\mathcal{H}(A_n, \mathbf{C}_{3^{n-1}})^{\text{in}}$ has one component. Further, $\Psi_{\text{abs}}^{\text{in}} : \mathcal{H}(A_n, \mathbf{C}_{3^{n-1}})^{\text{in}} \to \mathcal{H}(A_n, \mathbf{C}_{3^{n-1}})^{\text{abs}}$ is deg. 2.

Theorem 2 (tag $\xrightarrow{g \ge 1}$, $r \ge n \ge 5$). $\mathcal{H}(A_n, \mathbf{C}_{3^r})^{\text{in}}$ has two components, $\mathcal{H}_+(A_n, \mathbf{C}_{3^r})^{\text{in}}$ (symbol \oplus) and $\mathcal{H}_-(A_n, \mathbf{C}_{3^r})^{\text{in}}$ (symbol \ominus). Further

 $\Psi_{abs}^{in,\pm}: \mathcal{H}_{\pm}(A_n, \mathbf{C}_{3^r})^{in} \to \mathcal{H}_{\pm}(A_n, \mathbf{C}_{3^r})^{abs} \text{ has degree } 2.$ For n = 4, two 3-cycle classes C_{+3} , C_{-3} in A_4 , $\mathbf{C} = \mathbf{C}_{+3^{s_1} - 3^{s_2}}: \operatorname{Ni}(G, C_{\pm 3^{s_1}, s_2})$ nonempty iff

$$s_1 - s_2 \equiv 0 \mod 3$$
 and $s_1 + s_2 = r$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Frattini covers

Frattini cover $G' \rightarrow G$ is a group cover (surjection) with restriction to a proper subgroup not a cover. Get a lifting invariant from a *central* Frattini cover.

Central Frattini from A_n : Spin_n^+ the nonsplit degree 2 cover of the connected component O_n^+ of the orthogonal group. Regard $S_n \subset O_n$; $A_n \subset O_n^+$. Denote pullback of A_n to Spin_n^+ by Spin_n . Identify $\operatorname{ker}(\operatorname{Spin}_n \to A_n)$ with $\{\pm 1\}$. F-S Small lifting invariants ([LUM,§1], [Ser90a]) Odd order $g \in A_n$ has a unique odd order lift, $\hat{g} \in \text{Spin}_n$. Let $\boldsymbol{g} \in \text{Ni}(A_n, \mathbf{C})$ with \mathbf{C} odd-order. Small lifting invariant:

$$s(\boldsymbol{g}) = s_{\operatorname{Spin}_n}(\boldsymbol{g}) = \hat{g}_1 \cdots \hat{g}_r \in \{\pm 1\}.$$

For g odd-order, let w(g) by the number of cycles in g with lengths (ℓ) with $\frac{\ell^2-1}{8} \equiv 1 \mod 2$. **Theorem 3 (F-S).** On any braid orbit, s(g) is constant (explains Const. diag. comps). If genus 0 Nielsen class, then $s(g) = (-1)^{\sum_{i=1}^{r} w(g_i)}$.

– Typeset by Foil $T_{\!E\!} X$ –

II.B. Pure-cycle components

- $g \in S_n$ is *pure-cycle* if one cycle has length > 1.
- Nielsen class $Ni(G, \mathbb{C})^{abs}$ is *pure-cycle* if all conjugacy classes are pure-cycle (a *d*-cycle).
- If d_1, \ldots, d_r are the pure-cycle lengths, denote the Nielsen class $\operatorname{Ni}(G, \mathbf{C}_{d_1 \cdots d_r})^*$ (* an equivalence).

Assume $G \leq S_n$ transitive and $\mathbf{C}^{S_n} \stackrel{\text{def}}{=} \mathbf{C}_{d_1 \cdots d_r}$ image of \mathbf{C} in S_n , with d_i s all odd. Necessary condition $\operatorname{Ni}(G, \mathbf{C})^{\operatorname{abs}}$ is nonempty: Genus

$$\mathbf{g} = \mathbf{g}_{d_1 \cdots d_r} \stackrel{\text{def}}{=} \frac{\sum_{i=1}^r d_i}{2} - (n-1)$$
 is non-negative.

Liu-Osserman genus 0 result [LOs06] Theorem 4. If $g \in Ni(G, C_{d_1 \cdots d_r})$ has genus 0, then $G = A_n$, and H_r is transitive on it. Compactify the reduced inner space:

 $\bar{\mathcal{H}}(A_n, \mathbf{C}_{d_1 \cdot d_2 \cdot d_3 \cdot d_4})^{\text{in,rd}} \stackrel{\text{def}}{=} \bar{\mathcal{H}}_{n, d_1 \cdots d_4}.$ Consider $\{\bar{\mathcal{H}}(G_k(A_n), \mathbf{C}_{d_1 \cdot d_2 \cdot d_3 \cdot d_4})^{\text{in,rd}} \stackrel{\text{def}}{=} \bar{\mathcal{H}}_{n, d_1 \cdots d_4, k}\}_{k=0}^{\infty}$ with $G_k(A_n) \to A_n$ the universal exponent 2^k 2group extension of A_n .

Goal (r = 4): Decide if genuses of components grow with k. Assume: Exists a g-2' cusp \Longrightarrow all d_i s same (= d). Genus $0 \implies 2(d - 1) = n - 1$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Inner (resp. absolute) Reduced spaces [BFr02, §2] Reduced equiv.: $\varphi : X \to \mathbb{P}^1_z \sim \beta \circ \varphi, \beta \in \mathrm{PGL}_2(\mathbb{C}).$ j-invariant: $z \in U_4 \mapsto j_z \in U_\infty \stackrel{\mathrm{def}}{=} \mathbb{P}^1_j \setminus \{\infty\}$ of z. Normalize so j = 0 and 1 are *elliptic points*: j_z with more than a Klein 4-group stabilizer in $\mathrm{PGL}_2(\mathbb{C}).$ Reduced classes of covers with j-invariant $j' \in U_\infty$ \Leftrightarrow elements of reduced Nielsen classes. Part III: r = 4 Upper-half plane quotients Recall: $H_4 = \langle q_1, q_2, q_3 \rangle$: Acts on any Nielsen classes with r = 4 by a twisting on its 4-tuples:

$$q_2: \boldsymbol{g} \mapsto (\boldsymbol{g})q_2 = (g_1, g_2g_3g_2^{-1}, g_2, g_4).$$

Reduced equivalence corresponds to modding out the Nielsen class by $Q'' = \langle (q_1q_2q_3)^2, q_1q_3^{-1} \rangle \leq H_4$. H_4 on reduced Nielsen classes factors through the mapping class group: $\overline{M}_4 \stackrel{\text{def}}{=} H_4/Q'' \equiv \mathrm{PSL}_2(\mathbb{Z})$.

III.A. Using generators of \bar{M}_4

$$ar{M}_4 = \langle \gamma_0, \gamma_1, \gamma_\infty \rangle, \gamma_0 = q_1 q_2 \text{ (order 3)},$$

 $\gamma_1 = \mathbf{shift} = q_1 q_2 q_3 \text{ (order 2)},$
 $\gamma_\infty = q_2 (j = \infty \text{ monodromy generator}),$
satisfying the product-one relation: $\gamma_0 \gamma_1 \gamma_\infty = 1.$
The cusp group $\operatorname{Cu}_4 = \langle q_2, \mathcal{Q}'' \rangle \leq H_4$:
A cusp is an orbit of Cu_4 . $(\boldsymbol{g})\mathbf{sh} \mapsto \text{ reduced class of}$
 $(g_2, g_3, g_4, g_1).$ and \mathbf{sh}^2 is trivial.

Riemann-Hurwitz on components

Interpret R-H: Denote $(\gamma_0, \gamma_1, \gamma_\infty)$ acting on Ni_{d^4} as giving branch cycles for $\overline{\mathcal{H}}_{d^4} \to \mathbb{P}^1_j$. Denote the resulting permutations by $(\gamma'_0, \gamma'_1, \gamma'_\infty)$:

- Points over 0 (resp. 1) \Leftrightarrow orbits of γ_0 (resp. γ_1).
- The index contribution $\operatorname{ind}(\gamma_{\infty})$ from a cusp with rep. $\boldsymbol{g} \in \operatorname{Ni}_{d^4}$ is $|(\boldsymbol{g})\operatorname{Cu}_4/\mathcal{Q}''| 1$.

2-Frattini extensions of A_5

 $(\mathbb{Z}/2)^2 \times^s \mathbb{Z}/3 = A_4$: The universal 2-Frattini extension of A_4 is ${}_2\tilde{G}(A_4) = \tilde{F}_2 \times^s \mathbb{Z}/3$.

Univ. 2-Frattini extension ${}_{2}G(A_{5})$ of A_{5} : Restriction over A_{4} is ${}_{2}\tilde{G}(A_{4})$. With $\ker_{0} = \ker({}_{2}\tilde{G}(A_{5}) \rightarrow A_{5}),$ $\Phi_{1}(\ker_{0}) = \langle (\ker_{0}, \ker_{0}), \ker_{0}^{2} \rangle.$ Then, $\Phi_{k}(\ker_{0}) \stackrel{\text{def}}{=} \Phi_{k-1}(\Phi_{1}(\ker_{0})).$ Iterate Φ_{1} to get max. exp. 2^{k} Frattini extension of A_{5} : $G_{k}(A_{5}) \stackrel{\text{def}}{=} {}_{2}\tilde{G}(A_{5})/\Phi_{k}(\ker_{0}).$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

III.B. Modular curve-like towers $\{\overline{\mathcal{H}}(G_k(A_5), \mathbf{C}_{34})^{\text{in,rd}}\}_{k=0}^{\infty}$ Ram_{r_0} : Choose any r_0 . For $k \ge 0$, use covers in $Ni(G_k, \mathbf{C}_k)$ with at most r_0 classes in \mathbf{C}_k . Question 5 (RIGP($A_5, p=2, r_0$) Quest.). Is there r_0 , so the RIGP holds for all G_k s from covers in Ram_{r_0} ? **Theorem 6.** If the answer is "Yes!," then there are 2' conjugacy classes **C** (no more than r_0) in G, and a projective system $\{\mathcal{H}'_k \subset \mathcal{H}(G_k, \mathbf{C})^{\text{in,rd}}\}_{k=0}^{\infty}$ (a Modular Tower component branch over \mathbb{Q}) each having a \mathbb{Q} point ([D06] [FrK97]).

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

The Main Conjecture **Conjecture 7 (MainConj.).** If k >> 0, $\mathcal{H}'_k^{\mathrm{rd}}(\mathbb{Q}) = \emptyset$. Our examples: Towers over $\overline{\mathcal{H}}(A_n, \mathbb{C}_{(\frac{n+1}{2})^4})^{\mathrm{in, rd}}$, odd $n \ge 5$, p = 2. Three cusp types [LUM, §3]: $H_{2,3}(g) \stackrel{\mathrm{def}}{=} \langle g_2, g_3 \rangle$ and $H_{1,4}(g) = \langle g_1, g_4 \rangle$; and $(g) \mathrm{mpr} \stackrel{\mathrm{def}}{=} \mathrm{ord}(g_2g_3)$, middle product order.

- p cusps: $p|(\boldsymbol{g})$ mpr.
- g(roup)-p': $H_{2,3}(\boldsymbol{g})$ and $H_{1,4}(\boldsymbol{g})$ are p' groups. H-M rep.: $\boldsymbol{g} = (g_1, g_1^{-1}, g_2, g_2^{-1}) \implies (\boldsymbol{g})$ sh is g-p'.
- $o(nly)-p': p \not| (g)mpr$, but the cusp is not g-p'.

III.C. sh-incidence for r = 4 and $Ni_{(\frac{n+1}{2})^4}$ (q)mpr: (q_2, q_3) pairs for abs. cusp reps. *n*: H-M rep.: $(\bullet, (1 \dots \frac{n+1}{2}), (\frac{n+1}{2} \frac{n+3}{2} \dots n), \bullet)$ $n-2: (\bullet, (2 \ldots \frac{n-1}{2} \frac{n+3}{2} \frac{n+1}{2}), (\frac{n+1}{2} \frac{n+3}{2} \ldots n), \bullet)$ 1: shift of H-M rep.: $(\bullet, (\frac{n+1}{2}, \frac{n+3}{2}, \dots, n)^{-1}, (\frac{n+1}{2}, \frac{n+3}{2}, \dots, n), \bullet$ 1. Fill in \bullet s (1st and last rows hint how), and apply Cu₄. 2. q_2 orbit length is $2 \cdot (\boldsymbol{g})$ mpr unless (\boldsymbol{g}) mpr = o odd, and $\operatorname{ord}((q_2q_3)^{\frac{o-1}{2}}q_2) = 2$ [BFr02, Prop. 2.17]. Latter holds: $\deg(\bar{\mathcal{H}}(A_n, \mathbf{C}_{(\frac{n+1}{2})^4})^{\mathrm{abs, rd}} / \mathbb{P}_j^1) = \left(\frac{n+1}{2}\right)^2.$

3. All level 0 L-O cusps are H-M or o-2'.

sh-incidence Matrix: r = 4 and $\operatorname{Ni}_{34}^{\operatorname{in,rd}}$ Pairing on Cu_4 orbits: $(O, O') \mapsto |O \cap (O')\operatorname{sh}|$. $O_{5,5;2}$ (resp. $O_{1,2}$) indicates 2nd mpr 5, width 5 (resp. only mpr 1, width 2) orbit. sh-incidence gives $\overline{\mathcal{H}}(A_5, \mathbf{C}_{34})^{\operatorname{in,rd}}$ genus.

Orbit	$O_{5,5;1}$	$O_{5,5;2}$	$O_{3,3;1}$	$O_{3,3;2}$	$O_{1,2}$
$O_{5,5;1}$	0	2	1	1	1
$O_{5,5;2}$	2	0	1	1	1
$O_{3,3;1}$	1	1	0	1	0
$O_{3,3;2}$	1	1	1	0	0
$O_{1,2}$	1	1	0	0	0

Complete orbit for $\overline{M}_4 = \langle \mathbf{sh}, \gamma_{\infty} \rangle$ on $\operatorname{Ni}_{3^4}^{\operatorname{in}, \operatorname{rd}}$ in 2-steps: Apply $(\mathbf{sh} \circ \operatorname{Cu}_4)^2$ to H-M rep.

Frattini Principles [LUM, §3]

A MT is defined by a projective sequence ${\text{Ni}_k^{\prime}}_{k=0}^{\infty}$ of H_r orbits on $\text{Ni}(G_k, \mathbb{C})^{\text{in,rd}} \implies$ there is a projective sequence of cusp reps (cusp branch).

[FP1] A p cusp at level k_0 has above it at level k only p cusps of width increased by p^{k-k_0} .

[FP2] g-2' cusp at level 0 \implies g-2' cusp branch.

[FP3] Lifting invariant gives iff test for all cusps above level k o-p' cusps being p cusps ([LUM, §4], [We]).

Cusp Tree Conclusions in Liu-Osserman cases [STMT] Strong Tors. Conj. \Longrightarrow Main MT Conj. and ($\sim \Leftrightarrow$). Apply F-S lift inv. to $(g_2, g_3, (g_2g_3)^{-1})$ for Ni₃₄: Level 0 o-2' cusps $O_{5,5,\bullet}$ and $O_{3,3,\bullet}$ have only 2 cusps above them: $(A_5, \mathbf{C}_{3^4}, p = 2)$ cusp tree has only g-2' or 2 cusp branches. **Theorem 8.** If $\geq 3 \ p \ cusps$ for MT level k >> 0 \implies Main Conj \implies holds for L-O cases (many 2) cusps at level 1). If a cusp branch is both H-M and p, then MT cusp tree contains a spire: a modular curve cusp tree. At level 1, holds for (L-O) n = 5, but not for n = 9.

Question 9. When does it hold for Fried + L-O cases?

Abbreviated References: [LUM] has much more

- [BFr02] P. Bailey and M. D. Fried, Hurwitz monodromy, spin separation and higher levels of a Modular Tower, in Proceed. of Symposia in Pure Math. 70 (2002) editors M. Fried and Y. Ihara, 1999 von Neumann Symposium, August 16-27, 1999 MSRI, 79–221.
- [STMT]A. Cadoret, Modular Towers and Torsion on Abelian Varieties, preprint May, 2006.
- [D06] P. Dèbes, *Modular Towers: Construction and Diophantine Questions*, same vol. as [LUM].
- [Def-Lst]Select from the list in www.math.uci.edu/conffiles_rims/deflist-mt/full-deflist-mt.html of present MTrelated definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen-Classes RIGP Strong-Tors-Conj mt-rigp-stc p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles_rims/deflist-mt/full-paplistmt.html, is a repository for not just mine, but also of the growing list of those joining the MT project.
- [FrK97]M. Fried and Y. Kopeliovic, Applying Modular Towers to the inverse Galois problem, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, 172–197.
 - [Fr77] M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups, Communications in Algebra 5 (1977), 17–82.
 - [FrV] Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), no. 4, 771–800.
- [LUM]M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et Congres, 13 (2006), 165–230.
- [AGLI]M. D. Fried, Alternating groups and lifting invariants, (2006), 1–36.

- [LOs06] F. Liu and B. Osserman, *The Irreducibility of Certain Pure-cycle Hurwitz Spaces*, preprint as of August 10, 2006.
- [Ser90a] J.-P. Serre, *Relêvements dans* \tilde{A}_n , C. R. Acad. Sci. Paris **311** (1990), 477–482.
 - [We]T. Weigel, *Maximal p-frattini quotients of p-poincare duality groups of dimension 2*, volume for O.H. Kegel on his 70th birthday, Arkiv der Mathematik–Basel, 2005.