Connectedness of spaces of Riemann Surface covers Mike Fried, UCI and MSU-Billings 10/17/06
Connections between these topics

- $R($ egular $) I$ (nverse) G (alois) $P($ roblem $)$, and
- S (trong) T (orsion) C (onjecture) on abelian varieties arise from inspecting properties of Hurwitz spaces: families of sphere covers of a specific type.

The I(nverse) G (alois)P(roblem): Is finite group G the Galois group of an extension of every number field?

Number Theory \leftrightarrow Geometry \leftrightarrow Combinatorics

The $\mathrm{R}\left(\right.$ egular)IGP: Is there one Galois extension $L_{G} / \mathbb{Q}(z)$ with group G containing only \mathbb{Q} for constants? From Hilbert's irreducibility Theorem, RIGP \Longrightarrow IGP. The RIGP has provided most successes through braid monodromy ([Fr77], [FrV]).

Riemann's Existence Theorem: A combinatorial tool for describing regular extensions over $\overline{\mathbb{Q}}$. Describing Hurwitz spaces is a big RET.

Part I: Conjugacy classes and covers

G a group, \mathbf{C} is r conjugacy classes in G.

- $g=\left(g_{1}, \ldots, g_{r}\right) \in \mathbf{C}$ means $g_{(i) \pi}$ is in C_{i}, for some π permuting $\{1, \ldots, r\}$.
- $\Pi(\boldsymbol{g}) \stackrel{\text { def }}{=} \prod_{i=1}^{r} g_{i}$ (order matters).

An analytic cover, $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$ of compact Riemann surfaces, ramifies over a finite set of points $\boldsymbol{z}=z_{1}, \ldots, z_{r} \subset \mathbb{P}_{z}^{1}: \mathbb{P}_{z}^{1} \backslash\{\boldsymbol{z}\}=U_{z}$.
Then, $\varphi \Longrightarrow(G, \mathbf{C}, \boldsymbol{z}), G \leq S_{n}$, with $n=\operatorname{deg}(\varphi)$:
G the monodromy group of φ.

Nielsen classes/ R(iemann's)E(xistence)T(heorem)

Fix $\boldsymbol{z}=\boldsymbol{z}^{0}$ and classical generators of $\pi_{1}\left(U_{z^{0}}, z_{0}\right)$.
Combinatorial description of all $\varphi \Longrightarrow(G, \mathbf{C})$:
Nielsen classes:

$$
\{\boldsymbol{g} \in \mathbf{C} \mid\langle\boldsymbol{g}\rangle=G, \Pi(\boldsymbol{g})=1\} \stackrel{\text { def }}{=} \mathrm{Ni}(G, \mathbf{C}) .
$$

Projective r space $\mathbb{P}^{r} \Leftrightarrow$ degree $\leq r$, monic polynomials; deg $<r-1$ or with equal zeros form its discriminant locus D_{r}. Denote $\mathbb{P}^{r} \backslash D_{r}$ by U_{r}.

Hurwitz combinatorics: Deformations (r branch points) of $\varphi \Longrightarrow$ paths in U_{r} based at z^{0}.

One cover defines a family: $\varphi: X \rightarrow \mathbb{P}_{z}^{1} \Longrightarrow$

1. Permutation representation of $\pi_{1}\left(U_{r}, z^{0}\right) \stackrel{\text { def }}{=} H_{r}$ Hurwitz monodromy on orbit $\mathrm{Ni}_{\varphi}^{\prime}$ —independent of classical generators - of $[\varphi] \in \mathrm{Ni}(G, \mathbf{C})$.
2. An unramified connected cover $\mathcal{H}(G, \mathbf{C})_{\varphi} \rightarrow U_{r}$: Hurwitz space component containing φ.
Equivalences of covers and Nielsen classes.
[Abs.] $\varphi^{\prime}: X^{\prime} \rightarrow \mathbb{P}_{z}^{1} \sim \varphi \Leftrightarrow \boldsymbol{g}=h \boldsymbol{g}^{\prime} h^{-1}, h \in N_{S_{n}, \mathrm{C}}(G)$.
[Inn.] φ Galois with $\mu: \operatorname{Aut}\left(X / \mathbb{P}_{z}^{1}\right) \xrightarrow{\text { isom }} G \sim\left(\varphi^{\prime}, u^{\prime}\right) \Leftrightarrow$

$$
\boldsymbol{g}=h \boldsymbol{g}^{\prime} h^{-1}, h \in G
$$

Part II: Two Connectedness Results:

II.A. Constellations of $\mathcal{H}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {abs }}$ [AGLI, §1]

$\xrightarrow{g \geq 1}$	$\ominus \oplus$	$\ominus \oplus$	\ldots	$\ominus \oplus$	$\ominus \oplus$	$\stackrel{1 \leq g}{\longleftrightarrow}$
$\stackrel{g=0}{\longrightarrow}$	\ominus	\oplus	\ldots	\ominus	\oplus	$\stackrel{0=g}{\longleftrightarrow}$
$n \geq 4$	$n=4$	$n=5$	\ldots	n even	n odd	$4 \leq n$

Theorem 1 (tag $\xrightarrow{g=0}, r=n-1, n \geq 5)$. $\mathcal{H}\left(A_{n}, \mathbf{C}_{3^{n-1}}\right)^{\text {in }}$ has one component. Further, $\Psi_{\mathrm{abs}}^{\text {in }}: \mathcal{H}\left(A_{n}, \mathbf{C}_{3^{n-1}}\right)^{\text {in }} \rightarrow \mathcal{H}\left(A_{n}, \mathbf{C}_{3^{n-1}}\right)^{\text {abs }}$ is deg. 2.
Theorem $2(\mathbf{t a g} \xrightarrow{g \geq 1}, r \geq n \geq 5) . \mathcal{H}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }}$ has two components, $\mathcal{H}_{+}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }}$ (symbol \oplus) and $\mathcal{H}_{-}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }}$ (symbol \ominus). Further
$\Psi_{\mathrm{abs}}^{\mathrm{in}, \pm}: \mathcal{H}_{ \pm}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }} \rightarrow \mathcal{H}_{ \pm}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {abs }}$ has degree 2.
For $n=4$, two 3-cycle classes $\mathrm{C}_{+3}, \mathrm{C}_{-3}$ in A_{4}, $\mathbf{C}=\mathbf{C}_{+3^{s_{1--3}}}: \mathrm{Ni}\left(G, \mathrm{C}_{ \pm 3^{s_{1}}, s_{2}}\right)$ nonempty jiff

$$
s_{1}-s_{2} \equiv 0 \bmod 3 \text { and } s_{1}+s_{2}=r .
$$

Frattini covers

Frattini cover $G^{\prime} \rightarrow G$ is a group cover (surjection) with restriction to a proper subgroup not a cover. Get a lifting invariant from a central Frattini cover.

Central Frattini from $A_{n}: \operatorname{Spin}_{n}^{+}$the nonsplit degree 2 cover of the connected component O_{n}^{+}of the orthogonal group. Regard $S_{n} \subset O_{n} ; A_{n} \subset O_{n}^{+}$. Denote pullback of A_{n} to $\operatorname{Spin}_{n}^{+}$by Spin_{n}. Identify $\operatorname{ker}\left(\operatorname{Spin}_{n} \rightarrow A_{n}\right)$ with $\{ \pm 1\}$.

F-S Small lifting invariants ([LUM, $\S 1],[S e r 90 a])$

Odd order $g \in A_{n}$ has a unique odd order lift, $\hat{g} \in \operatorname{Spin}_{n}$. Let $\boldsymbol{g} \in \mathrm{Ni}\left(A_{n}, \mathbf{C}\right)$ with \mathbf{C} odd-order. Small lifting invariant:

$$
s(\boldsymbol{g})=s_{\mathrm{Spin}_{n}}(\boldsymbol{g})=\hat{g}_{1} \cdots \hat{g}_{r} \in\{ \pm 1\} .
$$

For g odd-order, let $w(g)$ by the number of cycles in g with lengths (ℓ) with $\frac{\ell^{2}-1}{8} \equiv 1 \bmod 2$. Theorem 3 (F-S). On any braid orbit, $s(\boldsymbol{g})$ is constant (explains Const. diag. comps). If genus 0 Nielsen class, then $s(\boldsymbol{g})=(-1)^{\sum_{i=1}^{r} w\left(g_{i}\right)}$.

II.B. Pure-cycle components

- $g \in S_{n}$ is pure-cycle if one cycle has length >1.
- Nielsen class $\mathrm{Ni}(G, \mathbf{C})^{\text {abs }}$ is pure-cycle if all conjugacy classes are pure-cycle (a d-cycle).
- If d_{1}, \ldots, d_{r} are the pure-cycle lengths, denote the Nielsen class $\mathrm{Ni}\left(G, \mathbf{C}_{d_{1} \cdots d_{r}}\right)^{*}$ (* an equivalence). Assume $G \leq S_{n}$ transitive and $\mathbf{C}^{S_{n}} \stackrel{\text { def }}{=} \mathbf{C}_{d_{1} \cdots d_{r}}$ image of \mathbf{C} in S_{n}, with d_{i} s all odd. Necessary condition $\mathrm{Ni}(G, \mathbf{C})^{\text {abs }}$ is nonempty: Genus

$$
\mathbf{g}=\mathbf{g}_{d_{1} \cdots d_{r}} \stackrel{\text { def }}{=} \frac{\sum_{i=1}^{r} d_{i}}{2}-(n-1) \text { is non-negative. }
$$

Liu-Osserman genus 0 result [LOs06]

Theorem 4. If $\boldsymbol{g} \in \mathrm{Ni}\left(G, \mathbf{C}_{d_{1} \cdots d_{r}}\right)$ has genus 0, then $G=A_{n}$, and H_{r} is transitive on it.

Compactify the reduced inner space:

$$
\overline{\mathcal{H}}\left(A_{n}, \mathbf{C}_{d_{1} \cdot d_{2} \cdot d_{3} \cdot d_{4}}\right)^{\text {in,rd }, \text { def }}=\overline{\mathcal{H}}_{n, d_{1} \cdots d_{4}} .
$$

Consider $\left\{\overline{\mathcal{H}}\left(G_{k}\left(A_{n}\right), \mathbf{C}_{d_{1} \cdot d_{2} \cdot d_{3} \cdot d_{4}}\right)^{\text {in,rd }} \stackrel{\text { def }}{=} \overline{\mathcal{H}}_{n, d_{1} \cdots d_{4}, k}\right\}_{k=0}^{\infty}$ with $G_{k}\left(A_{n}\right) \rightarrow A_{n}$ the universal exponent 2^{k} 2group extension of A_{n}.

Goal $(r=4)$: Decide if genuses of components grow with k. Assume: Exists a g-2' cusp \Longrightarrow all $d_{i} \mathrm{~s}$ same $(=d)$. Genus $0 \Longrightarrow 2(d-1)=n-1$.

Inner (resp. absolute) Reduced spaces [BFr02, §2]

Reduced equiv.: $\varphi: X \rightarrow \mathbb{P}_{z}^{1} \sim \beta \circ \varphi, \beta \in \mathrm{PGL}_{2}(\mathbb{C})$.
j-invariant: $\boldsymbol{z} \in U_{4} \mapsto j_{z} \in U_{\infty} \stackrel{\text { def }}{=} \mathbb{P}_{j}^{1} \backslash\{\infty\}$ of \boldsymbol{z}. Normalize so $j=0$ and 1 are elliptic points: j_{z} with more than a Klein 4-group stabilizer in $\mathrm{PGL}_{2}(\mathbb{C})$.

Reduced classes of covers with j-invariant $j^{\prime} \in U_{\infty}$ \Leftrightarrow elements of reduced Nielsen classes.

Part III: $r=4$ Upper-half plane quotients

Recall: $H_{4}=\left\langle q_{1}, q_{2}, q_{3}\right\rangle$: Acts on any Nielsen classes with $r=4$ by a twisting on its 4-tuples:

$$
q_{2}: \boldsymbol{g} \mapsto(\boldsymbol{g}) q_{2}=\left(g_{1}, g_{2} g_{3} g_{2}^{-1}, g_{2}, g_{4}\right)
$$

Reduced equivalence corresponds to modding out the Nielsen class by $\mathcal{Q}^{\prime \prime}=\left\langle\left(q_{1} q_{2} q_{3}\right)^{2}, q_{1} q_{3}^{-1}\right\rangle \leq H_{4}$.
H_{4} on reduced Nielsen classes factors through the mapping class group: $\bar{M}_{4} \stackrel{\text { def }}{=} H_{4} / \mathcal{Q}^{\prime \prime} \equiv \operatorname{PSL}_{2}(\mathbb{Z})$.

III.A. Using generators of \bar{M}_{4}

$$
\begin{aligned}
& \bar{M}_{4}=\left\langle\gamma_{0}, \gamma_{1}, \gamma_{\infty}\right\rangle, \gamma_{0}=q_{1} q_{2}(\text { order } 3), \\
& \gamma_{1}=\operatorname{shift}=q_{1} q_{2} q_{3}(\text { order } 2) \\
& \gamma_{\infty}=q_{2}(j=\infty \text { monodromy generator }),
\end{aligned}
$$

$$
\text { satisfying the product-one relation: } \gamma_{0} \gamma_{1} \gamma_{\infty}=1
$$

The cusp group $\mathrm{Cu}_{4}=\left\langle q_{2}, \mathcal{Q}^{\prime \prime}\right\rangle \leq H_{4}$:
A cusp is an orbit of $\mathrm{Cu}_{4} .(\boldsymbol{g}) \mathbf{s h} \mapsto$ reduced class of $\left(g_{2}, g_{3}, g_{4}, g_{1}\right)$. and $\mathbf{s h}^{2}$ is trivial.

Riemann-Hurwitz on components

Interpret R-H: Denote $\left(\gamma_{0}, \gamma_{1}, \gamma_{\infty}\right)$ acting on $\mathrm{Ni}_{d^{4}}$ as giving branch cycles for $\overline{\mathcal{H}}_{d^{4}} \rightarrow \mathbb{P}_{j}^{1}$. Denote the resulting permutations by $\left(\gamma_{0}^{\prime}, \gamma_{1}^{\prime}, \gamma_{\infty}^{\prime}\right)$:

- Points over 0 (resp. 1$) \Leftrightarrow$ orbits of γ_{0} (resp. γ_{1}).
- The index contribution ind $\left(\gamma_{\infty}\right)$ from a cusp with rep. $\boldsymbol{g} \in \mathrm{Ni}_{d^{4}}$ is $\left|(\boldsymbol{g}) \mathrm{Cu}_{4} / \mathcal{Q}^{\prime \prime}\right|-1$.

2-Frattini extensions of A_{5}

$(\mathbb{Z} / 2)^{2} \times{ }^{s} \mathbb{Z} / 3=A_{4}$: The universal 2-Frattini extension of A_{4} is ${ }_{2} \tilde{G}\left(A_{4}\right)=\tilde{F}_{2} \times{ }^{s} \mathbb{Z} / 3$.

Univ. 2-Frattini extension ${ }_{2} \tilde{G}\left(A_{5}\right)$ of A_{5} :
Restriction over A_{4} is ${ }_{2} \tilde{G}\left(A_{4}\right)$. With
$\operatorname{ker}_{0}=\operatorname{ker}\left({ }_{2} \tilde{G}\left(A_{5}\right) \rightarrow A_{5}\right)$, $\Phi_{1}\left(\operatorname{ker}_{0}\right)=\left\langle\left(\operatorname{ker}_{0}, \operatorname{ker}_{0}\right), \operatorname{ker}_{0}^{2}\right\rangle$.
Then, $\Phi_{k}\left(\operatorname{ker}_{0}\right) \stackrel{\text { def }}{=} \Phi_{k-1}\left(\Phi_{1}\left(\operatorname{ker}_{0}\right)\right)$.
Iterate Φ_{1} to get max. exp. 2^{k} Frattini extension of $A_{5}: G_{k}\left(A_{5}\right) \stackrel{\text { def }}{=}{ }_{2} \tilde{G}\left(A_{5}\right) / \Phi_{k}\left(\operatorname{ker}_{0}\right)$.

III.B. Modular curve-like towers

$$
\left\{\overline{\mathcal{H}}\left(G_{k}\left(A_{5}\right), \mathbf{C}_{3^{4}}\right)^{\mathrm{in}, \mathrm{rd}}\right\}_{k=0}^{\infty}
$$

Ram $_{r_{0}}$: Choose any r_{0}. For $k \geq 0$, use covers in $\mathrm{Ni}\left(G_{k}, \mathbf{C}_{k}\right)$ with at most r_{0} classes in \mathbf{C}_{k}. Question 5 (RIGP $\left(A_{5}, p=2, r_{0}\right)$ Quest.). Is there r_{0}, so the RIGP holds for all G_{k} s from covers in $\mathrm{Ram}_{r_{0}}$? Theorem 6. If the answer is "Yes!,"then there are 2^{\prime} conjugacy classes \mathbf{C} (no more than r_{0}) in G, and a projective system $\left\{\mathcal{H}_{k}^{\prime} \subset \mathcal{H}\left(G_{k}, \mathbf{C}\right)^{\mathrm{in}, \text { rd }}\right\}_{k=0}^{\infty}$ (a Modular Tower component branch over \mathbb{Q}) each having a \mathbb{Q} point ([D06] [FrK97]).

The Main Conjecture

Conjecture 7 (MainConj.). If $k \gg 0, \mathcal{H}_{k}^{\text {rd }}(\mathbb{Q})=\emptyset$.
Our examples: Towers over $\overline{\mathcal{H}}\left(A_{n}, \mathbf{C}_{\left.\left(\frac{n+1}{2}\right)^{4}\right)^{\text {in,rd }} \text {, }}^{\text {, }}\right.$ odd $n \geq 5, p=2$. Three cusp types [LUM, $\S 3]$:

$$
\bar{H}_{2,3}(\boldsymbol{g}) \stackrel{\text { def }}{=}\left\langle g_{2}, g_{3}\right\rangle \text { and } H_{1,4}(\boldsymbol{g})=\left\langle g_{1}, g_{4}\right\rangle ;
$$

and $(\boldsymbol{g}) \mathbf{m p r} \stackrel{\text { def }}{=} \operatorname{ord}\left(g_{2} g_{3}\right)$, middle product order.

- p cusps: $p \mid$ (g)mpr.
- g (roup)- $p^{\prime}: H_{2,3}(\boldsymbol{g})$ and $H_{1,4}(\boldsymbol{g})$ are p^{\prime} groups. H-M rep.: $\boldsymbol{g}=\left(g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}\right) \Longrightarrow(\boldsymbol{g})$ sh is g - p^{\prime}.
- o(nly)- $p^{\prime}: p \nmid(\boldsymbol{g}) \mathbf{m p r}$, but the cusp is not $\mathrm{g}-p^{\prime}$.

III.C. sh-incidence for $r=4$ and $\mathrm{Ni}_{\left(\frac{n+1}{2}\right)^{4}}$

(g)mpr: $\left(g_{2}, g_{3}\right)$ pairs for abs. cusp reps.:
n : H-M rep.: $\left(\bullet,\left(1 \ldots \frac{n+1}{2}\right),\left(\frac{n+1}{2} \frac{n+3}{2} \ldots n\right), \bullet\right)$

$$
n-2:\left(\bullet,\left(2 \ldots \frac{n-1}{2} \frac{n+3}{2} \frac{n+1}{2}\right),\left(\frac{n+1}{2} \frac{n+3}{2} \ldots n\right), \bullet\right)
$$

1: shift of H-M rep.: $\left(\bullet,\left(\frac{n+1}{2} \frac{n+3}{2} \ldots n\right)^{-1},\left(\frac{n+1}{2} \frac{n+3}{2} \ldots n\right)\right.$,

1. Fill in •s (1st and last rows hint how), and apply Cu_{4}.
2. q_{2} orbit length is $2 \cdot(\boldsymbol{g}) \mathbf{m p r}$ unless $(\boldsymbol{g}) \mathbf{m p r}=o$ odd, and $\operatorname{ord}\left(\left(g_{2} g_{3}\right)^{\frac{o-1}{2}} g_{2}\right)=2$ [BFr02, Prop. 2.17]. Latter holds:

$$
\operatorname{deg}\left(\overline{\mathcal{H}}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\mathrm{abs}, \mathrm{rd}} / \mathbb{P}_{j}^{1}\right)=\left(\frac{n+1}{2}\right)^{2}
$$

3. All level 0 L-O cusps are $\mathrm{H}-\mathrm{M}$ or o- 2^{\prime}.

sh-incidence Matrix: $r=4$ and $\mathrm{Ni}_{3^{4}}^{\text {in.rd }}$

Pairing on Cu_{4} orbits: $\left(O, O^{\prime}\right) \mapsto\left|O \cap\left(O^{\prime}\right) \mathbf{s h}\right| . \quad O_{5,5 ; 2}$ (resp. $O_{1,2}$) indicates 2 nd $\mathbf{m p r} 5$, width 5 (resp. only mpr 1 , width 2) orbit. sh-incidence gives $\overline{\mathcal{H}}\left(A_{5}, \mathbf{C}_{3^{4}}\right)^{\text {in,rd }}$ genus.

Orbit	$O_{5,5 ; 1}$	$O_{5,5 ; 2}$	$O_{3,3 ; 1}$	$O_{3,3 ; 2}$	$O_{1,2}$
$O_{5,5 ; 1}$	0	2	1	1	1
$O_{5,5 ; 2}$	2	0	1	1	1
$O_{3,3 ; 1}$	1	1	0	1	0
$O_{3,3 ; 2}$	1	1	1	0	0
$O_{1,2}$	1	1	0	0	0

Complete orbit for $\bar{M}_{4}=\left\langle\mathbf{s h}, \gamma_{\infty}\right\rangle$ on $\mathrm{Ni}_{3^{4}}^{\text {in,rd }}$ in 2-steps: Apply $\left(\mathbf{s h} \circ \mathrm{Cu}_{4}\right)^{2}$ to H-M rep.

Frattini Principles [LUM, §3]

A MT is defined by a projective sequence $\left\{\mathrm{Ni}_{k}^{\prime}\right\}_{k=0}^{\infty}$ of H_{r} orbits on $\mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\mathrm{in}, \mathrm{rd}} \Longrightarrow$ there is a projective sequence of cusp reps (cusp branch).
[FP1] A p cusp at level k_{0} has above it at level k only p cusps of width increased by $p^{k-k_{0}}$.
[FP2] g-2' cusp at level $0 \Longrightarrow \mathrm{~g}-2^{\prime}$ cusp branch.
[FP3] Lifting invariant gives iff test for all cusps above level $k o-p^{\prime}$ cusps being p cusps ([LUM, §4], [We]).

Cusp Tree Conclusions in Liu-Osserman cases

 [STMT] Strong Tors. Conj. \Longrightarrow Main MT Conj. and $(\sim \Leftrightarrow)$.Apply F-S lift inv. to $\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)$ for $\mathrm{Ni}_{3^{4}}$: Level 0 o- 2^{\prime} cusps $O_{5,5, \bullet}$ and $O_{3,3, \bullet}$ have only 2 cusps above them: $\left(A_{5}, \mathbf{C}_{3^{4}}, p=2\right)$ cusp tree has only g - 2^{\prime} or 2 cusp branches. Theorem 8. If $\geq 3 p$ cusps for MT level $k \gg 0$ \Longrightarrow Main Conj \Longrightarrow holds for L-O cases (many ${ }^{2}$ cusps at level 1). If a cusp branch is both H-M and p, then MT cusp tree contains a spire: a modular curve cusp tree. At level 1, holds for ($L-O$) $n=5$, but not for $n=9$.
Question 9. When does it hold for Fried + L-O cases?

Abbreviated References: [LUM] has much more

[BFr02]P. Bailey and M. D. Fried, Hurwitz monodromy, spin separation and higher levels of a Modular Tower, in Proceed. of Symposia in Pure Math. 70 (2002) editors M. Fried and Y. Ihara, 1999 von Neumann Symposium, August 16-27, 1999 MSRI, 79-221.
[STMT]A. Cadoret, Modular Towers and Torsion on Abelian Varieties, preprint May, 2006.
[D06]P. Dèbes, Modular Towers: Construction and Diophantine Questions, same vol. as [LUM].
[Def-Lst]Select from the list in www.math.uci.edu/conffiles_rims/deflist-mt/full-deflist-mt.html of present MTrelated definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen-Classes RIGP Strong-Tors-Conj mt-rigp-stc p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles_rims/deflist-mt/full-paplistmt.html, is a repository for not just mine, but also of the growing list of those joining the MT project.
[FrK97]M. Fried and Y. Kopeliovic, Applying Modular Towers to the inverse Galois problem, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, 172-197.
[Fr77] M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups, Communications in Algebra 5 (1977), 17-82.
[FrV]Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), no. 4, 771-800.
[LUM]M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et Congres, 13 (2006), 165-230.
[AGLI]M. D. Fried, Alternating groups and lifting invariants, (2006), 1-36.
[LOs06]F. Liu and B. Osserman, The Irreducibility of Certain Pure-cycle Hurwitz Spaces, preprint as of August 10, 2006.
[Ser90a]J.-P. Serre, Relêvements dans \tilde{A}_{n}, C. R. Acad. Sci. Paris 311 (1990), 477-482.
[We]T. Weigel, Maximal p-frattini quotients of p-poincare duality groups of dimension 2, volume for O.H. Kegel on his 70th birthday, Arkiv der Mathematik-Basel, 2005.

