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Abstract. H. Davenport’s Problem asks: What can we expect of two poly-

nomials, over Z, with the same ranges on almost all residue class fields?
This stood out among many separated variable problems posed by Davenport,

D.J. Lewis and A. Schinzel.

By bounding the degrees, but expanding the maps and variables in Daven-
port’s Problem, Galois stratification enhanced the separated variable theme,

solving an Ax and Kochen problem from their Artin Conjecture work. J. Denef

and F. Loeser applied this to add Chow motive coefficients to previously in-
troduced zeta functions on a diophantine statement.

By restricting the variables, but leaving the degrees unbounded, we found
the striking distinction between Davenport’s problem over Q, solved by apply-

ing the Branch Cycle Lemma, and its generalization over any number field,

solved using the simple group classification. This encouraged J. Thompson
to formulate the genus 0 problem on rational function monodromy groups.

R. Guralnick and Thompson led its solution in stages.

We look at at two developments since the solution of Davenport’s problem.
• Stemming from C. MacCluer’s 1967 thesis, identifying a general class of

problems, including Davenport’s, as monodromy precise.

• R(iemann) E(xistence) T(heorem)’s role as a converse to problems gen-
eralizing Davenport’s, and Schinzel’s (on reducibility).

We use these to consider: Going beyond the simple group classification to han-

dle imprimitive groups; and what is the role of covers and correspondences in
going from algebraic equations to zeta functions with Chow motive coefficients.
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1. Davenport’s Problem

Algebraic equations occur in many modern data problems. They represent rela-
tions between variables defining data. The data variable gives us a monodromy (or
Galois) group with a faithful permutation representation. Data-variable problems
should have convenient coefficients, such as ordinary fractions, Q. Then, there
are two monodromy groups: the arithmetic (over Q) and a normal subgroup of
it, the geometric (over the algebraic closure, Q̄). There is then an encompassing
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inverse problem. Suppose you are given such a pair of groups (with their compat-
ible permutation representations), one normal in the other. Find an equation and
data-variable over Q, having that (arithmetic, geometric) monodromy pair.

1.1. Relating four problems. The data-variable has many applications. For
example, mappings of the sphere to the sphere, are everywhere in Cryptography:
Over infinitely many prime residue classes, an exceptional rational function f maps
one-one from the data to its values. The Schur Conjecture, Prop. 3.3, was the
proposed classification of such covers where f is a polynomial. Davenport’s problem
was, essentially, to classify polynomials over Q by their ranges on almost all residue
class fields. §A.2 explains the notation for residue class fields, OK/ppp, of a number
field K, defined by primes ppp. Problems that interested Davenport seem extremely
different from those that attract algebraists interested in motives. Yet Davenport’s
very specific problem led to two general results: The genus 0 problem, and the
encoding of all diophantine statements into zeta functions.

Davenport’s problem, restricted to polynomials not composable (indecompos-
able) from lower degree polynomials, gave two very different conclusions.

(1.1a) D1: Over Q, two polynomials with the same range are linearly equivalent:
obtainable, one from the other, by a linear change of variables.

(1.1b) D2: Linearly inequivalent polynomials can have the same ranges on all
residue classes of a number field, but a fixed constant (31) bounds the
degrees of these exceptions.

Schur’s conjecture was a stop on the way to completing Davenport’s Problem.
Still, in an analog of Schur for rational functions ([Fr78, §2], [Fr05b, §6.1–6.3],
[GMS03]) reinterpret Serre’s O(pen)I(mage)T(heorem) to connect the monodromy
method (§5.3.2) to modular curves [Se68]. Since the rational functions here have
dihedral geometric monodromy group, you might think their analysis trivial. That’s
not so, for the properties of their natural families gives the depth of the story.
Likewise, one reason for returning to Davenport’s problem is to document modern
methods that simplify describing the families that occur there (§6.4).

Two tools for investigating equations came early in the monodromy method:
• the B(ranch)C(ycle)L(emma); and
• the Hurwitz monodromy group.

By walking through Davenport’s problem with hindsight, we see why the – rarely
acknowledged – preoccupation with variables separated equations gave important
lessons on these tools. To simplify the presentation of the BCL, we have broken
its use into deciding when covers can’t be over Q (§5.1), and figuring out the
natural cyclotomic field that appears (§6.2.3). Davenport’s Problem explicitly used
both aspects, by comparison with general applications starting with [Fr77]. That
shows in what the solutions of (1.1b) contributed to the Genus 0 Problem. We call
attention to the use of function theory in these results through these lessons:

(1.2a) What allows us to produce branch cycles §5.1.2.
(1.2b) What is the relation between covers and Chow motives §7.3.
(1.2c) What ’in nature’ (a phrase from [So01], see 1.4) gives today’s challenges

to group theory §7.4.
Each phrase addresses an aspect of formulating problems based on equations. That
is, many disciplines seem to need algebraic equations. Yet why, and how much do
we lose in using more easily manipulated surrogates for them?
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§3.2 says that some conclusions drawn from applying Cebotarev’s density theo-
rem, can be made precise. Chebotarev usually gives a crude translation between
statements over finite fields and the monodromy group of a cover, rarely capturing
the diophantine statement over the ramification locus. We develop two aspects
of Davenport’s problem that generalize to support monodromy precision (§3.2.1)
and an RET Converse (§3.2.4). My summary starts with a Davenport-Lewis paper
[DL63]. We interpret this as the first special case of Monodromy Precision: About
exceptional polynomials, but now known to apply far more generally.

Our examples tie theory to the enterprise of writing explicit equations. It contin-
ues an Abel-Galois-Riemann tradition of solving problems where algebraic covers
fall in continuous (connected) families. Often we complete the problem by distin-
guishing (reduced Hurwitz space) components containing the desired solutions.

Aspects of Davenport’s problem would have surprised even Abel, Galois and
Riemann. My examples: How it used the classification of finite simple groups; and
how it led to the the genus 0 problem. [De99], not as historical or elementary, and
less connected to group theory, concentrates on how the Hilbert-Siegel problem
of §7.1.3 motivated using Hurwitz spaces. I wrote [Fr73a] for an audience often
discomfited by Grothendieck’s geometry. So, unlike the French school, I often
limited statements to rational functions in one variable (genus 0 covers).

To amend that App. A.4 reminds of the Grothendieck cover definition: a finite,
flat morphism. It then notes that most proofs not referring to branch cycles, work
very generally. Example: [Fr73a, Prop. 2] is a much cited lemma from Davenport’s
problem. It reverts factorization of separated variable equations to where two
covers have identical Galois closures. It applies far beyond genus 0 covers. We call
attention to this in how §7.2.5 and §A.4.2 refer to extending Lem. 4.2.

Another subtlety raised by App. A.4 occurs because I insist on restricting covers
to normal varieties. The subtleties arise only when their dimension exceeds one.
That affects our Galois Stratification vs Chow motives topic when, say, we consider
the monodromy precision property on Davenport pairs.

1.2. Introduction to Davenport’s Problem. Davenport stated his problem at
a conference at Ohio State during my 2nd year of graduate school. The anchors for
this story are the result I proved, D2 (1.1b), and the problem that ”seized” John
Thompson – his own words – that came from it (G1(0) below).

D1 said that two polynomials f and g over Q with the same ranges on almost all
finite fields, with f indecomposable, must be related by an inner change of variables
α, f(α(x)) = g(x), α(x) = ax+b a degree 1 (linear, or affine) transformation. That
is, the conclusion is that f and g are affine equivalent. Davenport didn’t include the
indecomposable hypothesis. It translates to a primitive monodromy group (§3.4);
progress would have been slow without it (see Müller’s Conjecture 7.26).

If f and g are a pair of rational functions having the same ranges for almost all
primes p, then so will α ◦ f and α ◦ g, their outer composition with α an affine
transformation with coefficients in Q. If you compose f with both inner and outer
Möbius transformations, we say the result is Möbius equivalent to f .

Problem G1(0), The genus 0 Problem, posed that all genus 0 primitive covers
have special covering (monodromy) groups and associated permutation representa-
tions (§1.4). This has three parts:

• Genus 0 monodromy groups related to alternating, symmetric, dihedral
and cyclic groups come in large families;
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• within alternating and symmetric related groups, large families occur
only with a restricted set of associated permutation representations; and

• there are but finitely many genus 0 monodromy groups outside these.
All higher rank projective linear groups – examples of almost simple groups (§A)

– over finite fields might have yielded solutions countering the expected Davenport
conclusion. Yet, function theory showed only finitely many contribute to D2. Fur-
ther, the most striking exceptional genus 0 monodromy groups appeared either from
Davenport’s problem, or from genus 0 upper half plane quotients that are ‘close-to’
modular curves. Those from problem G2(0) (§1.3).

Abel and Galois were aware of long monographs by Lagrange and his students.
Here is one quick summary of much early 1800s mathematics. Galois showed the
impossibility of uniformizing the function fields of the modular curves X0(p) (in-
troduced by Abel), p a prime ≥ 5, by radicals.

The 20th century didn’t much use the phrase ”uniformized by radicals.” Yet,
despite attempts to avoid such an old formulation, a variant of it dominated pub-
lished results in the 1960s. The algebraic equations I heard most about in graduate
school had separated variables:

(1.3) f(x) − g(y) = 0 with f and g polynomials, whose degrees we take (re-
spectively) to be m and n.

By introducing a pair of covers of the Riemann sphere, we open the territory to
using group theory. Rewrite (1.3) by introducing z so as to split the variables:

(1.4) f(x)− z = 0 and g(y)− z = 0.

Questions on solutions of (1.3), in (1.4) form, are equivalent to those with
(α ◦ f(α′(x)), α ◦ g(α′′(y))) replacing (f(x), g(y)), with α, α′ and α′′ affine trans-
formations. We say the former pair is affine equivalent to the latter.

Using (1.4) interprets (1.3) as relating two genus 0 covers (§2.1).
Is it surprising that there are still mysteries about genus 0 covers? We will be

precise about the most jarring ingredient from R(iemann)’s E(xistence) T(heorem)
(§5.1.2). That is, how covers of the Riemann sphere relate to branch cycles. When
the covers have genus 0 and appear naturally, many feel uncomfortable – as did
Kronecker and Weierstrass – without an explicit uniformization.

1.3. Detecting a few exceptions. The major surprise in Davenport’s Problem
was that D2 was almost – for all but finitely many degrees – true. The explication
to the community of D2 – its finitely many exceptional degrees – gave three results
relating finite group theory to algebraic equations. [Fr80] emphasized the connec-
tion between these problems and the (finite) simple group classification. Thm. 4.5
lists those exceptional degrees. §6.4 emphasizes how group theory detected those
exceptional degrees. It is brief considering how much comes from it.

My unofficial group theory background came from talking with many affiliated
with the UM mathematics department. A year lapsed between graduate school and
the conversation with Tom Storer (§5) – during the summer of 1968. I needed that
year to distinguish between D1 and D2.

Also, Thompson’s name was attached to another genus 0 problem, which I call
G2(0). This said that the j-line covers appearing in G2(0) should have explicit
uniformization by (upper half-plane) automorphic functions attached to represen-
tations of the Monster Simple group. They called it Monstrous Moonshine and its
resolution won Borchards a Fields Medal.
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I first heard of G2(0) during the group theory conference called Santa Cruz. (Its
proceedings included [Fr80].) Even more time elapsed between the paper purporting
to connect G1(0) and G2(0). The conversation I had with Thompson, while walking
to lunch not long after my arrival at U. of Florida (§7.1), was a planned serendipity.

1.4. The Genus 0 Problem. The first tentative statement of the Genus 0 problem
– motivated by the solution of Davenport’s problem (Prop. 5.4) – is in the last
introduction paragraph of [Fr73b, p. 41]. [Fr05b, §7.2] has its precise statement
and its background (the attached html file has references and context). Roughly,
due to the nature of branch cycles (§5.1.2), monodromy groups of rational functions
fall – with rare exception – among groups known to most mathematicians. Those
exceptions, as in Davenport’s Problem, have a serious impact. The Genus 0 Problem
formulation, and much work on it, is due to Bob Guralnick.

Still, for those monodromy groups (with their representations) that do arise in
abundance, researcher must ask if in their particular problems they occur often or
not. §7.1.2 considers the arising of dihedral (and related) groups, and §7.1.3 of
alternating (and related) groups. These example results put us in territory not –
at first – limited by the genus 0 problem conclusion.

Separated variable equations appeared with hyperelliptic curves, say, where Rie-
mann first proved a generalization of Abel’s Theorem. The Genus 0 Problem is a
key step in considering what attributes of these equations qualify as special.

From the solution of D2, three genus 0 curves, each a natural upper half-plane
quotient and j-line cover, though not a modular curve, arise as parameter spaces
for Davenport pairs. From §6.4 (for n = 7, 11, 13), each space has an attached
group representation of a projective linear group. Does this lead to an explicit
automorphic uniformizer, as in the Uniformizer Problem of §5.4.2, for each?

Group theory can be demandingly intricate. What I, not a group theorist, found
is that it can accomplish goals that would be worse than tiresome with equation
manipulation. Much of modern group theory has little to do with permutation
representations, though much of group theory’s birth does. While [So01, p. 315–
317] does give a view on early group theory, even in its referral to Galois it differs
much from mine. An audience question to Ron Solomon, when he gave his history
lecture [So01] at UF, was [roughly], “How did Galois’ work survive?”

I suggested then an elaboration of the path through Jacobi’s interest in the
uniformization result mentioned in §1.2. I also mentioned that savior – Crelle –
to both Abel and Galois. That was prior to the renovation and update of Galois’
work – crucial to its survival – by the brilliant Jordan.

Continuing an attempt at dialog with group theorists, I cite [So01, p. 347]:

. . . experience shows that most of the finite groups which occur
’in nature’ – in the broad sense not simply of chemistry and
physics, but of number theory, topology, combinatorics, etc. –
are ’close’ either to simple groups or to groups such as dihedral
groups [include affine groups as in §A?], Heisenberg groups,
etc, which arise naturally in the study of simple groups.

§7.4 considers a more precise question: Do rational functions occur “in nature?”
Nothing is more important to algebra than rational functions. To avoid trivial
assurances of “Yes, they do!”consider that [RET3, Chap. 3, §7.2.3] demonstrates
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the traditional renderings of rational function covers in R3, say as in [Con78, p. 243],
are illusions, albeit one that Riemann himself used. Even with degree 2 covers.

1.5. UM affiliates and later work. With a superscript ”a” for visiting junior
faculty, ”v” for visiting senior faculty, and ”s” for (fellow) student, this is a review
of how the mathematicians A. Brumera, R. Bumbya, H. Davenportv, D.J. Lewis,
W. Leveque, R. Lyndon, C. MacCluers, R. MacRaea, R. Miseras, J. Mclaughlin,
A. Schinzelv, J. Smitha influenced me as I sought to meld a set of problems into
a coherent story. They were at University of Michigan during my three years –
1964–67 – of graduate school. Soon after T. Storer played a crucial role.

The list above includes early influences on papers from my first three years
(though later for publication) out of graduate school. The first six sections go
over tools that solved Davenport’s problem with emphasis on their relation to oth-
ers’ later work. §5 on branch cycles and §6 on the braid group – the least used
ingredients from Davenport’s problem – epitomize the monodromy method.

The long §7 connects work of other authors – R. Abhyankar, R.M. Avanzi, J. Ax,
J.-M. Couveignes, P. Dèbes, J. Denef, W. Feit, R. Guralnick, I. Gusić, F. Loeser,
P. Müller, F. Pakovich, J. Saxl, J.P. Serre, J. Thompson and U. Zannier – to the
group, equation and function themes of (1.2). These are people I’ve talked to (by
e-mail at least), and here quote substantially. (I’ve left out direct reference to those
– unbeknownst to them – whose papers I’ve refereed.) Often, however, I say those
connections differently than do they. The biggest difference between §7 and the
earlier sections is in the minimal use of branch cycles by others. Maybe this is my
fault or that the applications aren’t “mainstream.” Maybe, but §B.2.3 begs to differ
by offering two historical observations that affected all of mathematics.

2. Separated variables equations and group theory

By using form (1.4) in place of (1.3) we relate two covers by Riemann spheres,
f : P1

x → P1
z and g : P1

y → P1
z, of the Riemann sphere P1

z. Recall: P1
z is just

projective 1-space. The subscript z indicates an explicit isomorphism with affine
1-space union a point, ∞, at infinity. We always assume f and g are nonconstant.

2.1. The effect of splitting the variables. Equation (1.3) defines an algebraic
curve in affine 2-space. It has a completion in projective 2-space, with homogeneus
variables (x, y, w), by forming the curve wu(f(x/w)−g(y/w)) = 0, u the maximum
of m and n. This, however, is likely singular.

An advantage of (1.4) is that it geometrically describes such singularities. They
correspond to the pairs (x′, y′) that both ramify in the respective maps f and g to
P1
z. That is, regard (1.3) as the fiber product – set of pairs (x′, y′) with f(x′) = g(y′)

– of the two maps f and g, but extend the fiber product over ∞. Papers use the
notation P1

x ×set
P1
z

P1
y for this set theoretic fiber product. We call any z value over

which there is a ramified point on P1
x a branch point of f . Note: If f = g (and

m > 1), then the fiber product has at least two components, one the diagonal.
Also, P1

x×set
P1
z

P1
y is projective: a closed subset of P1

x×P1
y. Still, this contains (1.3)

as a subset, so might be singular. This is relevant, since Thm. 3.7 (DS1) reduces
consideration to f and g (not affine equivalent) with m = n where f and g have
exactly the same branch points. We will always use the projective normalization of
P1
x×set

P1
z

P1
y, denoting this object by P1

x×P1
z

P1
y. In our 1-dimensional curve case, this

is the unique nonsingular projective model of (1.3). It maps naturally to P1
x×set

P1
z

P1
y;
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one-one (an immersion) except over singular points. Yet, as with modular curves
(a special case), finding equations for the unique normalization is nontrivial.

[RET3, §3.3.2, §4.2.2 and §4.3] discuss these compactifications in much more
detail, including elaborating on the following remarks.

(2.1a) Any closed subscheme (covered by affine pieces) of projective space is
the zero set of homogeneous algebraic equations [Har77, Cor. 5.16].

(2.1b) The normalization of any projective variety is projective and its con-
nected components correspond to its algebraic components: Segre’s Em-
bedding [Mu66, Thm. 4, p. 400].

§A.4 reminds of cover basics, the generality of fiber products and of their uni-
versal property (A.2). A particular case might start with this hypothesis. Suppose
a cover of nonsingular curves ϕW : W → P1

z factors through both f and g.
(2.2) Then, ϕW factors through the fiber product P1

x ×P1
z

P1
y.

It notes, also, that if the varieties have dimension 1 (are curves) and they are
irreducible and normal over a characteristic 0 field (so nonsingular), then any non-
constant morphism is automatically a cover.

2.2. From classical to modern. §2.2.1 is part of the history behind Davenport’s
problem, while §2.2.2 notes two modern techniques that came from its solution.

2.2.1. Formulations between the 1920’s and the 1960’s. Equations like (1.3) (some-
times f and g are rational functions), combined with questions about solutions, say
in the rationals Q, explains many papers of that time. Here are examples fitting
this paradigm I heard from Davenport, Leveque, Lewis and Schinzel my second
year of graduate school. All assumed f and g had coefficients in Q: Z/p refers to
the integers modulo a prime p.

(2.3a) Which equations (1.3) have infinitely many solutions in Z (or Q)?
(2.3b) Schur (1921): If f(x) = x in (1.3), when are there infinitely many primes

p satisfying this: For each x′ ∈ Z/p there is y′ ∈ Z/p satisfying (1.3)?
(2.3c) Davenport (1966, at Ohio State): For which equations (1.3) and almost

all primes p does the following hold. For each x′ ∈ Z/p (resp. y′ ∈ Z/p)
there is y′ ∈ Z/p (resp. x′ ∈ Z/p) satisfying (1.3).

(2.3d) Schinzel (papers from the late ’50s): Which equations (1.3) factor into
lower degree polynomials in x and y [Sc71]?

In referring to these below, I will always assume the hypotheses hold nontrivially.
For example: exclude g(x) = f(ax+b) in Davenport’s problem, for then the conclu-
sion to his question is obviously “yes” if a, b are in Q. Lem. 2.1 shows we often need
not assume a, b ∈ Q (for example, when f is indecomposable), and that it follows
automatically from g ∈ Q[x]. Refer to a nontrivial pair (f, g) satisfying (2.3c) as a
Davenport pair (over Q). Using almost all residue class fields of a number field K
gives meaning to a Davenport pair over K.

For f =
∑m
i=0 cix

i ∈ K[x], K a field, denote {i > 0 | ci 6= 0} by If .
(2.4) If K has characteristic prime to deg(f), then f(x − cm−1/mcm) has

penultimate coefficient 0.
§A.1 reminds of the trace function, tr, from a representation of a group. If

G ≤ Sn then we denote the subgroup of G fixing i by G(i). When a group has
several permutation representations, distinguishing them requires more notation.
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Lemma 2.1. Suppose, for a 6∈ K and b constants, f(x), f(ax+ b) def= g(x) ∈ K[x].
Then, f = h(xkf ) with h ∈ K[x] and kf , the gcd of If , exceeds 1.

Denote am by a′. Assume further that (f, g) form a Davenport pair (over K).
Then, either deg(h) > 1 or, a′xkf − 1 has a zero modulo almost all residue class
fields of K. If K = Q, then f must be decomposable.

Proof. Apply (2.4) to each of f(x) and g(x) to assume their penultimate coefficients
are 0. The results are still affine equivalent. Also, translating by some c ∈ K doesn’t
change the domain; if they started as a Davenport pair (over K), they remain such.

Using (2.4), the penultimate coefficient of g(x) is (mcmb+ cm−1)am−1 = 0. So,
we can assume b = 0. Therefore, f(ax) ∈ K[x], a statement equivalent to

(2.5) {ai | i ∈ If} ⊂ K∗.

Write kf as a linearly combination
∑
i∈If uii with the collection of ui s relatively

prime to draw these conclusions:
(2.6) akf ∈ K∗ ⇔ (2.5); and since a 6∈ K, f(x) = h(xkf ), and kf > 1.

Now assume (f, g) is a Davenport pair over K, but deg(h) = 1 and kf is prime.
Denote a residue class field of a prime ppp of K by OK/ppp. Being a Davenport pair
implies the following for almost all ppp. For each x0 ∈ OK/ppp, there is y0 ∈ OK/ppp
with (x0)kf = a′(y0)kf . Conclude: a′xkf − 1 has a zero mod ppp for almost all ppp.

We now give a major use of Cebotarev’s theorem. We use the cover version later
(see the Chebotarev discussion of §3.2). Assume f is an irreducible polynomial
(resp. ϕ : X → Z is an irreducible cover) over a number field K.

(2.7a) Then f (resp. ϕ) has a transitive Galois (resp. monodromy) group.
(2.7b) In any transitive subgroup T : G→ Sn, there is an element σ that fixes

no letter of the permutation action: σ 6∈ ∪ni=1G(i), or tr(T (σ)) = 0.
(2.7c) For infinitely many primes ppp of K, f mod ppp has no zero (resp. ϕ is not

onto as a map on residue class fields).

The polynomial version implies a′xkf − 1 is reducible. Finally, if kf is a prime,
and K = Q, then it is well-known that a′xkf − 1 is irreducible. This contradition
completes the proof of the lemma. �

In addition to the problems above, a H(ilbert)’s I(rreducibility) T(heorem) vari-
ant kept appearing. Archetypal of problems unsolved at the time was this:

(2.8) For which f are there infinitely many z′ ∈ Z for which f(x)− z′ factors
over Q, but it has no Q zero (the Hilbert-Siegel Problem of Prop. 7.3)?

Example 2.2 (Davenport pair?). Lem. 2.1 ended with ma,k(x) = axk − 1 ∈ Q[x]
with a zero mod p for almost all p, but no zero in Q. Then, m16,8(x) = 16x8−1 is an
example. See this by factoringm16.8 into quadratics. From multiplicative properties
of the Legendre symbol: f(x) = h(m16,8(x)) and g(x) = h(x8) form a Davenport
pair. But, with g(x) = f(a′x), a′ 6∈ Q. As in Def. 3.2 with f = fd = T8,d(x) and
g = gd = fd(

√
2x). [Mü06, Thm] uses the Legendre symbol, as above, to show

(fd, gd), d ∈ Q, form a Davenport pair. He also shows for degree 8, this gives them
all, up to our usual equivalence. Conj. 7.26 states this example is serious. Yet,
rather than suggesting D1 in (1.1) is wrong, it suggests, even if f is decomposable,
it might actually be true.
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2.2.2. Extrapolating from Davenport’s Problem. In treating variants of Schur’s or
Davenport’s problems, papers of the time considered special polynomials f and
g, concluding these problems negatively. Example: For f in some specific set of
polynomials, the answer to (2.3b) would be that none had Schur’s property.

Extending Chebotarev’s theorem to function fields was necessary to consider
Davenport’s Problem in such detail. Yet, it was the mysteries of algebraic equations
over number fields that guided developments, especially Riemann’s approach to
algebraic functions. That is, inverse results gave the greatest motivation.

Sometimes the essence of algebraic equations, in two variables, is caught by the
isomorphism class of the equation, represented by a point on the moduli space of
curves of a given genus. Sometimes, not! For that doesn’t hint at the relations
(correspondences) between equations.

Further, equations that – with a change of variables – have coefficients in the
algebraic numbers, maybe even in Q, differ extremely from those that do not. Using
zeta functions attached to Chow motives – we can ask about their behavior when
the variables assume values in, say, finite fields. As in §7.3 it is historically accurate
to use Davenport’s problem to illustrate this.

Most significant for developments, was that over certain number fields there were
Davenport pairs in great abundance. That is, they formed nontrivial algebraic fam-
ilies of such pairs. In depicting those, especially in describing efficient parameters,
I ran up against how few algebraists had any experience with a moduli problem.
§6.4 recounts the three families of Davenport pairs – degrees 7, 13 and 15 –

and the equivalences on those pairs that gave parameters describing them. These
parameter spaces each have a genus 0 curve at their core. The techniques for
describing these are now so efficient they can be used for many problems.

2.3. Galois Theory and Fiber Products. Groups appeared little in §1.2 prob-
lems up to 1967. Yet, progress came quickly after introducing them. Here is how
they enter. For simplicity assume f and g over Q. Each of the maps f : P1

x → P1
z

and g : P1
y → P1

z has a Galois closure cover over Q, f̂ : X̂ → P1
x and ĝ : Ŷ → P1

y.
So, they have Galois groups aGf and aGg – their respective (arithmetic) mon-

odromy groups – the automorphism groups of these covers. Indeed, the Galois
closure of f has a natural description. Take (normalization of) any connected
component (over Q) of the m-fold fiber product of f minus the (fat) diagonal com-
ponents [RET3, §8.3.2].

The small “a” at the left stands for a(rithmetic), and indicates one complication.
Consider situations like Schur’s or Davenport’s problems, where the polynomials f
and g are far from general. Then, an absolutely irreducible component (over Q̄; see
§3.1) of the cover X̂ may have equations over a field Q̂f , larger than Q.

It was standard in the literature of the time to assume Q̂f = Q. In the general
problems I faced, that didn’t hold. Especially in Problem §2.2.1 (2.3b), and the
connection of that problem to one of Serre’s Open Image Theorems.

There is also a minimal Galois cover of P1
z that factors through both X̂ and Ŷ .

Its group, aGf,g, is naturally a fiber product. Indeed, define Ŵ to be the largest
(nonsingular) Galois cover of P1

z, over Q, through which both f̂ and ĝ factor. So,
there is f̂w : X̂ → Ŵ and ĝw : Ŷ → Ŵ factoring through the maps to P1

z. Each
automorphism σ of X̂ or Ŷ induces an automorphism rσ of Ŵ . (The superscript
”r” stands for restriction.)
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Then, aGf,g is the fiber product,

{(σ1, σ2) ∈ aGf × aGg | rσ1 = rσ2 on Ŵ}.

With m and n the respective degrees of f and g, then aGf,g naturally has permu-
tation representations Tf and Tg of degree m and n. Also, a tensor representation
Tf,g of degree m · n on the pairs of letters for the two representations Tf and Tg.

3. Moving from Chebotarev translation to Riemann Surfaces

Brumer taught Algebraic Number Theory while Lewis was in England, Fall se-
mester of my 2nd year. Brumer attended a course by McLaughlin on group theory
and included comments on groups during our private black board discussions.

3.1. My Choice of Thesis Topic. In Brumer’s course I learned the fiber product
construction of the group of the composite of two Galois extensions of a field. His
treatment of the standard (number field) Cebotarev density theorem included a
version of the Chebotarev statement in Lem. 2.1 and using groups to interpret it.

During Lewis’ algebraic curve course (Spring 1966) my thesis topic congealed
on properties of a collection of polynomials g1, . . . , gt. We always assume algebraic
sets are locally closed subsets of some projective space: a quasiprojective variety.
Recall an algebraic set X over a field K is absolutely irreducible if it is irreducible
over K and remains so over the algebraic closure of K. If K is a number field, for
all but finitely many of its primes ppp we can reduce the coefficients defining X and
consider it as an algebraic set Xppp over the residue field. Over any field you may
consider the points X(K) on X with coordinates in K.

Use the acronym a.a. (resp. i.m.) for almost all (resp. infinitely many) primes
p. We refer to the following statements below for a.a. and for i.m. p.

(3.1a) Characterize a polynomial f whose range on Z/p is in the union of the
ranges of Z/p under g1, . . . , gt.

(3.1b) More generally, consider covers fi : Xi → Z, i = 1, 2 of normal varieties
over Q, with Z absolutely irreducible. Characterize that the range of f2

on X2,p(Z/p) contains the range of f1 on X1,p(Z/p).
The first distinguishing property of any cover (say, f in (3.1a)) is transparently its
degree. Its monodromy group is subtler.

To see (3.1b) generalizes (3.1a) take f = f1 and f2 the natural map from the si-
multaneous fiber product of gi : P1

wi → P1
z, i = 1, . . . , t. Generalize (1.4) to consider

aGf,g1,...,gt , the monodromy formed from many fiber products, with representations
Tf and Tg1 , . . . , Tgt of respective degrees m and n1, . . . , nt. That generalizes – the
same fiber product construction – to form aGf1,f2 in (3.1b).

3.2. Precise Versions of Chebotarev’s Theorem. Chebotarev’s theorem –
for function fields over number fields – says that (3.1) implies a statement on
aGf,g1,...,gt . We explain two possible converses for Chebotarev. Respectively, these
are Monodromy Precision and an RET Converse. Much of this section is on the
former, though much of the paper’s remainder is on the latter.

3.2.1. Monodromy Precision. Generally, in applying Cebotarev, you expect impli-
cations in only one direction. Yet, for (3.1) monodromy groups are precise: a
monodromy statement implies (3.1).
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MacCluer’s Thesis [Mac67] answered the main question of [DL63] by showing,
for tamely ramified polynomial covers, that the property of being exceptional (§1.1)
over a finite field is monodromy precise. (He said it differently.) We indicate the
growth of this result – using examples from the special cases that dominate this
paper – below Thm. 3.1. §7.3 elaborates on the point of this Cebotarev strength-
ening. Everything applies over a general number field K. We simplify by taking
K = Q, and using the notation of (3.1a) though it applies equally to (3.1b).

Assume a component of the cover whose group is aGf,g1,...,gt =a Gf,ggg (the arith-
metic monodromy) has definition field Q̂f,ggg. Then, aGf,ggg maps surjectively to the
Galois group G(Q̂f,ggg/Q). The kernel is the geometric monodromy, Gf,ggg, of the
cover. For τ ∈ G(Q̂f,ggg/Q) denote the aGf,ggg coset mapping to τ by τaGf,ggg. We call
(3.2) the monodromy conclusion. Again, tr denotes the trace (§A.1).

Theorem 3.1. Assume (3.1) holds for i.m. (resp. a.a.) primes p. Then, for some
(resp. for each) coset τaGf,ggg, and for each σ ∈ τaGf,ggg:

(3.2) tr(Tf (σ)) > 0 if and only if for some i, tr(Tgi(σ)) > 0.
Further, the converse holds: (3.2) implies (3.1). Finally, all these statements

apply directly with the field Q replaced by Z/p.

Comments. Denote the fixed field of τ in Q̂f,ggg by Q̂τ
f,ggg. The implication (3.1) =⇒

(3.2) is a combination of Cebotarev – actually not then in the literature [FrS76,
p. 212-13], or [FrJ86, Chap. 5]1 – for number fields and for function fields. The
subtlety of the extension of constants Q̂f,ggg not being Q is precisely treated in
[Fr74a, §2] under the title: “Non-regular Analog of the Cebotarev Theorem.”

The converse is from [Fr05b, Cor. 3.6], a conclusion from pr-exceptionality (com-
ments on (3.4e) below), where pr stands for possibly reducible cover.

[Fr05b] shows this applies for any prime p satisfying these two properties:

(3.3a) τ is the Frobenius element in Q̂f,ggg; and
(3.3b) the subgroup of aGf,ggg fixing Q̂τf,ggg naturally equals the analog of aGf,ggg

over Z/p obtained by reducing all polynomials mod p.

[Fr74a, Lem. 1] says (3.3b) holds for a.a. p with τ the Frobenius in G(Q̂f,ggg/Q).
(There are i.m. such p by Chebotarev’s theorem.) This requires avoiding a poten-
tially large – but finite – set of primes, including those dividing denominators of
coefficients, or for which some polynomial becomes inseparable. �

Now consider these special cases of (3.1) as concluded by Thm. 3.2.
(3.4a) All f1 s work in (3.1b): The range of f2 is the complete set, Zp(Z/p), of

Z/p points on Z for i.m. (resp. a.a.) p.
(3.4b) Exceptional functions: In (3.1b), f1 is trivial (degree 1), and X2 is ab-

solutely irreducible: For i.m. p, the range of f2 is Z(Z/p).
(3.4c) Exceptional polynomials: t = 1, and f is trivial in (3.1a): For i.m. p, the

range of g = g1 on Z/p ∪ {∞} is Z/p ∪ {∞}.
(3.4d) pr-exceptional functions: Exactly the same as (3.4c), except we allow X2

to have more than one component.
(3.4e) Davenport pairs: For a.a. p, (3.1b) holds as stated, but it also holds after

switching f1 and f2.

3.2.2. Monodromy Precision Comments. We comment on the cases of (3.4) using
the notation Fq for the finite field of cardinality q = pt for some prime p.
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Comments on (3.4a): If X2 is absolutely irreducible, then it remains absolutely
irreducible for almost all p: a case of [Fr74a, Lem. 1]. From (2.7b) the geometric
monodromy group Gf2 contains some σ fixing no letter of the permutation set.

For primes ppp of K where σ is in the arithmetic coset of (3.2), σ (according to
the monodromy conclusion) prevents f2 from being an onto map over OK/ppp. So,
X2 has several components if (3.4a) holds for a.a. ppp. Allowing X2 to have several
components – to be p(ossibly)r(educible)-exceptional – put Davenport pairs and
exceptional covers (comments on (3.4d) and (3.4e)) under one umbrella [Fr05b].

Comments on (3.4b): Exceptionality sets: Suppose ϕ : X → Z is a cover of
absolutely irreducible varieties over Fq. Denote the extension of constants field in
the arithmetic monodromy, aGϕ (its corresponding representation is Tϕ), by F̂q.

Denote the coset in aGϕ that restricts to the q-power map, Frq, on F̂q by FrqaGϕ.
If one of the notions of (3.5) – all equivalent according to [Fr05b, Cor. 3.6] – hold,
call ϕ an Fq exceptional cover.

(3.5a) ϕ : X(Fqt)→ Z(Fqt) is onto (resp. injective) for infinitely many t.
(3.5b) The fiber product X×ZX with the diagonal component removed has no

absolutely irreducible Fq components.
(3.5c) With σ running over FrqaGϕ, then, tr(Tϕ(σ)) > 0 (resp. tr(Tϕ(σ)) ≤ 1).

Each of (3.5a) and (3.5c) are a pair of characterizations. The former says ϕ is
one-one and onto Fqt points for infinitely many t. The latter says tr(Tϕ(σ)) = 1
for all σ extending the Frobenius. With (Z,Fq) fixed, [Fr05b, Prop. 4.3] says the
collection of exceptional covers of Z over Fq form a category with fiber products.

We explain. If ϕ and ϕ′ : X ′ → Z are two such covers, then the fiber product
X ×Z X ′ has exactly one absolutely irreducible Fq component, though it may have
many Fq components. That absolutely irreducible component is the fiber product
of ϕ and ϕ′ in this category. (Note: §A.4.1 says, if dim(Z) > 1, then we may have
to extend the notion of cover.)

Return to the notation of (3.4b). We say f2 is exceptional (over Q; but it applies
to any number field), if there are i.m. p with – upon applying (3.3) – the reduction
of f2 mod p exceptional as above. Denote the set of such primes of exceptionality
for f2 by Ef2 . There may be primes p for which f2 on Z/p points is onto, but
they don’t fit the (3.5) criterion of exceptional. Still, if f2 on Z/p points is onto
for infinitely many p, all but finitely many will be in Ef2 . That is, even using
Chebotarev roughly, for p large the ontoness forces the monodromy statement of
(3.2), equivalent – in this case – to the other criteria of (3.5).

Comments on (3.4c): : Since P1
w is absolutely irreducible, the comment on (3.4a)

says Eg excludes infinitely many primes. Assume g has reduction mod p giving a
tamely ramified polynomial with (3.3) holding. Then, [Mac67] showed the converse
statement (3.2), but in the fiber product form (3.5b).

Yet, Thm. 3.1 says tame ramification, even that g is a polynomial, was unnec-
essary. Comments on (3.4d) start the discussion on explicit (algebraic) equations,
versus avoiding equations as in §4, §7.2 and §A.2.

Suppose g : P1
w → P1

z is an exceptional rational function over a number field
K. Suppose, further, `1, `2 ∈ PGL2(Q̄) (linear fractional transformations), but
`1 ◦ g ◦ `−1

2
def= g`1,`2 ∈ K(w). We say g and g`1,`2 are Möbius equivalent (over Q̄).

If `1, `2 ∈ PGL2(K), then clearly g`1,`2 is also exceptional. This trivial production
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of new exceptional covers encourages regarding Möbius equivalence classes over K
as essentially the same.

Comments on (3.4d): Isn’t (3.5b) a pleasanter characterization of exceptionality
than using group theory? Yet, it was groups that precisely characterized tamely
ramified exceptional polynomials: [Fr70], or [FrGS93, §5], or [Fr05b, Prop. 5.1].

In Davenport’s problem the efficiency of using groups is even more striking. As
§2.3 reminds, anything using the Galois closure of a cover is about fiber products.
Still, there is no simple analog of (3.5b) for pr-exceptional covers. In analogy for
exceptional covers, there is a set of primes, Ef2 , for pr-exceptionality.

Comments on (3.4e): Consider the natural fiber product projections

X1 ×Z X2
pri−→Xi, 1 = 1, 2.

A special case of [Fr05b, Cor. 3.6] tells us that (f1, f2) form a Davenport pair if
and only if both pri s are pr-exceptional covers with exceptionality sets consisting
of a.a. p. This is what gives the Monodromy Converse for Davenport pairs.

3.2.3. Using equations and Chebychev conjugates. §7.2.2 – on displaying Davenport
pairs – deepens our distinction between using branch cycles (§5.1.2) and using
equations to describe covers. Prop. 3.3 gives the result/conjecture that attracted
so much number theory attention to Cheybchev polynomials. This allows me a
preliminary contrast of my techniques with a traditional use of explicit equations.

A functional equation defines the nth Chebychev polynomial, Tn:

(3.6) Tn((x+ 1/x)/2) = (xn + x−n)/2.

For a ∈ F∗q and a = u2, u ∈ F∗q2 , denote multiplication by u by mu.

Definition 3.2 (Dickson analogs of Tn). Convolution by mu gives a Chebychev
conjugate Tn,a = mu ◦ Tn ◦m−1

u , scaling the branch points from ±1 to ±u. Cheby-
chev conjugates are constants times Dickson polynomials [Fr05b, Prop. 5.3].

Proposition 3.3 (Schur’s ’Conjecture’). With K a number field, the f ∈ O[x] for
which Ef,K is infinite are compositions with maps a 7→ ax+ b (affine) over K with
polynomials of the following form running over odd primes u:

(3.7) cyclic xu or Chebychev conjugates of Tu, u > 3 [Fr70, Thm. 2].

[Fr10, p. 49] – essentially Lem. 7.4 characterizing the Chebychev conjugates
– used the name Chebychev for all Chebychev conjugates (instead of Dickson
analogs). [LMT93] is dedicated to using explicit expressions for Chebychev and
closely related functions. If exceptionality is important, it behooves us to know
precisely over what finite fields Chebychev conjugates are exceptional. Our com-
ments on Lem. 3.4 are an example of monodromy precision close to MacCluer’s
motivation in [Mac67] (before the proof of Prop. 3.3).

Lemma 3.4. Assume n is odd (and prime to p), and a ∈ F∗q , with q odd. Then,
the Chebychev conjugate Tn,a is exceptional if and only if (n, q2 − 1) = 1.

Comments on two different types of proof. [Fr70, Lem. 13] for a = 1, but there is a
typo in the statement: N(ppp) − 1 should be N(ppp)2 − 1. The proof of sufficiency of
(n, q2− 1) = 1 for all a – the first part of [LMT93, Thm. 3.2] – is exactly the same.
Except rather than stating this gives exceptionality for these primes, they say only
that it the Chebychev conjugate is a permutation polynomial – it maps one-one –
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on Fq. [LMT93, p. 39] does the converse – if (n, q2− 1) = d > 1, then a Chebychev
conjugate is not exceptional/permutation – based also on (3.6).

We do the converse using the monodromy precise characterization in (3.5b).
From the Tn,a characterization of Lem. 7.4, we know P1

x×P1
z

P1
x \∆ consists of n−1

2

absolutely irreducible components of degree 2 over P1
z. With ζn a primitive nth

root of 1 over Fq, each component has definition field the symmetric functions in
Uj = {ζjn, ζ−jn }. As q2 − 1 ≡ 0 mod d, the qth power map – Frobenius – acts as
either +1 or −1 on the elements of Un/d: Un/d 7→ {ζ

qn/d
n , ζ

−qn/d
n } = Un/d. So, a

component corresponding to Un/d is defined over Fq, and Tn,a is not exceptional. �

Remark 3.5 (Continuing on Lem. 3.4). The proof of (n, q2− 1) = 1 being exact for
Chebychev conjugate exceptionality is what I gave as a referee of [Mat84]. That was
to algorithmically, from degrees, find which compositions of cyclics and Chebychev
conjugates in Prop. 3.3 are exceptional. Maybe the version from [LMT93, Thm. 3.2]
is more comforting than using monodromy precision.

Yet, could equation manipulation work on the exceptional primes arising from
Serre’s Open Image Theorem §7.1.2, as does monodromy precision [Fr05b, §6.2,
esp. Prop. 6.6]? There is a structure to exceptionality that imediately differentiates
it from accidents when f , though not exceptional, might permute elements of Fq. I
could find no reference to exceptionality in [LMT93]. [FrL87] – on forming higher
dimensional Chebychev analogs, so exceptional covers, using Weil’s restriction of
scalars – indicates I did try to communicate about such matters.

3.2.4. RET Converse. We return to (3.4e), using notation of (3.1a): f = f1, g = f2,
with (f, g) a Davenport pair of polynomials.

C1: Formulating a geometric converse: A converse of the group version (3.2)
might ask this. Given any group statement of this ilk, are there (f, g) that produce
the group conditions. This question is appropriate far beyond Davenport’s problem.

C2: Formulating an arithmetic converse: Statement (3.2) has a group version
about an arithmetic monodromy. A converse might give two groups aG and G
satisfying a statement like (3.2), then ask: Are there covers realizing these groups
as their arithmetic/geometric monodromy over some number field?

R(iemann)’sE(xistence)T(heorem), §5.1.2, can invert these statements. Con-
straining permutation representations to produce polynomial covers (or rational
functions) is in the group theory, through R(iemann)-H(urwitz) (5.1).

We model our method for deciding over what number fields the arithmetic in-
version is achievable on the two pieces D1 and D2 to Davenport’s Problem (1.1).
Other related problems, like Serre’s OIT, show how a few precise problems can
coral considerable progress, despite the surrounding unknown territory.

3.3. Meeting UM Faculty and going to ∞. The graduate student population
was over 200 at UM in those years. I later realized that the department was large,
too, compared to other departments in which I ever held a position. Therefore,
seminars – not driven by the research of a resident faculty – often started with
many attending, but dropped rapidly each week.

3.3.1. How fiber products and other tools arose. I learned fiber products at UM
from a seminar on Diudonne’s version, EGA, of Grothendieck’s writing, summer
1965. From the 50+ who first showed, soon there was just Brumer, Bumby and
me. I recall practicing sheaves, direct limits and projective limits especially from
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a famous Grothendieck paper – Tohoku– under their tutelage. Bumby, especially,
guided my intuition on much profinite homological algebra.

Lewis arranged for my attendence at two Bowdoin college NSF-funded summers.
Eight weeks each on Algebraic Number Theory (summer of 1966) and Algebraic
Geometry (summer of 1967). Both summers I learned everything put in front of
me. I also learned I would be subject to pejoratives for not having the background
prevalent then at Harvard, MIT or Princeton. It never intimidated me.

Brumer left for Columbia at the start of my 3rd year. Imitating Brumer, I
engaged McLaughlin directly in blackboard discussions when I could catch him,
about permutation representations. Roger Lyndon and I lectured in his seminar on
Discontinuous groups acting on the upper half plane. Also, I read notes of Brumer
on modular curves from lectures of Gunning. As with theta functions, this became
my hidden tool, augmented sharply by two years around Shimura while I was at
the I(nstitute for)A(dvanced)S(tudy) 1967-1969.

3.3.2. Grabbing a thesis and learning from it. I was aware, by Summer 1966 that
the implication (3.1a) =⇒ (3.2) would receive little regard for these reasons.

(3.7a) It said nothing about the polynomials involved, not even suggesting what,
of significance, one might say.

(3.7b) The problem didn’t register with the MIT-Princeton-Harvard students
at the 1966 Bowdoin Conference on Algebraic Number Theory.

If a mature algebraic geometer had cued my next step – say Artin or Mumford, I
later knew both – it wouldn’t have resonated. Through, however, my student eyes
it opened a new way of thinking. Later I realized it was a stride even for Riemann.
Lefschetz admitted he finally understood Picard from something similar.

Yet, isn’t this elementary?: I looked at ∞, Christmas morning 1966, at a time
I despaired at finding any structure to Problem (3.1). I saw a finger circling ∞ on
the Riemann sphere, clockwise (so, unlike their use by many, my loops go clockwise
around points to this day), and then coming back to a basepoint – at my feet.

Here’s what it meant for the values of a polynomial f : P1
x → P1

z. You knew for
certain one element, σ∞, in Gf (and so in aGf ): an n-cycle coming from the cover
totally ramifying over ∞. The proof of Prop. 7.28 displays σ∞ in an elementary
way. Recall, ∞ was not initially considered a value of f , but that is irrelevant.

3.3.3. Combining data at ∞ with Chebotarev. That finger circling ∞ corresponded
to a path on the punctured sphere. So, in considering (3.1a) it corresponds to a
generator, σ∞, for the inertia group over∞ for the fiber product of all covers given
by f and the gi s. In each corresponding permutation representation σ∞ appears
respectively as an m-cycle or an ni-cycle.

Proposition 3.6. Apply the conclusion of Chebotarev in (3.2): With N the least
common multiple of the ni s, m divides N . In particular, in Davenport’s problem
(2.3c) the degrees of a Davenport pair (f, g) must be the same.

Proof. The element σN∞ fixes every letter in Tgi (corresponding to gi). So, from
(3.2), Tf (σN∞) must fix something. Yet, unless m divides N , as Tf (σN∞) is an m-
cycle to the N -th power; it fixes nothing. This contradiction shows the result. �

From here on we take this common degree of a Davenport pair as n. In fact,
there is a stronger conclusion, which Lem. 4.2 explains more fully.
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Theorem 3.7 (DS1). Suppose f and g nontrivially satisfy Davenport’s hypothesis.
Then their Galois closure covers are the same [Fr73a, Prop. 2].

3.4. Double transitivity versus primitivity. Unless you are a group theorist, or
have, through a particular problem met groups seriously, then you likely know finite
groups only through their permutation representations. So, you wouldn’t know
there is an intimate relation between primitive groups and simple groups (§A.3) –
excluding primitive affine groups (§A.1), which may resist any classification.

I didn’t know these things, which came partly from [AOS85], when I started
either. I luckily could skirt the easier edge of the doubly transitive/primitive divide.
This section runs lightly over [Fr70] to review how the primitive group property
arose early. The more intense analysis of [Fr73a] starts in §4.

3.4.1. Translating Primitivity. The monodromy group aGf of a cover f : X → P1
z

over a field K is primitive if and only if the cover does not properly factor through
another cover (over K). Also, aGf is doubly transitive if and only if the fiber
product X ×P1

z
X has exactly two irreducible K components (one is the diagonal).

WhenX = P1
x, primitive means f doesn’t decompose (overK) as f1◦f2 with both

deg(fi) s exceeding 1. Doubly transitive translates as follows: (f(x)− f(y)/(x− y)
is, after clearing denominators by multiplying – with h the denominator of f –
by h(x)h(y), an irreducible polynomial in two variables over K. Galois theory
translates these respective statements as conditions on aGf under the permutation
representation Tf . For a group G under a degree n representation T , G(i) indicates
the subgroup of G fixing i.

(3.8a) (G,T ) is Primitive: No group lies properly between G and G(1).
(3.8b) (G,T ) is Doubly Transitive: G(1) is transitive on {2, . . . , n}.
If Gf is primitive, then so is aGf , but the converse does not in general hold.

Still, we have the following. Denote the characteristic of K by Char(K).

Lemma 3.8 (Polynomial Primitivity). If f ∈ K[x], of degree prime to Char(K),
decomposes over K̄, then it decomposes over K [FrM69, Prop. 3.2]. In this case, if
it is indecomposable, then Gf is doubly transitive unless it is affine equivalent over
K̄ to a cyclic (xn) or Chebychev polynomial (as in (3.6)) [Fr70, Thm. 1].

In Schur’s Conjecture we can revert to primitivity quickly. A composite of poly-
nomials gives a one-one map on a finite field, if and only if each does. Polynomial
Primitivity 3.8 then reverts to the case Gf (the geometric group) is primitive. Two
famous group theory results from early in the 20th century help immensely.

• Schur: If Gf is primitive and n is composite, since Gf contains an n-cycle
under Tf , it must be doubly transitive.

• Burnside: If n is a prime, and Gf is not doubly transitive, then it is a
subgroup of the semi-direct product Z/n×s(Z/n)∗ (§A.1).

Lem. 7.4 gives the branch cycle characterization of Chebychev polynomials, an easy
forerunner of the branch cycle characterization of Davenport pairs as in §5.4.

3.4.2. Group Theory in Grad School. After 35 years of evidence that we know all
simple groups, unless a permutation group is primitive, even the classification isn’t
so helpful (§7.4). Still, primitive groups aren’t “simple” ( irony intended).

Richard Misera, a fellow graduate student – I never saw him again after getting
my degree – was studying with Don Higman. After once seeing me discuss the
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distinction between permutation representations and group representations with
McLaughlin he volunteered an example that became a powerful partner when I was
ready to solve Davenport’s Problem (§4.3).

Soon after graduate school, I knew enough to solve Schur’s Conjecture (§1.3).
Still, it was John Smith, whom I thought I saw by accident at IAS – he actually came
to discuss a problem with me – who told me of Schur’s and Burnside’s Theorems.
Smith was the 3rd (and last, including MacRae and Schinzel) affiliate of Michigan
during my graduate years with whom I wrote papers (in each case two).

My Erdös number is 2 because Schinzel’s is 1.

4. Equation properties without writing equations

Rare among algebraic equation papers, even those using the monodromy method,
solving Davenport’s problem used general principles, not equation manipulation.
For a Davenport pair, (f, g), list the zeros xi of f(x) − z (resp. yi of g(y) − z),
i = 1, . . . , n, in an algebraic closure of K(z). Do a penultimate normalization:
change x to x+ b, b ∈ K, so the coefficient of xm−1 is 0 (similarly for g(y)).

4.1. A linear relation in Davenport’s problem. DS1 (Thm. 3.7) says

K(xi, i = 1, . . . , n) = K(yi, i = 1, , n).

Yet, (4.1a) is an even stronger relation. [Fr73a, Thm. 1] gives (4.1a) and (4.1c)
with the converse statement in (4.1b) a special case of Thm. 3.1.

Theorem 4.1 (DS2). Assume f and g nontrivially satisfy Davenport’s hypothesis,
with f indecomposable.

(4.1a) Then, Tf and Tg are inequivalent permutation representations of
aGf = aGg. Yet, they are equivalent as group representations.

(4.1b) Further, the converse holds: Such Tf and Tg, equivalent as representa-
tions, imply f and g satisfy Davenport’s hypothesis; and (for a.a. p) f
and g assume each value mod p with exactly the same multiplicity.

(4.1c) Finally, since f is indecomposable, so is g and (4.1a) is equivalent to
f(x)− g(y) being reducible (Shinzel’s problem, (2.3d)).

What DS2 says is that xi is a sum of distinct yj s times a nonzero element a ∈ K.
With no loss, take a = 1, and write

(4.2) x1 = y1 + yα2 + · · ·+ yαk , with 2 ≤ k ≤ (n− 1)/2 (because the comple-
mentary sum of yi s now works as well).

Let f(x) and g(y) be rational functions over a field K (assume CharK = 0, or
that the covers given by f and g are separable). Suppose f (resp. g) decomposes
as f1 ◦ f2 (resp. g1 ◦ g2). Write the projective normalization of the fiber product
of the covers (f, g) (resp. (f1, g1)) as W = P1

x ×P1
z

P1
y (resp. W1 = P1

u ×P1
z

P1
v): W

naturally maps surjectively to W1. From (2.1b) the irreducible factors of f(x)−g(y)
(resp. f1(u) − g1(v)) correspond one-one with the connected components of W
(resp. W1). The 1st sentence of Lem. 4.2 says, in the Zariski topology, the image
of a connected space is connected. Result (4.1c) is geometric. The rest of Lem. 4.2
is a preliminary to it from [Fr73a, Prop. 2].

Lemma 4.2. Each irreducible factor of f1(u)− g1(v) is the image of one or more
irreducible factors of f(x)− g(y). Further, if f(x)− g(y) does factor, then you can
choose (f1, g1) so the following holds.
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(4.3a) The irreducible factors of f(x) − g(y) correspond one-one with the irre-
ducible factors of f1(u)− g1(u); and

(4.3b) the Galois closure covers of f1 and g1 are the same.

The end of §1.1 notes many papers quote [Fr73a, Prop. 2]. Also, as prior to
Lem. 7.12, the original proof works far more generally than those quoters realize.
For rational functions, however, (4.2) won’t hold without that n-cycle; you can’t
even say deg(f1) = deg(g1). Classifying variables separated factorizations was
Schinzel’s Problem, not Davenport’s. Their mathematical common ground appears
to have been their interest in variables separated equations.

They had not considered the equivalence of their problems for the case f is
an indecomposable polynomial. They aren’t equivalent without the indecompos-
able assumption. All attempts to write equations for Davenport pairs, especially
[CoCa99] (see §7.2), used Schinzel’s factorization condition.

Below we denote the letters of Tf (resp. Tg) by xi (resp. yi), i = 1, . . . , n. Also,
G(xi) is the stabilizer in G of xi. Rem. 4.3 doesn’t even assume n = m.

Remark 4.3 (Davenport without f indecomposable). [Fr73a, Lem. 3], used in §7.4.3,
does not assume f is indecomposable, or even that f and g are polynomials. Sup-
pose (f, g) is a (nontrivial) Davenport pair, so

Tf (σ) > 0⇔ Tg(σ) > 0, for each σ ∈ G the Galois closure group.

Then, f(x)− g(y) is reducible, or else, G(x1) is transitive on y1, . . . , yn. But, then,
conjugates of G(x1)∩G(y1) = H under G(x1) would cover G(x1). This contradicts
that conjugates of a proper subgroup of G can’t cover G.

4.2. Difference Sets and a Classical Pairing. People who like cyclotomy (both
Gauss and Davenport did) see difference sets in many situations. The kind that
arises in this problem is special (cyclic), though it is an archetype.

Normalize the naming of x1, . . . , xn and y1, . . . , yn in Tf and Tg so that σ∞
(§3.3.3) cycles the xi s (and the yj s) according to their subscripts. We now combine
double transitivity and the action of σ∞ on both sides of (4.2). From this we see
how the definition of difference set arises. The proof of Prop. 4.4 includes a shorter
proof of [Fr73a, Lem. 4], and a completely different approach to [Fr73a, Lem. 5].
The latter included the statement I alluded to from Storer (Prop. 5.1).

Proposition 4.4. In the nonzero differences from D1 = {1, α2, . . . , αk} mod n
each integer, {1, . . . , n−1}, appears exactly u = k(k − 1)/(n − 1) times. Further,
writing the yi s as expressions in the xj s gives the attached different set (up to
translation) as D1 multiplied by -1.

Proof. Acting by σ∞ on D1 – translating subscripts – produces Di, i = 1, . . . , n.
The permutation action of Gf gives a representation equivalent to Tf . The number
of times an integer u mod n appears as a (nonzero) difference from D1 is the same
as the number of times the pair {1, u + 1} appears in the union of the Di s. That
is, you are normalizing its appearance as a difference where the first integer is a 1.
Double transitivity of Gf is equivalent to transitivity of Gf (1) on 2, . . . , n. So, the
count of appearances of 1, u+1 in all the Di s is independent of u.

Now consider, as in the last sentence, writing the yi s in terms of the xj s. To do
so form a classical n × n incidence matrix: Ix,y: rows consist of 0s and 1s with a
1 (resp. 0) at (i, j) if yj does (resp. not) appear in xi (according to the translate
of subscripts on (4.2)). Then, applying Ix,y to the transpose of [y1 . . . yn] (so it is
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a column vector) gives the column vector of the xi s. Denote the transpose of Ix,y
by trIx,y. From the difference set definition, notice:

trIx,y × Ix,y = Ix,y × trIx,y = (k−1)In + u1n×n,

with In the n× n identity matrix, and 1n×n the matrix having 1s everywhere.
Apply both sides to the transpose of [y1 · · · yn] to conclude the matrix trIx,y has

rows giving the difference set attached to inverting the relation between the x s and
y s. Now look at the last column of Ix,y. A 1 appears at position j if and only if
row 1 has a 1 at column n − j + 1. That is, mod n, column n is -1 times row 1
translated by 1. That concludes the last line of the proposition. �

On numerology alone, we may consider which triples (n, k, u) from Prop. 4.4
afford difference sets. These are the only possibilities up to n=31:

(4.4)
(7, 3, 1), (11, 5, 2), (13, 4, 1), (15, 7, 3), (16, 6, 2), (19, 9, 4), (21, 5, 1),
(22, 7, 2), (23, 11, 5), (25, 9, 3), (27, 13, 6), (29, 8, 2), (31, 6, 1).

I eliminated the cases n = 22, 23 and 27 with the Chowla-Ryser Thm., which I
discovered in [Ha63, Thms. 3, 4 and 5]. It says, for n even (resp. odd), existence
of a difference set implies k− u is a square (resp. z2 = (k− u)x2 + (−1)(n− 1)/2y2

has a nontrivial integer solution). Hall’s book suggests Chowla-Ryser is “if and
only if” for existence of a difference set. Still, we now know for sure, if there were
such a converse, it would not produce a difference set in a doubly transitive design
because we know Collineation Conjecture 4.9 is true.

The next section shows how we guessed which groups – and conjugacy classes –
arose as monodromy of Davenport pairs: Problem D2 in (1.1). This appearance of
projective linear groups, combined with Riemann-Hurwitz, shows why we stopped
the list of (4.4) with n = 31. This was the first inkling of the Genus 0 Problem.

4.3. Misera’s example (sic). Take a finite field Fq: q = pt for some value of
t, p a prime. For any integer v ≥ 2, consider Fqv+1 as a vector space V over Fq
of dimension v + 1, so identifying it with (Fq)v+1. The projective linear group,
PGLv+1(Fq) = GLv+1(Fq)/(Fq)∗, acts on the lines minus the origin in (Fq)v+1: on
the points of projective v-space, Pv(Fq). Take n = (qv+1 − 1)(q − 1).

Conclude: PGLv+1(Fq) has two (inequivalent) doubly transitive permutation
representations, on lines and on hyperplanes. Yet, these representations are equiv-
alent as group representations by an incidence matrix – as in the proof of Prop. 4.4
– that conjugates one representation to the other.

Finally, here is what Misera told me. Apply Euler’s Theorem to produce a cyclic
generator, γq, of the nonzero elements of Fqv+1 . Let γq act by multiplication on
Fqv+1 . It induces (as does (γq)q−1) an n-cycle in PGLv+1(Fq) acting on Pv(Fq).

Misera’s example allowed me to produce examples fulfilling Thm. 4.1. At the
end of my first year at IAS I took the following step:

Theorem 4.5 (DS4). [Fr73a, p. 134] writes difference sets for

n = 7 = 1+2+22, 11, 13 = 1+3+32, 15 = 1+2+22+23,
21 = 1+4+42 and 31 = 1+5+52.

My notes to Feit in 1969 give Davenport pairs (f, g) (§2.2.1), branch cycles (§5.1.2)
and appropriate number fields over which they are defined for each case.
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In rereading, I see [Fr73a, (1.25)] left out n = 15 in its list of difference sets. I’ll
do that case now for use below.

Take an irreducible degree 4 polynomial over Z/2 (say, x4+x+1). Then, multiply
the nonzero elements (nonzero linear combinations of 1, x, x2, x3 corresponding to 1,
2, 3, 4) by x and use the relation x4+x+1 = 0, to label them 1, 2, . . . , 15. Example:
x4 = x+ 1 corresponds to 5.

Choose a hyperplane: Say, the linear combinations of 1, x and x2. Then, a differ-
ence set, D15 = {1, 2, 3, 5, 6, 9, 11} mod 15 is a list of elements on this hyperplane.

Definition 4.6. A multiplier of difference set D mod n is c ∈ (Z/n)∗ with cD a
translate of D mod n. Denote by MD the group of multipliers of D.

Example 4.7. 2 is a multiplier of D15, generating MD15 , an order four subgroup
of the invertible integers mod 15. A translate of the one [CoCa99, §2.2.5] took is
{1, 2, 3, 8, 10, 13, 14}. After multiplication by -1, this is a translation of D15.

Here, as for n = 7, the non-multipliers of the difference set consist of the coset of
multipliers time -1, compatible with the contribution of Storer from the opening of
§5. In that section we refer to γq as σ∞. We do that here to allow directly referring
to the following observation. Use the notation of §A, with q = pt. A choice of σ∞,
up to conjugacy, defines the inertia generator from §3.3 attached to a polynomial
f that has geometric monodromy between PGLn(Fq) and PΓLn(Fq). Further, σ∞,
up to conjugacy, defines the attached difference set up to translation given in (4.2).

Lemma 4.8 (Multiplier). The subgroup of (Z/n)∗ that corresponds to powers of
σ∞ conjugate to σ∞ (in PΓLn(Fq)) equals MD.

4.4. Group theory immediately after Graduate School. I knew J. Ax from
my two years at IAS. I went with him to SUNY at Stony Brook (leaving soon
after getting tenure), instead of to U. of Chicago which first offered me tenure.
Ax suggested I should explain what I was after to W. Feit. His rationale: While
my difference set conditions were complicated, group theory could handle intricate
matters by comparison to what one could do with algebraic geometry. From Ax’s
suggestion, I learned to partition a problem into its group theory, number theory
and Riemann surface theory pieces, so that I could handle each separately.

4.4.1. The Collineation Conjecture. Here is what I expected. The case n = 11
is special. It corresponds to a difference set with a doubly transitive group of
automorphisms that doesn’t fit into the points/hyperplane pairing on a projective
space over a finite field. Still, my reading suggested that I now knew all possibilities
for these doubly transitive designs – as described in §5.3 – through Riemann’s
Existence Theorem. Consider the following condition on a group G:

(4.5) It has two inequivalent doubly transitive permutations representations,
that are equivalent as group representations (of degree n).

Here was the group theory guess.

Conjecture 4.9 (Collineation Conjecture). Assume (4.5) and that G also contains
an n-cycle. Then, G either has degree 11, or it lies between PGLv+1(Fq) and
PΓLv+1(Fq), n = (qv+1 − 1)(q − 1), for some v and q.

Given Conjecture 4.9, I described from it the only possible – finite set of –
Davenport pair degrees n (as in the rest of this report) over some number field. I
could give branch cycle descriptions for all Davenport pairs, thus solving problem



22 M. D. FRIED

D2 (1.1b). Indeed, it gave the full nature of these pairs, without writing equations
(as in §6.4) the toughest issue to explain to algebraists.

4.4.2. My interactions with Feit 1968-69. These were complicated – in those days
all through regular mail. Even without the Collineation Conjecture, it was also
possible to bound degrees of Davenport pairs and use Riemann-Hurwitz to cut
down the total number of branch cycles. This came from knowing that each branch
cycle moved at least half the points. I suggested this to Feit in my description of
its consequences, and he proved it ([Fe70, Thm. 3], or [Fr73a, Prop. 1]).

Yet, it was Conjecture 4.9 that made a case for the Genus 0 Problem. Feit
suggested that if I accepted the simple group classification, then extant literature
might prove the Collineation Conjecture. That allowed me to finish it (published
in [Fr99, §9]), and several other pieces of pure group theory. §7.4 models how a
(non-group theory) researcher might approach this.

Yet, the biggest surprise didn’t come from group theory. It was possible (§5.2) to
finish Davenport’s Problem over Q, D1 (1.1a), without the Collineation Conjecture
– or anything related to the classification of simple groups. This used a device
whose general applicability opened up directions that went far beyond discussions
of separated variables. The next section explains this, and relates my only specific
mathematical interaction with UM beyond graduate school (see §7.5).

5. The B(ranch)C(ycle)L(emma) and Solving Davenport’s Problem

I was immensely assured – at the time (see §5.2) – by Storer’s Statement 5.1.
Yet, the 2nd sentence of Prop. 4.4 – which I first overlooked, but used later –
already gives its main thrust. By assumption Tf and Tg are distinct permutation
representations. If, however, -1 was a multiplier, then they would not be.

Proposition 5.1 (Storer’s Statement). [Fr73a, p. 132] says this: ”According to
T. Storer the fact that -1 is not a multiplier is an old chestnut in the theory of
difference sets. He has provided us with a simple proof of this fact, upon which we
base the proof of Lemma 5.”

Now I explain the BCL and how it finished Davenport’s Problem over Q.

5.1. Branch cycles and the BCL. As in §A, denote the automorphisms of the
algebraic numbers Q̄ fixed on a field K ⊂ Q̄ by GK .

5.1.1. Branch points. Algebraic relations have coefficients. If the coefficients are
in Q̄, then Hilbert’s Nullstellensatz says points with Q̄ coordinates satisfying these
relations determine all points satisfying the algebraic relations.
§2.1 reminds of the distinction between affine sets (defined by equations in a

finite set of variables) and projective sets (defined by homogeneous equations in a
finite set of variables). You can view a point (x0, . . . , xn) satisfying homogenous
equations as a point on an affine space, but the projective points are equivalence
classes {a(x0, . . . , xn)}, a 6= 0. We require that one of the xi s is nonzero.

In practice, here is the significance of a point lying on an algebraic set, versus,
say, lying on a general complex analytic set. Take any algebraic set, V , over Q̄ and
act on an algebraic point v ∈ V by γ ∈ GQ. Then the image γv will lie on the set
defined by γ acting on coefficients of the equations for V .

Consider a degree n (> 0) rational function f in x (or any cover, §A.4) as a map
to P1

z. Then, points of P1
z with fewer than n points of P1

x above them are branch
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points, z1, . . . , zr, of f . To be explicit with polynomial covers, we’ll take zr to be
∞. If γ ∈ GQ fixes the coefficients of f , then γ permutes z1, . . . , zr: γ 7→ τγ ∈ Sr.

5.1.2. Branch cycles, the tie to groups. Recall σ∞ in §3.3.3, a generator of inertia
over ∞. Whatever the branch points, z1, . . . , zr, in §5.1.1, for a compact Riemann
surface cover f : X → P1

z, each produces a representative, σ1, . . . , σr, of conjugacy
classes C = C1, . . . ,Cr in the geometric monodromy Gf ≤ Sn. This is by the
same process, a finger walking (again, clockwise) around zi, along a closed path Pi.
Then, σi permutes the points over the base point by following that path.

Further, the disjoint cycles of σi correspond to the points of X lying over zi, and
the disjoint cycle length is the ramification index of that point over zi.

App. B.1 explains classical generators [CGen] of the fundamental group of

P1
z \ {z1, . . . , zr} = Uzzz : denoted P1, . . . , Pr.

It indicates we need two further visually verifiable constraints on P1, . . . , Pr to
assure they generate the fundamental group of π1(Uzzz) with only one relation (up
to uniform conjugation of the paths): P1 · · ·Pr is homotopic to the trivial path. An
explicit one-one correspondence – albeit, dependent on the choice of the classical
generators unless the covers have abelian monodromy – goes between branch cycles
(§5.3.2) and algebraic covers of the sphere branchcd over {z1, . . . , zr}.

A self-contained treatment, filling in everything from material in [Ah79] is in
[Fr09, Chap. 4], with a survey in http://math.uci.edu/deflist-cov/̃ mfried/Nielsen-
Classes.html. Before we do an exposition on the use of branch cycles we first
introduce the Branch Cycle Lemma. This is essentially a separate formula. Solving
Davenport’s Problem represents its first use.

The index, ind(σ), of a permutation σ ∈ Sn is just n minus the number of
disjoint cycles in the permutation. Example: an n-cycle in Sn has index n−1,
and an involution has index equal to the number of disjoint 2-cycles in it. The
Riemann-Hurwitz formula says the genus, gX of X satisfies

(5.1) 2(n+ gX − 1) =
r∑
i=1

ind(σi).

5.1.3. Branch Cycle Lemma. Continue the notation above. Assume f : X → P1
z is

a cover defined over K. Denote the order of elements in Ci by ei, the least common
multiple of the ei s by N = NC and the elements of Ci put to the power c by Cci .

As in [Fr77, exp. (5.7)], γ ∈ GK also acts through the arithmetic monodromy
aGf (§2.3) and so through the normalizer, NSn(G), of G in Sn. Write this action
with ωγ acting on the right of Puiseux expansions of function field elements α,
centered at the zi s. That is, α evaluated in a neighborhood of a point ppp over zi
expands as a power series in (z − zi)

1
k , with k the ramification index of ppp over zi.

Denote the subgroup of NSn(G) that permutes the conjugacy classes of C, with
multiplicity, by NSn(G,C). The B(ranch)C(ycle)L(emma) compares ωγ and τγ
(§5.1.1) with the cyclotomic character

γ : e2πi/N 7→ ecγ2πi/N .

(5.2) If j = (i)τγ , then ωγCjω−1
γ = C−cγi [Fr77, p. 62–64].
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Suppose putting C to all powers c ∈ (Z/NC)∗ (resp. all c fixed on K ∩Q(ζNC
))

leaves C invariant. Then, we say C is a rational union (resp. K-rational union).
Denote the extension of Ci to aGf by aCi.

Remark 5.2 (Remembering the BCL). Here is a quick mnemonic for the identifica-
tions in (5.2). Apply both sides to (z−zi)

1
k for the correct power of ζk on the right

side. [Vo96, p. 39] has written −cγ for our cγ . We would love to apply the formula
directly to the σi s. Yet, as [Fr77] explains, you can’t expect to consistently label
Puiseux expansions of function field elements at different points zi and zj . This
is compatible with the topological nature of classical generators (Prob. 5.6). So,
the formula only relates conjugacy classes, except, when you work over the real
numbers as in the explicit application to real covers in [DeFr90a, §2.4].

Result 5.3 (Example use of the BCL). Assume f has definition field K.
(5.3a) If each ω ∈ aGf/G is in NSn(G,C), then C is a K-rational union.
(5.3b) If zi ∈ K, then aCi is a K-rational class in aGf .

A field extension L/K(z) is regular if the only constants in L consist of K.
The condition aGf = Gf says the Galois closure of the function field extension
K(X)/K(z) is a regular extension of K(z): we have a regular realization of G.
Then, (5.3a) says only by using conjugacy classes where C is a rational (resp. K-
rational) union can we find a regular realization of G over Q (resp. over K).

Schur’s Conjecture (see Lem. 7.4 for a more elementary use of the BCL) and
Serre’s Open Image Theorem (see §7.1.2) are especially sensitive to using (5.3) to
distinguish between aGf ≤ NSn(G) – always true – and the conclusion of (5.3a).

More general, and with much more application than the regular realization of
groups are (G,G∗)-realizations (with G∗ ≤ NSn(G)) larger than G. That is, find
covers over Q where the geometric/arithmetic monodromy pair is (G,G∗) as in
§3.2.4 on the RET converse C2.

(An, Sn)-realizations from polynomials in Q[x] disproved three conjectures in the
literature [Fr95a]. It will come in handy for others, too. [Fr95a] left unsolved if there
are odd square degree polynomials in Q giving an (An, Sn)-realization. [Mü98b]
showed such polynomials do not exist, a practical addition to the BCL.

5.2. Fields supporting Davenport pairs. Suppose f ∈ K[x], n = deg(f). Then
total ramification over ∞ (a K point) implies any geometric component of the
Galois closure has definition field K̂f (§1.4) a subfield of K(e2πi/n) .

5.2.1. Apply the BCL to Davenport pairs. Apply γ ∈ GQ to the coefficients of f
and g, and denote solutions for x in γf(x) − z = 0 (resp. γg(y) − z = 0)) by γxi
(resp. γyi). For each c ∈ (Z/n)∗, choose γ ∈ GK whose restriction to Q(e2πi/n) is
c. This gives an action of (Z/n)∗ on equation (4.2), producing a relation

γx1 = γyc + γycα2 + · · ·+ γycαk .

Expanding these solutions at ∞ in z−
1
n allows tracing this action. Consider the

corresponding difference set (from Prop. 4.4): Df = {1, α2, . . . , αk}. Denote the
fixed field of the multiplier Mf (Def. 4.6) of Df in Q(e2πi/n) by QMf

.

Proposition 5.4. Suppose (f, g) is a Davenport pair – with f indecomposable –
over some number field K: the hypotheses of D2 (or, Thm. 4.1, but over K). Then:
K contains QMf

. More generally the following conclusions hold.
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(5.4a) Since -1 is not a multiplier (Prop. 5.1), the reals do not contain QMf
.

So, for any Davenport pair, K is not Q, thereby solving (2.3c) of §2.2.1
with the hypothesis that f is indecomposable.

(5.4b) For each degree in Thm. 4.5, there are Davenport pairs over K if and only
if K contains QMf

. For just the degrees n = 7, 13, 15, there are infinitely
many distinct Davenport pairs, mod Möbius equivalence (§1.2).

(5.4c) For the degrees in (5.4b), there are Davenport pairs (f, g) with branch
points defined over fields disjoint from Q(e2πi/n). For those, consider
γ ∈ GQ mapping e2πi/n to e−2πi/n, but acting trivially on branch points.
Then, f(x) = γg(x) (action on the coefficients by γ).

5.2.2. Start of Prop. 5.4. Multiplier Lem. 4.8 shows (5.4a) is about conjugacy
classes, not merely cycle types. The multiplier Mf measures – special case of (5.4a)
– how far the class of σ∞ is from rational (Result 5.3). With (f, g) a Davenport
pair, (5.4a) follows from concluding in Prop. 4.4 that -1 times the difference set Df
gives the difference set Dg. Since g and f give inequivalent covers, this says the
difference set for multiplication by -1 cannot be a translate of the original difference
set. I didn’t, however, make that observation in [Fr73a].

By contrast with nonexistence in (5.4a), (5.4b) is an existence result. It uses
that the BCL precisely gives definition fields of total families of cover. Explaining
this, and those total families takes up the remainder of §5 and all of §6.

I went after this general context because, while Schur’s Conjecture was easy
compared to Davenport’s problem, there were other problems, much tougher, that
acceded to this method. Although I think ”attempting to write equations out” is
not a road to success, many do want equations. So §6.4 revisits this topic.

Lewis knew Al Whiteman, who was at IAS my first year there. I had seen him
talk on difference sets, his speciality. He responded to my questions by suggesting
I talk to his student Storer, who had just been hired by Michigan.

I stayed at UM part of the summer of ’68 to write up [Fr73a]. The combinatorial
trick [Fr73a, (1.19)] is Storer’s. He often told his opinions of me. Especially: There
must be something wrong with me for knowing so much mathematics. His thought:
It must be because I spent all of my time slaving in the library. (For the record: I
learned mostly by being attentive at talks; secondly from seriously refereeing hard
papers. That’s relevant to my comments on group theory in §7.4.)

5.3. Branch cycles produce Davenport pairs. We use use Davenport’s prob-
lem to teach Riemann’s approach to algebraic functions beyond abelian functions.

5.3.1. Questions aimed at Statement (5.4b) of Prop. 5.4. Use notation from §5.1.

(5.5a) What data allows finding Davenport pairs (f, g) (over some number field;
f indecomposable ) of each degree 7, 11, 13, 15, 21 and 31?

(5.5b) Given an affirmative to (5.5a), how might you describe all such Daven-
port pairs and their definition fields for each such degree?

(5.5c) What has this to do with simple groups, and how might you persuade
others the value of this approach to finding Davenport pairs?

(5.5d) Assuming success in the above, what general conclusions might you dare
about monodromy groups of polynomials or rational functions?

We start with n = 7, to how it works, then refer to the case n = 13 to compare
others who have considered the production of equations.
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The group PGL3(Z/2) (§4.3) acts on the 7 points and 7 lines of 2-dimensional
projective space over Z/2. An involution (order 2 element) fixes all 3 points on
a line; every other nonidentity element fixes no fewer points. That means the
minimal possible index of the σi is 2, and σr has index six. Since the top space for
a polynomial cover f is P1

w, that means gP1
w

= 0.
§5.4 shows why there are Davenport pairs with their geometric monodromy group

equal to PGL3(Z/2), answering question (5.5a) of §5.3, for degree 7. The method
works for all degrees in that question.

First consider the possibility that r = 4. What could be the minimal possible
indices for branch cycles of a polynomial f with monodromy group PGL3(Z/2),
where σ4 is a 7-cycle? Then, the minimal possible sum of the four indices of
corresponding σi in (5.1) is 3 · 2 + 6 = 12. In our case the right side is 12, and the
genus is 0. So, no other choices with r = 4 would produce genus 0.

Further, if such a polynomial exists representing f in a Davenport pair, we now
know that these σi s, i = 1, 2, 3, all lie in this hyperplane fixing conjugacy class.
One difference set here is {1, 2, 4}. §5.3.2 shows why there is a Davenport pair (f, g)
with Tf for f acting on {1, 2, . . . , 7}, with these properties: An inertia generator
over z =∞, acts as σ∞ = (1 2 . . . 7), while it acts as translates of {1, 2, 4} for Tg.

5.3.2. Cover producing branch cycles. What we need is a converse – cover producing
conditions – from such σi s. There is one: R(iemann)’s E(xistence) T(heorem).
Given such σi, i = 1, . . . , r, in a group G, we are asking when there is a cover
f : X → P1

z branched at any given points, z1, . . . , zr, with its geometric monodromy
group G, and having the attached conjugacy classes C = {C1, . . . , Cr} of σ1, . . . , σr.

The answer: Such covers correspond to σ′i, conjugate (in G) to σi, i = 1, . . . , r,
for which these expression (B.1) interpreting conditions hold:

(5.6a) Generation: 〈σ′i|i = 1, . . . , r〉 = G ≤ Sn; and
(5.6b) Product-one: σ′1 · · ·σ′r = 1.

From (5.6b), any r−1 of the σ′i s in (5.6a) generate G. Those who use the
monodromy method call such σ′i s satisfying (5.6a) and (5.6b) branch cycles. We
call the collection of all such, in the respective conjugacy classes C, the Nielsen
class Ni(G,C) of the cover. Further, covers corresponding to two such choices of
r-tuples satisfying (5.6) will be isomorphic as covers (of P1

z) if and only if some
element in Sn conjugates the one r-tuple to the other.

As in §5.1.3 consider, NSn(G,C), the subgroup of Sn that normalizes G, and
permutes the classes in C (preserving their multiplicity). Two covers of P1

z are
absolute equivalent (isomorphic by a map commuting with the maps to P1

z) when
their corresponding r-tuples are conjugate by NSn(G,C). We use two other equiv-
alences than absolute later. §5.4.2 explains why branch cycles give algebraic covers.
(In the Davenport cases – genus 0 with σr an n-cycle – each a polynomial map.)

The genus gX in (5.1) depends only on the images of σ1, . . . , σr in Sn, corre-
sponding to the representation Tf . For that, distinguishing conjugacy classes from
cycle-type is irrelevant. Still, Multiplier Lem. 4.8 exposes that distinguishing con-
jugacy classes of n-cycles is significant in projective linear groups. Using Storer’s
Statement 5.1 ( as in Prop. 5.4), there is more than one such class.

For n = 7 there are two, represented by σ∞ and σ−1
∞ . For n = 13, {1, 2, 4, 10}

(translation equivalent to {0, 1, 3, 9}) is a difference set [Fr05a, p. 60], with 3 gener-
ating the multipliers. So, σa∞, with a running over powers of 3 mod 13 are conjugate



VARIABLES SEPARATED 27

to σ∞. So there are 4 (translation) inequivalent difference sets mod 13. In §5.4
this tells us why the covers we produce – Davenport pairs – fall in four families,
conjugate over the degree 4 extension of Q in Q(ζ13).

5.4. Covers from a Nielsen class. §5.4.1 continues with n = 7 and the classes
from §5.1.2. Then, §5.4.2 shows how the Nielsen class computation produces the
data for covers. §6 turns this into properties of Davenport pair families.

5.4.1. Branch cycles for n = 7. The group G in (5.6a) of §5.1.2 must be PGL3(Z/2)
(and not smaller) to assure we get the pair of doubly transitive representations.

We can write by hand all involutions that could appear as σ1, σ2 or σ3. In
(4.2), start with the hyperplane containing the fixed points corresponding to 1, 2
and 4. Then, involutions fixing the points on this hyperplane are one of (3 5)(6 7),
(3 6)(5 7) or (3 7)(5 6). Conjugate by (powers of) σ∞ to get all others.

Now find all involution 3-tuples (σ1, σ2, σ3) with product this specific 7-cycle

σ−1
∞ = (7 6 5 4 3 2 1) (done in detail in [Fr95a, p. 349]).

Therefore, the covers with fixed branch points (z1, z2, z3,∞), and fixed conjugacy
classes attached to these in a given order) correspond to this absolute Nielsen class:

Ni(PGL3(Z/2),C)ab = Ni(PGL3(Z/2),C)/PGL3(Z/2).

By listing the 4th entry as σ−1
∞ , we fix an absolute Nielsen class element up to

conjugation by σ∞. There are precisely 7. Suppose given (σ1, σ2, σ3, σ∞) = σσσ, and
a set of classical generators relative to 3 distinct finite branch points z1, z2, z3 (as
in §B.1). Then, this produces f(x) ∈ C[x] uniquely up to affine change of x.

Apply the permutation representation T hyp of PGL3(Z/2) from acting on the
lines of P2(Z/2) to σσσ in the Nielsen class. To compute this, write the hyperplanes
as unordered collections of integers given by the translations of the difference set
{1, 2, 4}. If the result is σσσ′ = (σ′1, σ

′
2, σ
′
3, σ
′
∞), then this is the branch cycle descrip-

tion for g: the other half of the Davenport pair for f .
The monodromy method can often be precise about the collection of covers in

a given Nielsen class without writing them explicitly. Here is an example of that.
Denote the field QMf

in Prop. 5.4 by Qn. Example: Q((−7)
1
2 ) = Q7.

Proposition 5.5 (DS6). There are infinitely many (Möbius inequivalent – §1.2)
degree 7 Davenport pairs over any extension K of Q7. They correspond to the K
values of a uniformizer, t7, of a genus zero j-line cover Habs,rd

7 defined over Q. A
similar result, with Qn and a parameter tn, holds for n = 13 and 15.

§6.4 shows braid computations for n = 7 that dispell any mystery about Qn that
also give these properties of Habs,rd

n . (They also hold for n = 13, 15.)
(5.7a) As a carrier of Davenport pairs, Habs,rd

n has just one component defined
over Qn; and

(5.7b) as a j-line cover, Habs,rd
n has definition field Q rather than Qn.

Möbius equivalence is also called reduced equivalence of covers. This equates
two covers ϕi : Xi → P1

z if for some α ∈ PGL2(C), α ◦ ϕ1 is absolute equivalent to
ϕ2. Nielsen classes are a surrogate for data that canonically produces a family of
covers. By considering reduced (absolute) equivalence, we aim for a normal form –
here of polynomials – from which we can generate any family of covers.

What (5.7b) says is that – like any reduced Hurwitz space with r = 4 – the
parameter space is a curve, and a natural j-line cover. §6.2 shows how to list
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irreducible reduced Hurwitz space components for any r. When r = 4, so these are
curves, it shows how to calculate the genuses of their (compactified) components.

You might ask, ”Where are these Davenport pairs?” §6.4 discusses their specifics,
coming from alternate treatments – based on this one – that produced the pairs.

5.4.2. Branch cycles versus algebraic covers. §5.4.1 produced a polynomial f (cover)
from a set of branch cycles and classical generators. Fixing the classical generators
(and branch points) gives a one-one correspondence between r-branched covers of
P1
z and branch cycles. Here is the major unsolved problem in using RET.

Problem 5.6 (Classical generation). Both sides of this correspondence are alge-
braic, but classical generators are not. Prove such a correspondence without using
such a topological gadget.

http://math.uci.edu/deflist-cov/Alg-Equations.html has examples of Prob. 5.6.
[Mu76, p. 27] lists an imprecise equivalent to classical generators to relate Teich-
muller and Torelli space. Applications in [Vo96] seem to be only about the Inverse
Galois Problem, but really its motivation was from applications we discuss here.

It is not immediate that having a cover f : X → P1
z means that X is algebraic

(projective: §2.1). Still, that follows given a single further function that separates
– has different values on – the fiber over some point of Uzzz. The R(iemann)-R(och)
Theorem guarantees such a function. Though non-trivial, no one argues over RR.

When X has genus 0, shouldn’t it be easy to produce such a function (lets call
it w)? Here is an historical track to finding w. You take the differential df of f .
From general principles it has degree 2gX − 2 = −2. Similarly, for the function
w : X → P1

w (once we have it): It’s differential dw has degree -2. An especially
good w would be one that separates all points (is an isomorphism of X to P1

w).
The support of its polar divisor is concentrated over w = ∞. Since X is simply
connected, any meromorphic differential with this property, being locally integrable,
is globally integrable to a function.

Problem 5.7. When gX = 0, what types of data allow automatic creation of such
a function w giving the isomorphism w : X → P1

w?

6. Hurwitz monodromy and braids

§5.4.2 points to the essential object – classical generators on the r-punctured
sphere Uzzz′ . These assign a cover of P1

z to each element in an absolute Nielsen class.

6.1. Grabbing a cover by its branch points. Denote the space of r distinct, but
unordered, points on P1

z by Ur. Start with one cover f : X → P1
z branched over zzz′.

Then, deform the punctures zzz′, keeping them distinct, to another set of r points zzz′′.
That is, give a path (continuous and piecewise differentiable) L: t ∈ [0, 1] 7→ zzz′(t),
in Ur, with zzz′(0) = zzz′ and zzz′(1) = zzz′′.

Now consider the case zzz′ = zzz′′: equality of sets of branch points. Then, L may
permute the order of the points in zzz′. Along L we also can deform the initial
classical generators P ′. At the end we have a new set of classical generators P ′′.

A base point distinct from the branch points is necessary to talk about classical
generators. Therefore, freely following L may force us to deform the base point z′0,
too: t ∈ [0, 1] 7→ z0(t)′, with z′0 = z0(0)′ and z′′0 = z0(1)′.

You can always wiggle P ′′ fixing its isotopy class and assuring neither z′′0 or z′0
are on any of its paths. Then, you can further deform z′′0 to z′0, leaving all points on
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P ′′ fixed, just to get the original base point. Mapping the elements of P ′ in order
to those of P ′′ induces an automorphism of π1(Uzzz′ , z′0). Since there is no canonical
way to deform z′′0 back to z′0, mod out by the conjugation action of π1(Uzzz′ , z′0) on
itself to make this automorphism unambiguous.

Following the branch point path produces an automatic analytic continuation of
the cover f : http://math.uci.edu/˜mfried/deflist-cov/Hurwitz-Spaces.html, §V.

Running over all such paths L induces the Hurwitz monodromy group, Hr. It
acts as automorphisms on π1(Uzzz′ , z′0) modulo this inner action. Two elements
of Hr generate it. We call these q1 and sh. For our purposes we have only to
know their action ([Fr77, §4] or [Vo96, Def. 9.3]) on a Nielsen class representative:
ggg = (g1, g2, g3, . . . , gr) ∈ Ni(G,C)abs.

(6.1a) q1 : ggg 7→ (g1g2g
−1
1 , g1, g3, . . . , gr) the 1st (coordinate) twist, and

(6.1b) sh : ggg 7→ (g2, g3, . . . , gr, g1), the left shift.
They both preserve generation, product-one and the conjugacy class collection con-
ditions of (5.6), Conjugating q1 by sh, gives q2, the twist moved to the right.
Repeating gives q3, . . . , qr−1. Three relations generate all relations for Hr:

(6.2a) Sphere: q1q2 · · · qr−1qr−1 · · · q1;
(6.2b) Commuting: qiqj = qjqi, for |i− j| ≥ 2 (read subscripts mod r−1); and
(6.2c) (Braid) Twisting: qiqi+1qi = qi+1qiqi+1.

The group Hr inherits (6.2b) and (6.2c) from the Artin braid group.

6.2. Spaces of covers. A permutation representation of any fundamental group
produces a(n unramified) cover. In particular, the π1(Ur, zzz′) permutation action on
Ni(G,C)abs (§5.3.2) produces a cover: H = H(G,C)abs → Ur.

6.2.1. The points of the space. Each (complex) point ppp ∈ H represents an equiva-
lence class of sphere covers. The equivalence – the simplest possible (called absolute)
– of ϕ : X → P1

z and ϕ′ : X ′ → P1
z is where there is a continuous map from X to

X ′ commuting with the projections to P1
z.

Definition 6.1. A permutation representation G ≤ Sn satisfies the centralizer
condition if no nontrivial element of Sn commutes with G. It satisfies the normalizer
condition if the normalizer of G(1) in G is just G(1).

From [Fr77, Lem. 2.1] the Def. 6.1 conditions are equivalent. If a cover ϕ : X → Y
corresponds to the permutation representation, this is equivalent to there being no
(nontrivial) automorphisms that commute with ϕ. For example, the following gives
a practical application of knowing the geometric monodromy group.

Lemma 6.2. Suppose G ≤ Sn is primitive (as in (3.8a)), it contains an n-cycle σ∞,
and G(1) is nontrivial. Then, a cover ϕ with monodromy G has no automorphisms.

Proof. From the above, if ϕ has an automorphism, then some τ ∈ Sn centralizes
G. Compute easily: τ ∈ Sn centralizing σ∞ is a power of σ∞ (as in [Fr70, p. 47]).
So, τ ∈ G, but τ 6∈ G(1). As G is primitive, 〈G(1), τ〉 = G: τ is transitive on
{1, . . . , n}. So, it is an n-cycle itself that centralizes G(1) and G(1) is trivial. �

6.2.2. Using fine moduli. For each projective variety, including H, each point has a
field generated by its coordinates. When, as in Prop. 6.3, points represent solutions
to a problem, that may allow precisely finding over what fields such solutions occur.
This holds, as in Thm. 6.9, applied to existence of Davenport pairs.
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Proposition 6.3. Assume K ⊂ C. Then, a K point of H corresponds to an
equivalence class of covers with the whole set defined over K. Assume any of the
equivalent conditions of Def. 6.1. Then, there is a unique total family

Φ : T → H× P1
z

of covers over H [Fr77, p. 62]. Also, a K point ppp ∈ H gives a well-defined K cover
in the class of ppp: Φppp : Tppp → ppp× P1

z; interpret this as a K cover of P1
z.

This abstract result says that we can recover any given family of absolute covers
in a given Nielsen class, assuming the conditions of Def. 6.1. That is, these guarantee
fine moduli for covers in the corresponding Nielsen class. The word “unique” means
that for any other such representing family Φ′ : T ′ → H × P1

z, over H, there is a
unique analytic map from T to T ′ that commutes with Φ and Φ′. Such a family
being algebraic – giving meaning to the definition field statements – implies there
is an m (not unique), so that T embeds in H × Pm with Φ compatible with the
natural projection H× Pm → H. (Furthermore, H is quasi-projective.)

6.2.3. Finding definition fields. We indicate an essential step: How we find the
definition field of the family Φ in Prop. 6.3 from information on the Nielsen class.

Recall the integer NC from §5.1. Prop. 5.4 introduces a multiplier group, and
[Fr77, §5] generalizes it – based on the BCL – to define a cyclotomic field (gener-
alizing QMf

in §5.2.1) related to any absolute Nielsen class. Recall the elements,
NSn(G,C), of Sn that normalize G and permute the classes of C ( §5.1.3).

Simultaneously conjugating all entries of ggg ∈ Ni(G,C) by NSn(G,C) (§5.1.3)
gives hgggh−1 ∈ Ni(G,C). [Fr77, p. 60] generalizes the multiplier group:

(6.3)
MC = {c ∈ (Z/NC)∗ | ∃β ∈ Sr, h ∈ NSn(G,C),

h−1Ccih = C(i)β , i = 1, . . . , r}.

Definition 6.4. Denote the fixed field of MC in Q(e2πi/NC) by QMC
.

Proposition 6.5. If the Def. 6.1 conditions hold, the total family of Prop. 6.3 over
H, with its map to Ur, has precise definition field QMC

. Also, the definition field
of each connected component of the family contains QMC

.
Even if the conditions of Def. 6.1 don’t hold, the definition field statement holds

by regarding H as the moduli of covers in the Nielsen class. Orbits of Hr on
Ni(G,C)abs correspond one-one with connected components of H.

The 1st paragraph of Prop. 6.5 suffices for Davenport pairs. The proposition is a
corollary of [Fr77, Prop. 5.1]. App. B.2 reviews this – including explaining the 2nd
paragraph – and ties it to [FrV91, Main Thm.]. The Hurwitz space interpretation
shows Prop. 6.5 is the essential ingredient to the latter.

Let H′ be a (complex analytically) connected component of H. If there is only
one component, then it has definition field QMC

. Now assume there is more than
one. Regarding H′ as a space of covers, some number field K is a minimal definition
field for that structure. Since H, As an unramified cover of a manifold, H is a
manifold. So, an argument so simple, I give it here, says that no ppp ∈ H′ can have
coordinates in a field smaller than K [Fr77, §5].

For simplicity assume ppp has coordinates in Q, and [K : Q] > 1. Choose γ ∈ GQ
nontrivial on K: γH′ is a component of the moduli space for a new space of covers of
P1
z; either another Nielsen class or a different component of H. You may compatibly

apply γ to any subspaceH∗ ofH′, extending it to the corresponding spaces of covers
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over H∗. Now apply it to the point ppp. Since ppp has coordinates in Q, γ extended to
a representing cover will be in the same Nielsen class, contrary to our assumption
about γ. So, γH′ is a further, distinct, component of H, which also contains ppp.
That gives two components of H through ppp, contrary to H being a manifold.

Remark 6.6. The argument above that ppp can have coordinates in no field smaller
than K requires only that H is a normal variety.

6.2.4. Spaces of polynomials. Consider a family of covers, with the notation below
Prop. 6.3. Since the fibers of the map Φ are curves, it may happen that we could
choose m = 2. This would be representing the fibers Φppp : Tppp → ppp× P1

z as the zero
set in projective 2-space with coordinates (x0, x1, x2) of a homogenous polynomial,
f(x0, x1, x2), and the z variable identified to x1/x0. For families of genus 0 curves,
we might even hope for m = 1.

Problems about polynomial covers (and others) often call for restricting to closed
paths in Ur that keep a branch point, say zr =∞, fixed. Appropriate to Davenport
pairs is the following situation.

Suppose ϕ : X → P1
z is a cover over K. Assume there is a unique totally ramified

place x∞; we assume it is over zr. Then, zr has definition field K. By applying a
linear fractional transformation we may assume zr =∞. Further, in the expansion
of the most negative term of ϕ around x∞, by changing ϕ to aϕ we may assume
that term has coefficient 1.

If, in addition, we assume X has genus 0, then some isomorphism of X with P1
w

over K sends x∞ to w =∞. That K rational point x∞ is essential for this. With
deg(ϕ) = n, rename ϕ as a monic polynomial in w: P : P1

w → P1
z over K. Still, the

isomorphism isn’t yet unique.
There is still a polynomial collection, all affine equivalent to ϕ and subject to

choices we’ve already made:

(6.4) {P (e2πij/nw + b′) + b} = P̃ϕ, j an integer, b′, b any constants.

Given P over K, setting the penultimate coefficient to 0 determines b′ (still in K).
Now we get to subtle normalizations when applied to Davenport pairs. Suppose

K ≤ R. Then, if we name the zeros of P (w) = z as w1, . . . , wn, given as expansions
in 1/z

1
n , we can also normalize the connection between w1 and w, by associating

that expansion with a tangential base point (as, say, in [Del89, opening of §15]).
That is, restrict values of z to a sector

{reiθ | r < ε,−π < θ < +π}
(6.5) and choose j so that by renaming ζjnw to be w, it has its values lying in

a sector around the positive real axis near ∞.
Yet, none of the Davenport pairs has definition field K ≤ R.
Here is another normalization that doesn’t work for Davenport pairs.
(6.6) We can choose b so the constant term of P is 0.

But this would violate the condition of conjugacy between Davenport pairs f
and g in (5.4c). So, the topic of polynomial normalization continues in §7.2.

Consider a family Φ : T → F × P1
z of r-branch point covers. Assume each fiber

Ψppp : Tppp → ppp× P1
z has genus 0, with exactly one totally ramified place over z =∞.

Definition 6.7. Call Φ a family of polynomial covers if for some polynomial P (ppp, w)
in w with coefficients in the coordinates ppp ∈ F , each fiber of

P : F × P1
w → F × P1

z by (ppp, w) 7→ P (ppp, w)
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represents the corresponding fiber of Φ.

6.2.5. Branch cycles for j-line covers. Consider Ur, the set of ordered (unlike Ur
in §6.1) distinct points on P1

z. Two groups act on Ur: PGL2(C) acting the same
on each slot; and Sr permuting the coordinates. For general r the configuration
space Jr for reduced absolute equivalence is the quotient of Ur by these commuting
actions. That is,

PGL2(C)\Ur/Sr = PGL2(C)/Ur
def= Jr.

The parameter space for this equivalence,

H(G,C)abs,rd = H(G,C)abs/PGL2(C),

is the normal variety given by extending the action of PGL2(C) on Ur toH(G,C)abs

(as in §5.4.1). The result has a natural map to Jr.
The classical j-line minus the point at ∞ is J4 (r = 4). The cases of Dav-

enport families where r = 4 are included. They have reduced parameter spaces
H(G,C)abs,rd whose components are each upper half-plane quotients by a finite
index subgroup of PSL2(Z). Each has a natural normal (since r = 4, nonsingular)
compactification, H̄(G,C)rd, as a cover of the j-line (references below).

Designate the whole j-line by P1
j , with the variable j normalized to have j = 0

and j = 1 as the two possible finite branch points of upper half-plane quotients.
We can compute explicitly the components, their ramification (so their genuses),
and geometric monodromy as P1

j covers. For that we use (6.7) for its branch cycles.
Define Q′′4 to be the (normal) subgroup of H4 generated by sh2 and q1q

−1
3 .

Definition 6.8. The reduced (absolute) Nielsen class of (G,C) is

Ni(G,C)abs/Q′′4 = Ni(G,C)abs,rd.

For completeness, there is a definition when r ≥ 5, but then Q′′r is trivial, and
reduced classes are the same as Nielsen classes.

The action of H4 on reduced Nielsen classes factors through the mapping class

group: M̄4
def= H4/Q′′ ≡ PSL2(Z) [BFr02, Prop. 4.4]. [BFr02, §2.7] makes this

identification by expressing certain generators from the images of words in the qi s:

(6.7)
〈γ0, γ1, γ∞〉, γ0 = q1q2, γ1 = sh = q1q2q3 = q1q2q1 mod Q′′, γ∞ = q2,
satisfying the product-one relation: γ0γ1γ∞ = 1.

Note: (6.2) appears dramatically in these identifications. For example, see that γ0

(resp. γ1) has order 3 (resp. 2) by successively applying (6.2b) and (6.2c) mod Q′′:

(6.8)
q1q2q1q2q1q2 = q1q2q1q1q2q1 = q1q2q3q3q2q1 = 1;

(resp. q1q2q3q1q2q3 = q1q2q1q1q2q1 = · · · = 1).

6.3. Applying Riemann-Hurwitz. Let O be an orbit of M̄4 on Ni(G,C)abs,rd.
Then, O corresponds to a reduced Hurwitz space component HO. There is a unique
non-singular completion, H̄O, that is a j-line cover. Now we interpret R-H (5.1):
(γ0, γ1, γ∞) acting on O ⇔ branch cycles for this cover [BFr02, Prop. 4.4].

(6.9a) Ramified points over 0 ⇔ orbits of γ0.
(6.9b) Ramified points over 1 ⇔ orbits of γ1.
(6.9c) Use one representative ggg ∈ Ni(G,C)in,rd for each Cu4 = 〈q2,Q′′〉 orbit.

Then, ind(γ∞) is the sum |(ggg)Cu4/Q′′| − 1 over those orbits.
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The points of H̄O lying over j = ∞ are the cusps of HO and these correspond
to the Cu4 orbits on O [BFr02, Prop. 2.3]. The meaning of an absolute reduced
family of covers in a given Nielsen class Ni = Ni(G,C)abs,rd, with parameter space
F is analogous to the inner reduced family case of [BFr02, §4.3]. It is a sequence
of morphisms of normal spaces Φ : T → B Γ−→F , with these properties:

(6.10a) for each ppp ∈ F , Bppp is isomorphic to P1
z (over C); and

(6.10b) the fiber Φppp : Tppp → Bppp is a cover in the Nielsen class.

Then, (6.10b) gives a natural morphism Ψ : F → Jr by ppp 7→ Ψ(ppp), the PGL2(C)
class of the Φppp branch locus. We call (Φ,Γ) a family in the reduced Nielsen class.

The goal is to compare this with the natural map ΨG,C : H(G,C)abs,rd → Jr in
the following style. Suppose there is a family satisfying (6.10),

ΦG,C : TG,C → BG,C
ΓG,C−→H(G,C)abs,rdwith H(G,C)abs,rd replacing F .

(Say, if reduced fine moduli holds, as below.) Then, we can compare the pull back
– fiber product – of this family over Ψ with the family over F .

Assume H is a component of H(G,C)abs corresponding to an H4 orbit O on
Ni(G,C), and Hrd is its corresponding reduced space. Here is the two-parted fine-
moduli result – analog of Prop. 6.3 for reduced Hurwitz spaces – for r = 4 [BFr02,
Prop. 4.7]. For the map Ψ, denote the locus over J4 \ {0, 1} by F ′, with (Hrd)′ the
the pullback of Hrd over F ′.

(6.11a) b(irational)-fine: (Hrd)′ parametrizes a unique family (up to equivalence)
if and only if restricting Q′′ (§6.2.5) to O has length 4 orbits.

(6.11b) e(lliptic)-fine: Same conclusion with Hrd replacing (Hrd)′, if, in addition
to (6.11a) , γ′0 and γ′1 have no fixed points.

§6.4 computes the data in (6.9) for the families of Davenport polynomials when
degree n = 7 based on (6.12). For each Nielsen class, there is just one component.
There are two Nielsen classes corresponding to the two conjugacy classes of 7-
cycles in PGL3(Z/2). We find that H̄(G,C)rd has genus 0. Using the fine moduli
statements of (6.11), we then know over which fields there are Davenport pairs of
degree 7 (as in (5.5a)). Note: (6.11a) holds, but (6.11b) does not.

6.4. Three genus 0 families of Davenport Pairs. Applied to polynomial covers
with monodromy given in the PGL groups over finite fields, §5.1.2 shows that only
for n = 7, 13 and 15, could we have r = 4 for Davenport pairs. (In all other cases
r = 3.) To illustrate what happened in these three cases we do just n = 7.

6.4.1. Davenport pairs of degree 7. Let D denote the difference set {1, 2, 4} mod 7
for n = 7 of §5.4. There are two conjugacy classes of 7-cycles, 1C∞ and 2C∞ in
PGL3(Z/2). That gives two sets of conjugacy classes iC, i = 1, 2, determined by 3
involutions and a 7-cycle. Each defines a Nielsen class. The computation for each
is the same since an outer automorphism takes 1C to 2C.

For reduced classes mod out by Q′′. Here is how the b-fine moduli property
(6.11a) follows. Given σσσ ∈ Ni(PGL3(Z/2),C), a unique element of Q′′ changes it
to have the 7-cycle in the 4th position. Take it as σ−1

∞ = (1 2 . . . 7)−1, compatible
with §5.3.1. Our permutations act on the right of integers. We use T1 (resp. T2)
for the representation of PGL3(Z/2) on points (resp. lines).
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Expression [Fr95a, (4.14)] lists the reduced absolute Nielsen classes and (6.12)
lists their first three entries, the three finite branch cycles (σ1, σ2, σ3) for a polyno-
mial h. There are exactly 7, denoted Y1, . . . , Y7, up to conjugation by S7:

(6.12)

Y1 : ((3 5)(6 7), ((4 5)(6 2), (3 6)(1 2));Y2 : ((3 5)(6 7), (3 6)(1 2), (3 1)(4 5));
Y3 : ((3 5)(6 7), (1 6)(2 3), (4 5)(6 2)); Y4 : ((3 5)(6 7), (1 3)(4 5), (2 3)(1 6));
Y5 : ((3 7)(5 6), (1 3)(4 5), (2 3)(4 7)); Y6 : ((3 7)(5 6), (2 3)(4 7), (1 2)(7 5));
Y7 : ((3 7)(5 6), ((1 2)(7 5), (1 3)(4 5)).

To simplify the notation relabel Yi as i′ and have the qi s act on 1′, . . . , 7′. (This
isn’t the action through the representations T1 and T2.) Denote the action of the
γ s in (6.7) on 1′, . . . , 7′ by γ′ s. We get (see [Fr05a, §5]) for n = 13):

q1 = (3′ 5′ 1′)(4′ 7′ 6′ 2′), and q2 = (1′ 3′ 4′ 2′)(5′ 7′ 6′).

Our action of the qi s is on the right. Therefore,

γ′0 = (1′ 4′ 6′)(3′ 7′ 5′), γ′1 = (1′ 7′)(2′ 4′)(3′ 6′) and γ∞ = (1′ 2′ 4′ 3′)(5′ 6′ 7′)−1.

Now we give the main results about H(PGL3(Z/2), jC)abs,rd def= H
jC, j = 1, 2. As

previously, these are upper half plane quotients, with their compactifications, H̄jC,
j-line covers. So, it is appropriate to ask if they are modular curves.

Theorem 6.9. The curves H̄
jC, j = 1, 2, have genus 0. The geometric (or arith-

metic) monodromy group of each over P1
j is S7. As reduced Hurwitz spaces they

have b-fine, but not fine moduli. These are not modular curves.
As moduli of Davenport pairs, H1C is conjugate over Q(

√
−7) to H2C. Each

field containing Q(
√
−7) has infinitely many reduced inequivalent Davenport pairs.

Also, these reduced Hurwitz spaces support an explicit family of polynomial covers.
Finally, H(PGL3(Z/2), jC)abs,rd also identifies as an inner Hurwitz space. So,

the two spaces for j = 1 and 2 are the same, and isomorphic to P1
t (t = t7 in the

statement of Prop. 5.5) over Q.

Proof. Compute the genus g1C of H̄1C by applying R-H to its branch cycles,
γ0, γ1, γ∞ as a j-line cover:

2(7 + g1C − 1) = ind(γ′0) + ind(γ′1) + ind(γ′∞) = 4 + 3 + (2 + 3) = 12.

So, g1C = 0. That the monodromy group is S7 is also quick: It is a degree 7 group
containing a 3-cycle, γ4

∞, and a 4-cycle, γ3
∞.

We have already noted above that (6.11a) – b-fine moduli – holds. The condition
for fine moduli is that neither γ′0 nor γ′1 have fixed points. In our case, however,
both do, so fine moduli doesn’t hold. If H(PGL3(Z/2), jC)abs,rd were a modular
curve, its monodromy group would be a quotient of PSL2(Z/N) for some integer
N . Indeed, N = 12 would work, according to Wohlfahrt’s Theorem [Wo64]. Just
the order of PSL2(Z/12) shows it is not divisible by 7, so this is impossible.

The normalizing group of PGL3(Z/2) in its action on the points of projective
space is just PGL3(Z/2). Apply (B.3). Then,

H(PGL3(Z/2),Cj)in → H(PGL3(Z/2)Cj)abs

has degree the order of that normalizer modulo PGL3(Z/2). So, the degree is 1,
identifying H(PGL3(Z/2),Cj)in and H(PGL3(Z/2)Cj)abs. The former, however,
is the space of Galois closures of the covers in the latter, according to (B.3a).

As noted in §6.2.4, we handle the normalizations to produce a family of poly-
nomials in §7.2. Apply Thm. 4.1 to identify the Galois closures of the covers
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parametrized by H(PGL3(Z/2)Cj)abs for j = 1, 2. That is, H(PGL3(Z/2),Cj)in,
j = 1, 2, are exactly the same Hurwitz spaces, which now identify with the absolute
versions of those spaces.

Prop. 6.5 gives the precise definition field of the families of Davenport polyno-
mials as Q(

√
−7), but it gives the definition field of the inner Hurwitz space as Q.

Therefore, as a cover of P1
j , the inner space has definition field Q.

Further, we can identify rational points on this genus 0 space. For example, γ′∞
has a 3-cycle and a 4-cycle. This indicates points of ramification index 3 and 4
over j =∞ by applying the general idea of §5.1.2 to these j-line covers as given in
§6.2.5). Any element α ∈ GQ keeps ∞ fixed. So, it must permute the points of the
fiber over ∞ moving them to points having the same ramification indices over ∞.
The uniqueness of such ramification indices means both points have definition field
Q. A genus 0 curve over a (characteristic 0) field K with a K point is well-known
to have definition field K. This concludes our proof. �

6.4.2. Identification of a space of bundles. The inner Hurwitz space of Thm. 6.9
(through Thm. 4.1) turns Davenport pairs into bundles for a degree n representation
of their geometric monodromy groups. This interpretation supports Conj. 6.10.

Any degree n (complex analytic) cover ϕ : X → Z (of nonsingular varieties)
defines a rank n bundle, as its corresponding direct image sheaf. Briefly: Over a
(simply-connected) coordinate patch U on Z, form the local structure sheafOU , and
similarly form the structure sheaf Oϕ−1(U) over U . Then, from flatness (§A.4.1),
Oϕ−1(U) is a free, rank n, module over OU . That means, the structure sheaf Oϕ is
a locally free, rank n bundle over OZ .

Apply this to a Davenport pair (f, g), so there are two such rank n bundles Of
and Og over OP1

z
. Actually, these spaces identify as the quotient of the regular

representation of the Galois group of the covers that gives the permutation repre-
sentation of the degree n covers. These representation spaces identify in the case
of Davenport pairs from the transition matrix of Thm. 4.1.

6.4.3. n = 7, 13 and 15. With slight variation from their having more than two
conjugacy class collections C, Thm. 6.9 applies also to n = 13 and 15. [Fr99, Thm.
8.1 and 8.2] shows n = 13 works similarly, and as easily. Here the Hurwitz space is
a degree 13 – again the same as n – cover of J4. The significant difference is that
the multiplier of the difference set D = {1, 2, 4, 10} has order 3. So, the definition
field K for these spaces is the degree 4 extension of Q inside Q(e2πi/13). Thus,
there are two pairs of conjugate Davenport pairs in this case [Fr05a, 3.4].

Consider the collection CPGL∞,r of reduced Hurwitz spaces of r-branch point
covers with projective linear monodromy groups. We do not assume the covers in
the Nielsen classes have genus 0.

Conjecture 6.10. Do only finitely many of the spaces in CPGL∞,4 (r = 4) have
genus 0?

Finally, notice that there are a great many other Nielsen classes on which there
is only one possible difference in the final conclusions that occurred for Davenport
pairs. Assume, in addition to the conditions for CPGL∞,4, that

(6.13) exactly one class of C is an n-cycle, in the notation previously.
Denote the elements of CPGL∞,4 satisfying (6.13) by CPGL∞,4,C∞ . Then, you

can apply the BCL and find that covers won’t be defined over Q. Just as in the
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Davenport cases, you can compute the genus of absolute components of elements
in CPGL∞,4,C∞ . Yet, it is likely the components won’t have genus 0. Further, there
may be more than one component. One point of §B.2.2 is to tell you something
about our knowledge of such computations.

Remark 6.11 (Infinitude of CPGL∞,4,C∞). We make use of this exercise in §7.3.5. Go
through the production of the Nielsen classes of genus 0 covers in §5.4.1, but drop
the condition of genus 0. Show there are infinitely many possible Nielsen classes.

7. The significance of Davenport’s Problem

We use what came from Davenport’s Problem, and others solved by the mon-
odromy method, to reconsider truly general problems that arose around them. Of
necessity I review the work of many others, by efficiently using the previous sec-
tions. §7.1 gives conclusions on the genus 0 problem, while §7.2 considers the biggest
bug-a-boo from RET, that it’s not done with algebraic equations.

Then, §7.3 looks at the relation between Chow motives and Galois stratification
using Monodromy Precision §3.2.1. §7.4 motivates why going beyond the simple
group classification will require new techniques. For this we return to the comment
from [So01] on the groups that occur ‘in nature’ being close to simple groups.
Finally, §7.5 considers a different overview of RET, though still based on what
came from Davenport’s problem.

7.1. The Genus 0 Problem. Solving Davenport’s problem produced some lucky
lessons. Most propitious was my interaction with John Thompson, walking to lunch
early in Fall 1986 after I arrived at the U. of Florida.

7.1.1. Evidence for the genus 0 problem. I gave Thompson my conviction of the
specialness of genus 0 monodromy groups. My support came much from [Fr80].

(7.1a) The product-one condition ((5.6b) of §5.3.2) together with genus 0 lim-
ited – but didn’t annihilate – the groups arising in Davenport’s Problem,
and the Hilbert-Siegel problem (as in [Fr74a]).

(7.1b) As geometric monodromy, cyclic, dihedral, Sn and An, and closely re-
lated, groups all appeared often when the problems had no further con-
straints on conjugacy classes.

Comments on (7.1a): My main question to John was whether he thought that
genus 0, product-one and primitivity would be sufficient to limit exceptional arisings
of monodromy groups, and what exactly exceptional would be.

7.1.2. Comments on (7.1b)–Cyclic composition. I document the surprising compli-
cation of groups close to dihedral. Tchebychev polynomials have dihedral geomet-
ric monodromy and their Galois closures are defined over the maximal real field in
Q(e2πi/n). Capturing how exceptional this was proved Schur’s conjecture (§1.1). It
and Serre’s OIT still are the main producers of exceptional covers (§3.2.1).

The OIT also gives dramatic distinctions between arithmetic and geometric mon-
odromy. It is convenient to quote [Se68], though Serre’s program wasn’t quite
complete there. [Fr05b, §6.2, esp. Prop. 6.6] explains all of the following. This
was especially dramatic because in Serre’s GL2 case the degree p2 covers, with p
prime, have tiny (resp. large) geometric (resp. arithmetic) monodromy (Z/p)2×sZ/2
(resp. an extension of the geometric group by GL2(Z/p)/2).
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Further, the degree p2 covers are given by rational functions. These reveal one
profound distinction between compositions of rational functions and polynomials.
In Lem. 3.8 we saw that f ∈ K[x] that decomposes over Q̄ already decomposes in
K[x]. Myriad examples, however, from the OIT give rational functions of degree
p2 indecomposable over K (even over Q), but decomposable over Q̄.

(7.2) Excluding finitely many degrees of rational functions, but allowing any
number field K, the OIT produces all such examples.

The groups that appear in (7.2) are not related to those in (7.1a). There are
many primitive exceptional genus 0 groups. It is a finite number. Yet, consider
what went into showing the finiteness part of (7.2) in [GMS03, Chap. 3]. For a
particular problem, apropos §7.4, even those who know the classification well will
drown trying to navigate the documentation without finding some geometry and/or
function theory like that we used in handling Davenport’s problem.

7.1.3. Comments on (7.1b)–Alternating composition. Almost any graduate book
in algebra has regular realizations (over Q, §5.1.3) of dihedral groups. Though, as
§7.1.2 shows, in trying to realize them with genus 0 covers over Q you might have
dihedral geometric monodromy, but much larger arithmetic monodromy.

Similar occurs with (near) alternating groups as following Res. 5.3 for (An, Sn)-
realizations. The alternative, is (An, An)-realizations (regular An realizations).
Hilbert’s first application of his Irreducibility Theorem was to finding regular An
realizations [Hi1892]. For example, as [Mes90], and [Se92, Chap. 9] show there is an
abundance of such retional function f , even extending to Spinn regular realizations.

One take on the Irreducibility Theorem is that it must be obvious. Yes, there
are easy proofs, say [FrJ86, Thm. 12.7]1, of its first incarnation.

Proposition 7.1 (HIT). Suppose m(z, w) ∈ Q[z, w] is irreducible. Then, for in-
finitely many z0 ∈ Z, m(z0, w) is irreducible as a polynomial in one variable.

The first Hilbert-Siegel Problem puts a constraint on m(z, w). It has the form
m(z, w) = f(w) − z, f ∈ Q[w]. Yet, the monodromy method enters because the
conclusion is independent of the degree of f . Denote by Vf (resp. Rf ) the values
assumed by f on Z (resp. the z0 ∈ Z such that f(w)− z0 factors over Q).

Proposition 7.2 (1st Hilbert-Siegel [Fr74a] Prob.). Suppose f ∈ Q[w] is indecom-
posable and Rf \ Vf is infinite. Then, all but finitely many of elements in Rf \ Vf
fall in the values of g ∈ Q(x) where f(x)− g(y) factors as one of two types.

(7.3a) Either g ∈ Q[x]; or
(7.3b) with deg(f) = n, deg(g) = 2n and a branch cycle σ∞ for g over ∞ has

the shape (n)(n).

The arithmetic reduction came through Siegel’s famous description of curves with
∞-ly many quasi-integral points [Si29]. You can change all formulations referring
to z0 ∈ Z to be about quasi-integral points (only finitely many primes allowed
as divisors of denominators). We previously handled (7.3a) under the solution of
Schinzel’s problem. We conclude this subsection with the upshot of the story for the
new cases, (7.3b). In the style of Thm. 4.1, [Fr74a, Cor. 2] gives the exact branch
cycle conditions. These come as Nielsen class conditions for covers f : P1

x → P1
z and

g : P1
y → P1

z having the same Galois closure groups G, and respective permutation
representations Tf and Tg. Use the notation of §3.4.1.

(7.4a) Tf is doubly transitive; Tg is primitive, but not doubly transitive.
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(7.4b) Tg restricted to the stabilizer, G(1, Tf ), in Tf is intransitive.
(7.4c) The absolute Nielsen classes for both permutation representations have

genus 0 (as in Riemann-Hurwitz, a la (5.1)).
(7.4d) The class for ramification over∞ in the cover for Tf (resp. Tg) has cycle

type (n) (resp. (n)(n)).

Proposition 7.3. [DeFr99, Prop. 1.3]: The only possible degree for f satisfying
(7.3b) is 5. All possible f s derive from one Nielsen class (below) with r = 4. Among
the f s over Q in this Nielsen class, infinitely many have Rf \ Vf is infinite.

The Nielsen class comes from the standard representation, Tf , of G = S5. The
conjugacy classes are C = C5222d : 5-cycle, 2-cycles repeated twice, and the class,
C2d , of (2)(2) type. Denote this Nielsen class as Ni(S5,C).

The representation Tg is from the action on the 10 unordered pairs of integers
from {1, 2, 3, 4, 5}. Then, the g cover Nielsen class comes from applying Tg to C,
giving Tg(C) = C5d,22

t ,2q
: respective classes of type (5)(5), (2)(2)(2) repeated twice

and (2)(2)(2)(2). Denote the Nielsen class as Ni(Tg(S5), Tg(C)).
§6.2.5 discusses the space Ur of ordered branch points on P1

z. You can order some
attached to certain conjugacy classes, and not others, to consider spaces between
Ur and Ur. Order the two branch points attached to the 2-cycle conjugacy classes.
Denote the Hurwitz space by H, and the pullback with that ordering as H∗. The
corresponding spaces for Tg, Hg and H∗g, actually identify with H and H∗.

(7.5a) All three branch point covers have branch cycle descriptions from coa-
lescing those in the Nielsen class Ni(S5,C).

(7.5b) Both of the spaces Hg and H∗g have a dense set of Q points.
(7.5c) For a dense set of ppp ∈ Hg(Q), the total space Tg → Hg × P1

z has fibers
Tg,ppp that are conics in P2 without any Q points.

(7.5d) For all points ppp ∈ H∗g(Q), the pullback fibers of (7.5c) represent degree
10 rational functions over Q.

Two out of three of the delicate diophantine issues are handled on purely Nielsen
class terms, without explicit coordinates. The 1st: The rational function gppp corre-
sponding to ppp ∈ H∗g comes by taking one of the two branch points, z1,ppp, z2,ppp, in the
cover for ppp corresponding to the classes Tg(C2). The three 2-cycles above, say, z1,ppp

correspond to three points (as in §5.1.2) – of ramification index 2 over z1,ppp. Those
three points sum to an odd degree divisor on the genus 0 cover ϕppp : Xppp → P1

z. An
odd degree divisor on a genus 0 curve is well-known to produce an isomosphism of
it with P1

y over its field of definition.
The 2nd diophantine issue meets the requirement, for applying Siegel’s Theorem,

that the two points over z = ∞ are real conjugate (defined over Q(
√

5) [DeFr99,
Cor. 2.2]). Many examples in [DeFr99, §4] illustrate the well-developed theory of
real points on covers in [DeFr90a, §2]; what we called Siegel-Néron problems.

Finally, the issue not addressed until [DeFr99], was to show among the gppp were
some with Rf \ Vf infinite. [De99, §4.2] has an exposition concentrating on this
arithmetic point phrased thus: Find when a Siegel family has a dense set of fibers
whose value sets intersect a fractional ideal infinitely often.

This is the only place I know where explicit coordinates accomplished something
not done without them. The issue is whether it is possible to answer such a question
based only on calculating with Nielsen classes defining the Siegel family. We include
using the BCL, braid group action, lifting invariants (as in [BFr02, §5.4]).
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[De99, §4.4] shows we often can expect affirmative results, like [DeFr90b, Th. 3.14]
and the many examples of [DeFr90b, §3.6-§3.7, and §4], when covers in the family
have genus 0. An ingredient for this is [LSc80] (over Q; over a general number field
in [Sc82, p. 211]), comparing specializations at Q fibers with what happens at the
generic point. As in §7.5, I knew of this from my UM education.

7.1.4. Thompson’s response and the program. Immediately John confessed to being
“seized” by the problem. His response was that we shouldn’t limit it to polynomial
covers. Rather, include indecomposable rational functions (genus 0 covers). In
place, however, of considering constraints and guessing what precisely the excep-
tional permutation representations might be, he suggested showing that all compo-
sition factors of the geometric monodromy groups would be cyclic or alternating.
Then, the exceptions would come from just finitely many simple groups – outside
An s and Z/p s – appearing among these composition factors.

All statements related to exceptional covers (§1.1; like the interpretation of di-
hedral groups as the essence of Serre’s OIT in §7.1.2), suggested aiming at actual
monodromy groups rather than composition factors. Still, what John proposed
generated data to guide finding which actual monodromy groups (and correspond-
ing permutation representations) were not exceptional. Especially since we were
certain to get some close to, but not quite, alternating group surprises.

He proposed we work on the problem together. My heart was in algebraic equa-
tions. I suggested Bob Guralnick as far more appropriate. Here was the upshot.

Peter Müller produced a definitive classification of the polynomial monodromy,
including – a la what happened in Davenport’s Problem – a list of the polynomial
monodromy that arose over Q [Mü95]. Davenport’s Problem had captured the
harder “exceptional cases” of that classification. Müller says [Fe73] was what he first
saw of the details of Davenport pairs, and he corrected an error in that. Thm. 4.5
and 4.4, especially §4.4.2, give traces in the literature of how Feit handled his
interactions with me, with the comment in [Fr73a] relevant here.

The more optimistic conjecture I made for polynomials turned out true even for
indecomposable rational functions. That is, it was possible to consider the precise
permutation representations that arose in series of groups related to alternating
and dihedral groups. This addition to Guralnick-Thompson was Guralnick’s work
(and formulation) with many co-authors and independent papers by others.

Guralnick visited Florida while I was there, and he and Thompson generated
series of “genus 0 groups.” They based this on running through the classification
of primitive groups using [AOS85] (§7.4 and §A.3). [AOS85] constructs a template
of five patterns of primitive groups. Into four of those you insert almost simple
groups. Affine groups comprise the fifth (§A.1).

Leaving aside affine groups – on some problems they cause grave difficulties –
this then naturally divided the task into running through the simple groups inserted
into these templates. This was a special expertise of Guralnick (see §7.4). So, the
Genus 0 Problem ran through two filters: [AOS85]; and the distinct series of finite
simple groups, together with affine. This lexigraphic procedure accounts for the
number and length of contributions to the genus 0 resolution (for covers over C).

[CKS76] sufficed for the group theory in Davenport’s problem and the solution
of the 1st Hilbert Siegel Problem 7.3. [GT90] is the first paper proving that there
are infinitely many simple groups that were not composition factors of genus zero
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groups. [GFM99] classified all genus 0 rank 1 Lie group actions, and it gave all the
branch cycles for the exceptional genus 0 groups in this case.

I could look at early Guralnick-Thompson results on exceptional genus 0 groups
from this list, and just from the BCL (§5.2) see that a small number provided
rational functions outside Serre’s OIT that gave Schur (exceptional as referred to
in §1.1) covers over Q: one-one maps on Z/p∪∞, for infinitely many p. We didn’t
know such existed previously. (We apologize for the two uses of exceptional –
covers, versus groups – but it is historial.) It was unlikely that the whole genus 0
problem would have been solved without having been so precise.

[Fr99, Exp. 6.3] has Guralnick’s conjecture for what would be the exceptional
genus 0 monodromy (over Q̄) and now it is a theorem. In these lists you see several
related to An. For this discussion, especially, notice the permutation representation
of the cover acts on distinct, unordered pairs of integers.

Yet, in the Hilbert-Siegel problems, a Siegel Thm. constraint over ∞ leaves but
finitely many: Just the degree 10 rep. in (7.5). [GMS03] shows the Schur problems
about exceptional covers motivating the whole topic (as in §7.1.2 and §7.4.1).

By distinguishing covers with genus slightly larger than 0, distinctions between
genuses 0, 1 and higher came clear. The final formulation includes a genus g version,
with the cases with g > 1 differing only in the list of finitely many exceptional pairs:
(groups, primitive permutation representations).

Yet, the precision for the exceptional groups we saw for polynomials wasn’t
possible on all the exceptional “genus g groups” (not even g = 0). Especially,
when it came to eliminating most of the “exceptional simple Lie-type groups.” I
searched for a way to document that, and found likely its relation to the story of
finding reasonable presentations for G2 (over C) in [Ag08, pp. 924–25]. Problems
related to Davenport’s Problem, that arose early in these developments, remain the
unequaled archetype for being precise.

Guralnick also led the study classifying genus 0 groups, and their representations,
that could occur – his name – “generically.” An algebraic geometer would mean the
generic curve of a given genus has a cover of P1

z. Guralnick’s meaning, however, is
that the curves realizing such covers occur densely in the moduli of genus g curves.
Here the classification of the exceptional groups is precise.

[GM98] includes showing, for g > 0, unless a cover alternating or symmetric or
symmetric monodromy with a limited set of permutation representations, it cannot
occur densely. [Gsh07] settles the generic curve problem in characteristic 0.

7.2. Writing equations. §7.2.2 explains attempts to produce coordinates for Dav-
enport pairs. Generalizing Ritt’s Thm. – [Ri22], on the ways in which a rational
function can have multiple decompositions – is related to Davenport’s and Schinzel’s
problems. §7.2.3 reminds how that generalization brought more attention to using
“explicit” equations than any other topic.

7.2.1. Branch cycles versus equations preliminary. Here is an example contrasting
using branch cycles on Schinzel’s problem with the explicit equation approach.
Assume g(y) = af(y) + b for some a, b ∈ C. Lem. 7.4 uses branch cycles to show
that f(x)− g(y) factors into degree 1 or 2 factors over C if f is affine equivalent to
a (degree n) Chebychev polynomial, and ax+b permutes its finite branch points. If
ax+ b doesn’t permute the branch points, then (4.3) says f(x)−g(y) is irreducible.
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Lemma 7.4. Use the assumptions above. With n odd, f(x)−g(y) has one degree 1
factor; all others of degree 2. With n even, the result is the same if L : x 7→ ax+ b
fixes each branch point of f ; all factors have degree 2 if L nontrivially permutes
the branch points. With f ∈ Q[x] and a, b ∈ Q, for all n, each degree 2 factor
has definition field generated by the symmetric functions in {e2πij/n, e−2πij/n} (or,
functions in cos(2πj/n)) for some integer j. For a given value of gcd(j, n), the
collection of factors corresponding to j with that value are conjugate over Q.

Proof. First take n odd. [Fr70, p. 47] has this Chebychev characterization: f has
two finite branch points and a branch cycle description (σ1, σ2, σ∞) with σi, i = 1, 2,
in the unique involution class C2 in the dihedral group Dn. The condition on ax+b
says the cover for g(y) has the same branch cycle description at the same branch
points. So, f and g give equivalent covers of P1

z. Irreducible factors of f(x)− g(y)
correspond to orbits of Dn(1) = Z/2, which correspond to orbits of multiplication
by -1 on {0, 1, 2, . . . , n−1} mod n: 1 length 1 orbit, the rest length 2.

For n even, there are two classes of involutions in Dn: C2 (resp. C∗2) with shape
the product of n

2 (resp. n−2
2 ) disjoint 2-cycles. If L leaves f ’s branch points fixed,

then, again, the covers are equivalent, and the result is the same. If L permutes
the branch points, then the covers can’t be equivalent (they have different branch
cycles), but their Galois closures have the same branch cycles.

The permutation representations for the covers of f and g correspond to the
respective cosets of the two conjugacy classes of copies of Z/2 in Z/n×s{±1}. One
is generated by α1 = (0,−1); the other by α2 = (1,−1). As above, irreducible
factors of f(x)− g(y) correspond to orbits of α1 on cosets of the group 〈α2〉.

Apply the BCL (§5.1.3) to any Q cover with the branch cycles above. The only
non-trivial power of σ∞ conjugate to σ∞ in Dn is σ−1

∞ . So, the cover given by f
must have Galois closure Z/n ×s (Z/n)∗. Thus, |aGf/Gf | (as in §2.3) has degree
|(Z/n)∗|/2, and Q(ζn) contains the definition field of the Galois closure. That
characterizes constants as the subextension of Q(ζn) of index 2. Those constants
come from the coefficients of the factorizations above. We are done. �

For the two cases in Lem. 7.4 where a = ±1, b = 0, [AZ03, Prop. 2.2] lists
[DLSc61] and [Tv68] as explicitly writing equations for these formulas. The two
step solvable group Dn has easy explicit equations. It is the first grad course
regular realization of centerless groups as Galois groups. Yet, even for dihedral
groups, there are Nielsen classes that arise in applications where explicit equations
are – understatement – a deeper story, as in Ex. 7.5.
§7.2.2 considers the story of writing equations for branch cycles for a Davenport

case, where G is almost simple, but not an alternating group.

Example 7.5 (Modular curves). The group theory of another Nielsen class is
almost identical to Lem. 7.4. Again, G = Dn, and C2 is the unique involution class
when n is odd (n even is similar). The Nielsen class Ni(G,C24) – repeating C2

four times – contains branch cycles for genus zero covers. For some f : P1
x → P1

z

representing one of these covers, normalize (as always) the 2-fold fiber product
P1
x ×P1

z
P1
x. There is a (degree 1 over P1

x) diagonal component. The other n−1
2

components over Q̄ have degree 2. For odd n > 1, each elliptic curve appears as
a component. The reduced Hurwitz space is the modular curve X0(n) minus its
cusps. That observation, [Fr78, §2], seeded [DeFr94, §5.1-5.2] and [FrV92] that
developed into the Modular Tower generalization of modular curves [Fr95b].
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7.2.2. Dependence on Schinzel’s problem. [CoCa99, Def. 3] applies polynomial nor-
malizations of §6.2.4 to a pair (f, g). This isn’t, however, a Davenport pair. We
might – considering the relation from (4.1c) in Thm. 4.1 – subtly call it a Schinzel
pair. The authors, though number theorists, work over C. You can do inner affine
adjustments of f and g separately. To, however, retain the Davenport property,
you must apply outer composition of z 7→ az + b simultaneously to both.

With subscripts indicating the homogenous term degrees:
(7.6) f(x)− g(y) factors as A(x, y)B(x, y), with

A = Ak(x, y) +Ak−1(x, y) + . . . and B = Bn−k +Bn−k−1 + . . . .

For either Davenport’s or Schinzel’s problem, you could assure the conditions
they (or §6.2.4) list for one polynomial, say f , without loss. Example: To know
about equality of values of f and g over residue class fields, by choosing a any
nonzero constant, you can assure f is monic. Over K̄ (but not necessarily over K),
you can make an affine change to y, to assure g is also monic [CoCa99, §3].

So, to assume Davenport pairs are simultaneously monic, requires consequence
Prop. 5.4, (5.4c) relating the normalized polynomials as conjugate over a large locus
of the parameter space. Do that, however, and the assumption of [CoCa99, Def. 3]
that f has 0 constant term would, incorrectly, also have g with 0 constant term.

Instead, we need – as in Prop. 5.5 or Thm. 6.9 – to consider the constant term cn
of a generic f as a function in tn with coefficients in Qn. Denote by c̄n its complex
conjugate, so the constant term in f(x) − g(y) is cn − c̄n. Simultaneously adding
the same b ∈ Q(tn) to f and g leaves (f, g) a Davenport pair.

I now summarize [CoCa99, §3] to highlight how they pop up a parameter identi-
fiable with tn for the degrees n = 7, 13 and 15 in Thm. 4.5 and Prop. 5.5. I assume
they took inspiration from Birch’s degree 7 example [Fr80, p. 593].

Their calculations start from the existence of a difference setDn = {1, α2, . . . , αk}
mod n from Prop. 4.4. Especially that the highest homogenous terms for the factors
for the values of n listed can be taken with no loss as

Ak = (x− ζn)
k∏
i=2

(x− ζαin y) and Bn−k =
∏

j∈{0,1,...,n−1}\Dn

(x− ζjny).

From this point we work in the principal ideal domain C(y)[x]: the ring in x over
the field C(y). Example: Since the Ak s have no common factors in x,

(7.7) there are A′, B′ ∈ C(y)[x] so that AkB′ +Bn−kA
′ = 1.

Write f(x) = xn+c2xn−2+· · ·+cn−1x+cn and g(y) = xn+d2y
n−2+· · ·+dn−1x+dn.

(7.8) Then, c`xn−` − d`yn−` =
∑

0≤u≤`

Ak−uBn−k−`+u.

Plug ` = 1 into (7.8). From (7.7), Ak−1 ≡ Bn−k−1 ≡ 0. For ` = 2, multiply
(7.8) by (7.7) to deduce

Ak−2 ≡ (c2xn−2 − d2y
n−2)A′ mod Ak and

Bn−k−2 ≡ (c2xn−2 − d2y
n−2)B′ mod Bn−k.

Put y = 1, in the 1st of these. The coefficient of xk−1 on the left is 0, so it is on
the right, giving d2 as a function of c2. The same happens for the 2nd of these,

(7.9) giving a second expression for d2 in c2, that must be the same.
Proceed inductively in `, remembering this is on examples for n = 7, 13, 15.

Using PARI you find you can express all the ci s, i ≥ 3, and all the dj s, j ≥ 2 as
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functions of c2. This empirical induction isn’t in detail; more illustrated – as we
have done – by the case n = 7. Yet, even there it is unclear where they use cn = 0;
once they have enough coefficients to determine A, they quit.

The upshot: at the end of [CoCa99, §3], c2 is a replacement for tn. Yet, certainly
not the canonical kind of replacement called for in Prob. 7.6. Indeed, without
explanation, [CoCa99, §5] has dropped several of the original normalizations (even
including that f and g are monic?). It seems they found it is better to take f
as conjugate to g because of the natural symmetry. This is done by taking the
replacement for tn a constant time g2, and dropping cn = 0. Finally, they illustrate
Prop. 5.4, with particular choices produced by machine as above and dependent on
the theory from our previous sections that went into it.

Problem 7.6. Could some refined version of the procedure of [CoCa99] eliminate
using the simple group classification in Davenport’s/Schinzel’s problem, just as the
BCL avoided it in the restriction to the version over Q?

Since tn is an automorphic function on the upper half plane, can we find a q-
expansion with coefficients based on the representation theory of the groups PGLn?

For the 1st statement in Prob. 7.6, my opinion is that this is unlikely. For the
second, my reaction is to ask: How could it not be so?

7.2.3. Ritt I. Denote the greatest common divisor (resp. least common multiple)
of (m,n) by gcd(m,n) (resp. lcm(m,n)). Suppose f(x) ∈ C[x] has a maximal
decomposition in the form

(7.10) fv ◦ fv−1 ◦ · · · ◦ f1.

Ritt described all maximal decompositions of f by starting from f using (decom-
position) substitutions for some 1 ≤ i ≤ v−1, fi+1 7→ f∗i+1 and fi 7→ f∗i , whenever

fi+1 ◦ fi = f∗i+1 ◦ f∗i .
Ritt’s 1st Thm. says all maximal decompositions of f come from chains of substi-
tution in these two cases:

(7.11a) Möbius insert: For some µ ∈ PGL2(C): f∗i+1 = fi+1 ◦ µ, f∗i = µ−1 ◦ fi.
(7.11b) Ritt substitution: (deg(fi+1),deg(fi)) = 1 and deg(fi+1) = deg(f∗i ).
[FrM69] generalizes Ritt’s 1st Thm. to any field extension with a totally ramified

discrete valuation whose ramification index is prime to the characteristic. This
situation includes the case [Pa09, §2.3] calls a generalized polynomial cover.

Ritt’s Thm. 2 in [Ri22], describing exactly when you can have (7.11b) is harder.
These Ritt substitutions suffice in (7.11b) with n,m distinct primes.

(7.12a) Chebychev – (3.6): fi+1 = Tn 7→ Tm and fi = Tm 7→ Tn with (n,m) = 1
(7.12b) Cyclic: fi+1 = xn 7→ xmhn(x) and fi = xmh(xn) 7→ xn, h nonconstant

[Pa09, p. 2] has a typo – equivalent to fi 7→ xm – where I have the cyclic case. We
turn to how [Fr73b, Cor. p. 47] classifies variables separated equations f(x)−g(y) =
0 over Q that have infinitely many quasi-integral points, so generalizing Ritt’s
Thm. 2. As in (1.3): deg(f) = m,deg(g) = n. Siegel’s Thm. (§7.1.3) gave branch
cycle conditions, exactly as in Prop. 7.2 on the factors of f(x)− g(y) as P1

z covers;
starting with each defining a genus 0 curve.

Suppose (1.3) is irreducible. Then, apply the so-called Abhyankar’s lemma. It
was used often by, say, Hilbert, Hurwitz, Minkowski, Siegel, . . . , but a super-use,
and its naming, came from Grothendieck’s application [Gr59] (see (7.35a)). The
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form of the lemma in our case says: If, over a branch point zi of f (resp. g), xj,i
(resp. yk,i) ramifies to order mj,i (resp. nk,i), then corresponding to this pair on
(the projective, normalization of) (1.3),

(7.13) mj,i · nk,i/ gcd(mj,i, nk,i) points ramify of order lcm(mj,i, nk,i) over zi.

In contrast to applying Riemann-Hurwitz to j-line covers (§6.3), we now easily
compute the genus of (1.3) from (7.13) and this data:

(7.14) the cycle-type of the branch cycles for f and g, especially noting those
attached to a common branch point for f and g.

[Fr73b, Thm. 3] then produces the equations (1.3) satisfying these conditions:
(7.15a) gcd(m,n) = 1 or 2; (nonsingular completion of) (1.3) has genus 0;
(7.15b) and f(x)− g(y) is irreducible.

It is immediate from (4.3) that if gcd(m,n) = 1, then (7.15b) holds. [Tv64] indicates
the history of that case. If (7.15b) doesn’t hold with gcd(m,n) = 2, then both f
and g are composite up to inner equivalence with the same degree 2 polynomial.

[Fr73b, Cor. p. 47] needed to separate the possibility (1.3) is reducible from the
basic genus calculation. That used [Fr73a, Prop. 2] as stated in (4.3).

The case (7.15a) is Ritt’s Theorem in disguise. About that, after the proof of
Ritt’s Thm. in [Sc82, pp. 15–39] says: “More general but less precise results are
found in [Fr73b].” For Ritt’s Theorem the only difference is that I’ve left out explicit
equations for affine equivalence.

[Fr73b, p. 50] reproduced [DLSc61] and [Le64] as special cases showing, at times,
that checking (7.14) is easy. In the former case:

f(x) = fn(x) =
xn+1 − 1
x− 1

− 1 and g(y) = fm(y), n 6= m.

A long history of diophantine equations motivates this additive expression.
Here are two more modern sets of polynomials which took on the same issues:

when does (1.3) have infinitely many integral, or rational, solutions.
(7.16a) With fm,d =

∏m−1
i=1 (x+ id), 1 < m, d ∈ Q positive,

f = fm1,d1 , g = fm2,d2 , ( if m1 = m2, then d1 6= d2).

(7.16b) With f ∈ Q[x] and g(y) = cf(y), c 6= 0, 1 (as in Prop. 7.28).
We will contrast the approaches of [BeShTi99] and [AZ03] in the problems pro-

posed respectively by (7.16a) and (7.16b). In both, the main job was finding genus
0 (or 1) curves defined by factors of variables separated expressions. The addition
to [Fr73b]: This used the quasi-integral solutions condition limiting some possi-
ble branch cycles. In practice, they used the same rigamarole up to a concluding
identification problem that brought up new issues.

The definitions (7.16a) occur in [BeShTi99, Thm. 1.1] which chose to consider
results on equality of multiplicative expressions. [BeShTi99, Thm. 2.2] is similar in
replacing g = fm2,d2 by a constant times this g, but set d1 = d2 = 1.

Indeed, fm,d is just a scaling of the variable for fm,1. If m is odd, from Descartes’
rule of signs the finite ramified points – zeros of df

dx – fall neatly between the zeros
of fm,1. Plug them in to see that these local maxima of f evaluated at f decrease
in value. So, the corresponding finite branch points are distinct, and the finite
branch cycles σ1, . . . , σm−1 are all 2-cycles. According to (5.6a) – generation – the
monodromy group of the cover is Sm, the only group generated by 2-cycles.
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For m even, the involution x 7→ −x + (m−1) maps the zeros into themselves.
This symmetry means f is a composite of some f1 with (x − m−1

2 )2. Written ex-
plicitly, almost the same argument as above shows the finite branch cycles of f1 are
also 2-cycles. So, its monodromy group is Sm/2 and the monodromy group of f is
the wreath product (see Rem. 7.7) of Sm/2 and Z/2. In this simple case, irreducibil-
ity is easy to check: Sm is doubly transitive and has one degree m permutation
representation. [BeShTi99] didn’t indicate these monodromy groups.

The genus calculation shows its swift growth based on those 2-cycles, with a
small set of low degree (m,n) pairs where the genus might be 0 or 1, depending
on possible overlapping branch points. The proof of [BeShTi99, Thm. 2.2] for
example, includes specific checks for that. Also, the proof of [BeShTi99, Thm. 1.1]
runs into genus 1 curves in classical forms. To finish the arithmetic result uses
[Ma77] (Mazur’s explicit Thm. on elliptic curve torsion points over Q), to conclude
that one of the obvious rational points on the equation is not torsion. §7.2.4 gives
a general context for the problems considered by [BeShTi99].

In [AZ03, Thm. 2] the authors follow the actual description of genus 0 cases in
[Fr73b, p. 42 Cor.]. They recognize the cyclic and Chebychev cases 1st,basically
using the quote following Lem. 7.4. Then, they show how to reduce to where f
is indecomposable. [AZ03, Lem. 3.1] reproves the special case of (4.3) where f is
indecomposable, to consider possibilities that f(x)−g(y) is reducible, and therefore
the Galois closure covers of f and g are the same.

[AZ03, p. 274–276] proves a version of Prop. 7.28 – we use its notation – to show
there are no reducible cases beyond where f is Chebychev or cyclic. The gist of
its application, is that the equating of the Galois closures of the covers for f and
g comes with an automorphism cAZ of Gf , not in NSn(Gf ) (§5.1.3), leaving the
conjugacy class of σ∞ invariant.

They could have completed the impossibility of a reducible case using Prop. 5.4,
under their f indecomposable assumption. They didn’t, so I explain how it works
here. The cAZ, up to conjugation by Gf , takes σ∞ to σ−1

∞ , the -1 being a non-
multiplier of the design attached to the pair of doubly transitive representations in
(5.4a). That is, it would change the class of σ∞ to a new conjugacy class. More
directly, there is no such automorphism as cAZ extending Gµ◦f̂ in Prop. 7.28 in
this case. The linear transformation of (4.2) relating zeros of f(x) − z to those of
g(y)− z won’t extend to an automorphism of the Galois closure function field.

Above [AZ03, p. 270-274] they say they want to avoid the classification. Yet,
[Fr73a] doesn’t use the classification – there was none, then. They use what we
reviewed prior to Prop. 5.4. (The classification use in (5.4b) and (5.4c) gives the
precise Davenport pairs (f, g) with f indecomposable occuring over some number
field.) We see cAZ again in §7.4.3 to consider (7.16b) when f is decomposable.

In the irreducible case of (7.16b), [AZ03, Prop. 2.6] quotes [Fr73b, Prop. 1] on the
formula for the variable separated – fiber product – curve genus from Abhyankar’s
lemma. As usual the demanding cases have f and g with overlapping finite branch
points. Especially interesting is a list of explicit polynomials P1, . . . , P6 [AZ03,
Def. 2.1] where the last 3 are particular f s in (7.16b) [AZ03, Thm. 2].

[AZ01] consider f(x)− g(y) = 0 (1.3), when (deg(f),deg(g) = 1, where we have
already remarked (after (7.15)) irreducibility is automatic. When the genus is now
1, they give many interesting examples, some not over Q and involving the Mazur-
Merel result ([Ma77] and [Me96]). I mention it here, to note that we haven’t
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considered what would limit any curve from being a component of a variables
separated equation. For example, Ex. 7.5 says every genus 1 curve occurs in many
different ways as a component of a variables separated equation.

Remark 7.7 (Wreath product exercise). [Fr70, §2] introduces wreath products to
write branch cycles for the composite, f1 ◦ f2, of rational functions from branch
cycles for f1 and f2. Assume h∗ = h((x − b)2) where the finite branch cycles
– relative to some classical generators, (§B.1) – of the degree n polynomial h
are 2-cycles, and h(0) is not a branch point of h. Then, we can choose σσσ =
((1 2), (1 3), . . . , (1n), (1 2 . . . n)−1) as branch cycles for h. Now use

{{1′, 1′′}, . . . , {n′, n′′}}
for the letters on which branch cycles for h∗ act. Branch cycles for h∗ will give
branch cycles for h, in a natural way, by mapping both i′ and i′′ to i, i = 1, . . . , n.
Here are branch cycles for h∗:

σσσ∗ = ((1′ 2′)(1′′ 2′′), (1′ 3′)(1′′ 3′′), . . . , (1′ n′)(1′′ n′′),
(1′ 1′′), (1′ 2′ . . . n′ 1′′ 2′′ . . . n′′)−1).

This special case of [Fr70, Lem. 15] shows why I know the monodromy group of
h∗ is Sn semidirect product with (Z/2)n, the wreath product named above.

7.2.4. Wreath products and Ritt II. In Rem. 7.7 the monodromy, H, of (the cover
from) a composite f1 ◦ f2 of rational functions is the entire wreath product. Let Hi

be the monodromy of fi, i = 1, 2. If the conditions of [Fr70, Lem. 15] don’t hold,
then H may be a proper subgroup of Hdeg(f1)

2 ×sH1 satisfying these conditions:
(7.17) H maps surjectively onto H1, and its intersection with H

deg(f1)
2 maps

surjectively onto each fiber.
These wreath product ideas, especially using branch cycles, apply for any com-

posite covers of P1
z. For example, in a composite of covers X2 → X1 → P1

j where
X2 → X1 has degree 2 (but neither necessarily of genus 0), then the intersection of
H in (7.17) might only be the subgroup of Hdeg(f1)

2 whose entries sum to 0 mod 2.
That’s the case in the Main result of [BiFr86] generalizing the cyclic covers of

genus g curves result of [DelMu67]. It is a connectedness of moduli result, like
that giving the computations of Thm. 6.9, from transitivity of the braid group on
certain Nielsen classes.

Both the monodromy group above, and of Rem. 7.7 are Weyl groups. Vasil
Kanev was inspired to extend, say, [BiFr86] to consider all Weyl groups: subgroups
of wreath products of Sn (in its standard representation) and Z/2 satisfying (7.17).
Not just to classify, but rather, to provide a limited context for useful connected
Hurwitz space results. Many corollaries follow from deciphering orbits of braid
groups on Nielsen classes, such as [Ka89], [Ve08] and [Ve09].

These results model generalizing [BeShTi99] sufficiently, so their formulation is
akin to the Hilbert-Siegel problems of §7.1.3. That is, using similar Nielsen classes
we ask if conclusions might depend only on natural related data. This would extend
the problems of [DeFr99, §4] and also put Mazur’s Thm. in a new context.

Wreath products are a tool for describing monodromy groups (over C) of com-
posites of rational functions. The situation of (7.17) requires deciding from two
primitive genus 0 groups, what subgroups of the full wreath product could possibly
occur. We easily concoct the full product from [Fr70, §2]. Yet, divining subgroups
of the full product that occur takes us beyond the genus 0 problem (§7.1.4).
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§7.4.2 reminds of [Mü98] on extending Davenport to polynomial composites and
§7.4.3 notes [Fr87] on the (m,n)-problem (related to Schinzel). Both require sub-
groups of genus 0 wreath products. This subsection concludes by distinguishing
using equations from using branch cycles to calculate composition factors.

Given f ∈ C(x), or branch cycles, σσσf = (σ1, . . . , σr), for f , how efficient is it
to find degrees of the indecomposable constituents of f? All rational functions in
a given Nielsen class, Ni(G,C)abs (with a representation Tn : G → Sn) have the
same composition factor degrees (dividing n). Any subset

W = {i1, . . . , id | 1 < d < n, d|n}
of distinct elements from {1, . . . , n} has a G orbit. Denote the collection of such
G-orbits by IG,C. I will now assume that computing the action of any given σ ∈ G
on such a W requires just one immediate operation. When f ∈ C[x], with no loss,
we can assume branch cycles with, as in §3.3.2, σr = σ∞ = (1 2 . . . n).

Lemma 7.8. An I ∈ IG,C represents a composition factor, up to affine equivalence,
if and only if for any two subsets W,W ′ ∈ I, either W = W ′ or W ∩W ′ = ∅.

Suppose f ∈ C[x], with σ∞ as above. Then, I ∈ IG,C represents a compo-
sition factor, if and only if for some d|n, I contains Wd = {0, d, . . . , n/d}. To
compute the composition factors from σσσf in this case, requires only checking for

each 1 < d|n ≤
√
n if each σ1, . . . , σr−1 permutes the collection W

σj∞
d

def= Wd + j,
j = 0, . . . , nd−1. Listing decomposition factors therefore requires no more than∑
d(r−1) · nd operations, clearly bounded by a polynomial in n.

Proof. The first sentence characterizes a permutation representation through which
Tf factors, corresponding to a cover through which f : P1

x → P1
z factors. Now

consider the special case where σr = σ∞ as above.
Suppose W representing I ∈ IG,C gives a system of imprimitivity of size n/d as

above. Translate W (apply a power of σ∞) to assume it contains 0, and that h is
the 1st positive integer in it. Then, W − h contains 0 so equals W , and has the
next largest integer h. Continue to conclude that W contains all integer multiples
of h, and so must be Wd. This concludes the lemma. �

Problem 7.9. Use the notation above. Given branch cycles σσσf for f ∈ C(x),
can you find a polynomial in deg(f) = n bounding the production of all degrees
of composition factors of f akin to the Lem. 7.8 polynomial case? Is there a
polynomial time algorithm in n, the size of the coefficients of f , and the minimal
distance between branch points, for computing σσσf?

[FrW82] has a programmable algorithm for computing branch cycles, but it
doesn’t answer Prob. 7.9 precisely. A positive answer to Prob. 7.9 would give a
polynomial time algorithm in deciding the composition factors of a polynomial, or
rational function, if Lem. 7.8 has a rational function version.

An intuitive theme appears – sometimes in Schinzel’s papers – that among all
rational functions f ∈ C(x), whose numerator and denomenator have altogether no
more than ` nonzero terms, only special f will have nontrivial composition factors.
[ClZ10, Main Thm] has this result.

Theorem 7.10. Supposef(x) = g(h(x)) is a composition of two rational functions
of degree exceeding 1, but h is not a composite of some α ∈ PGL2(C) and anything
of the shape (axn + bx−n), a, b ∈ C. Then deg(g) ≤ 20165`.
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The issue I raise here is that ` appears in the exponent, not in a polynomial
expression. This is common for many rational function type results. I find it
unintuitive that decomposability is a complicated subject, but apparently it is.

7.2.5. Laurent polynomials and Ritt III. A Laurent polynomial is a polynomial in
z and 1/z, so it is a rational function with poles, at most, at 0 and ∞. With an
affine change, we may assume a Laurent polynomial has its (possible) finite pole
anywhere you wish. [Pa10a] considers when it is possible that (nonconstant) entire
functions – analytic everywhere on the complex u-plane – uniformize a component
X0 of a separated variable equation (1.3). That is,

(7.18) f(h∗f (u)) = g(h∗g(u)), with (f, g) a polynomial pair, and (h∗f , h
∗
g) entire.

You should equivalence (f, g) and (f(αf (u)), g(αg(u))) with αf and αg affine trans-
formations. [Pa10a] quotes [Pi1887] for the following. I give its proof. I’m curious
where in mathematics history it belongs; Riemann had to know and use it. Denote
the nonsingular projective curve defined by X0 by X.

Lemma 7.11. Given (7.18), X has genus 0 or 1.

Proof. Denote the universal covering space of X by X̃. The entire u 7→ (h∗f , h
∗
g) lifts

to an entire u 7→ h∗X(u) ∈ X by Riemann’s removable singularity theorem [Con78,
p. 103]. Then, analytic continuation gives an entire function u 7→ h̃X ∈ X̃. Now
apply Riemann’s mapping theorem [Sp57, Thm. 9-6]. Unless X has genus 0 or 1,
X̃ is analytically isomorphic to a disk. So, an entire (nonconstant) function has
range in a disk: impossible from Liouville’s Thm. [Con78, Thm. 3.4]. �

According to Picard’s Little theorem [Con78, p. 297], an entire function has
range missing at most one value in C. An example of where an entire function h
would appear is if we have

(7.19) h∗f = hf ◦h and h∗g = hg◦h with (hf (u), hg(u)) either Laurent or ordinary
polynomials, and (7.18) holds by substitution: (h∗f , h

∗
g) 7→ (hf , hg).

[Pa10a, §2] quotes [BNg06] for the converse: If (7.18), then (7.19) for some entire
h and (hf , hg). The serious new case is where (hf , hg) are Laurent polynomials.
The cover u → f ◦ hf = z has two points over z = ∞, so the most telling case for
solutions to (7.18) reverts to describing the factors of f(x)− g(y) that are genus 0
curves with two points over z =∞.

We conclude with the [Pa09] generalization of Ritt’s Thm., and its use of the
explicit result in [BT00]. Note: These papers always work over the complexes.
Given a pair of covers f : X → Z and g : Y → Z, their phrase “the pair (f, g)
is irreducible” means the fiber product X ×Z Y is irreducible (compatible with
[Pa09, Prop. 2.1]). As in §2.3, this means the combined Galois closure group Gf,g
is transitive on the pairs (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, corresponding to the tensor
product of Tf and Tg.
§A.4.2 notes the Galois see-saw argument of [Fr73a, Prop. 2], phrased in (4.3),

is very general. It shows, with no loss, we may replace f and g by covers through
which f and g factor, but with the Galois closures of the new f and g the same.
Further, there is a one-one correspondence between the components of the new and
the old fiber products. The use of the fundamental group of P1

z in [Pa09, Thm. 2.3]
is unnecessary and limiting even for covers of P1

z.
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The proof of Lem. 7.12 – [Pa09, Thm. 2.4], but using fiber product – has nothing
to do with genus 0 curves. So, in the result you can replace all the P1 s by general
normal varieties and finite morphisms.

Lemma 7.12. Assume (f, g) is irreducible, and suppose ϕW : W → Z is a cover of
nonsingular curves that factors through both f and g. If both W → X and W → Y
are indecomposable, then f and g are also both indecomposable.

Proof. Use the universal property of fiber product (2.2) (or its generalization (A.2)).
The irreducibility assumption says ϕW factors surjectively through X ×Z Y . Since
the factorization through f and g are indecomposable, W actually equals X ×Z Y .

From the construction of the Galois closure (§2.3), the group of the Galois closure
of the projection W = X ×Z Y → X is a subgroup GW/X of the Galois closure
group, Gg of g, by its action on the same letters. Indecomposability of W → X is
equivalent to this action of GW/X being primitive (§3.4). Therefore, the (possibly)
larger group Gf acts primitively on the same letters: f is indecomposable. The
same argument gives g indecomposable. �

Suppose we start with two maximal decompositions of f ∈ C(x) (as in (7.10)):

(7.20) fv ◦ fv−1 ◦ · · · ◦ f1 = gu ◦ gv−1 ◦ · · · ◦ g1.

If you drop the degree conditions in (7.11b), the substitution of (7.11a) is included
in (7.11b). We’ll refer to that as a weak Ritt substitution. Use the symbol ∼w to
indicate one decomposition is obtained from another through weak Ritt substitu-
tions. Let f = fv ◦ fv−1 ◦ · · · ◦ f2 and g = gu ◦ gv−1 ◦ · · · ◦ g2. From f ◦ f1 = g ◦ g1,
Lem. 7.12 implies either f(x)− g(y) is reducible or one of u or v exceeds 1.

The main idea in [Pa09] in generalizing Ritt’s Theorem is to consider the col-
lection, Rk, of rational functions f , for which f : P1

w → P1
z has at least one place

z0 over which it has at most k points. Then, Rk is closed with respect to decom-
position in that f1 ◦ f2 ∈ Rk implies fi ∈ Rk, i = 1, 2. The latter property is a
stand-in for the more general idea of what me might call a closed Ritt class. For
any element f in any closed Ritt class R, we can map f to its collection Df of
maximal decompositions. Consider the set DR = {Df | f ∈ R}. By replacing an
explicit ordered list of composition factors by the composition we get a map back

DR = {Df | f ∈ R} → R by Df 7→ f.

then, modding out by the action of ∼w induces a Ritt map: RR : DR/ ∼w→ R.
For example, Ritt’s Theorem is that RR1 is one-one. One conclusion of [Pa09,

§3] is that RR2 is also one-one. Pakovich notes that this is closely connected to the
Poincaré center-focus problem, but that is another topic.

7.3. Attaching a zeta function to a diophantine problem. §7.3.1 reviews
the problems that motivated subsequent developments. Like Davenport/Schinzel
problems, their nitty-gritty particulars contrast to the general techniques they mo-
tivated in §7.3.2 and §7.3.4. We see Davenport motivations for considering zeta
functions in Prob. 7.21. We simplify notation by assuming diophantine statements
are over Z; adjustment to the ring of integers of a number field is easy.

7.3.1. Problems from the ’60s. Let Ad denote the space of coefficients of hypersur-
faces of degree d in Pd (projective d-space). For yyy ∈ Ad denote the corresponding
hypersurface in Pd by hd,yyy(xxx). We regard it as the fiber of a subspace Hd ⊂ Ad×Pd
after projection on the first coordinate of Ad × Pd.



50 M. D. FRIED

Recall Chevalley’s Theorem [BoSh66, p. 6]: A hypersurface over Q in Pd of
degree d has a Z/p point for every prime p. The problem is diophantine, but not
existential. It has the shape

(7.21) DCh : ∀yyy ∈ Ad,∃xxx ∈ Pd[(yyy,xxx) ∈ Hd].
You interpret the problem at each prime as DCh,p by restricting the coordinates
of (yyy,xxx) to lie in Z/p. The conclusion is that DCh,p is true for all primes p: Each
degree d hypersurface over Z/p has a Z/p point.

Take Zp to be the p-adic integers. Artin’s Conjecture was similar: For degree
d, h(xxx) is a hypersurface in Pd2 . Interpret DAr,p to mean that each degree d
hypersurface over Zp has a Zp point.

The Ax-Kochen solution [AxKo66], however, was a shock: DAr,p is true for all
but finitely many primes p. An alternative statement of its conclusion: Artin’s
Conjecture is true over all nontrivial ultra-products of all p-adic completions of Q.
This used a result of Lang for comparison. So, the method applied to few problems,
and it left a mystery on the exceptional primes. Yet it made a splash.

The Ax-Kochen method produced a new set of fields by considering the algebraic
numbers inside nontrivial ultra-products of all residue class fields of Z. Almost (but
not) all such fields would have the P(seudo)A(lgebraically)C(losed) property: All
absolutely irreducible Q varieties over such a field would have a rational point.
Applied to Chevalley’s problem they suggested to Ax [Ax68] the following.

Conjecture 7.13. Each degree d hypersurface over Q in Pd should have a ratio-
nal point in any PAC field F ≤ Q̄. This is equivalent to each such hypersurface
containing an absolutely irreducible Q subvariety.

Finally, as a special case of Igusa-like conjectures, for a single prime p, and fixed
yyy ∈ Ad(Z) there was the problem of counting the solutions cm,p on hd,yyy(xxx) in Z/pm.
The qualitative question was this.

Problem 7.14. Show the Poincaré series
∑∞
m=0 cm,pt

m is in Q(t).

[BoSh66, p. 47, Prob. #9] is a special case with d = 2, of Prob. 7.14, I first
heard about it very near the time of Ax-Kochen.

7.3.2. Uniform in p quantifier elimination. Ax-Kochen, clearly modeled on Tarski’s
elimination of quantifiers, left a general problem. Is there such an elimination of
quantifiers for problems P,generalizing (7.21), over finite fields. [Ax68] posed this.
(We understood this would give versions by replacing all finite fields by all p-adic
completions, as noted in §7.3.4.)

That is, suppose Q1, . . . , Qm are quantifiers (often taken to alternate between ∃
and ∀) on blocks of variables yyy1, . . . , yyym, with possible unquantified parameters zzz.
Could you form a series of statements in one less (block of) quantifier(s), that for
almost all primes p would be equivalent to the previous statement, until you were
down to an unquantified statement. For a statement DP,zzz,Q1yyy1,...,Qmyyym of the type
above, denote by DP,zzz,yyy1,...,yyym−1,Qmyyym the statement where you drop the first m−1
quantifiers. Here is a statement of the elimination of quantifiers in equation form,
where NDP denotes an explicit finite set of primes dependent on DP .

Problem 7.15. Given DP,zzz,Q1yyy1,...,Qmyyym can you form DP ′,zzz,Q1yyy1,...,Qm−1yyym−1
(de-

pendent on P ′ and P ) so that for all p 6∈ NDP , for each (zzz,yyy1, . . . , yyym−1) mod p:

DP,zzz,yyy1,...,yyym−1,Qmyyym mod p if and only if DP ′,zzz,yyy1,...,yyym−1
mod p.
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We understand P and P ′ as above to be algebraic subspaces of the space with
appropriate variables. It was seen almost immediately that the conclusion to
Prob. 7.15 was impossible. Yet, a logic statement asserted that by Gödel num-
bering all possible proofs of all possible statements there would be one in the end
that would be either a proof or disproof of the starting finite field problem.

That may have sufficed for many logicians, for whom particular problems of
algebra may not have mattered. So arose surmises there would be no such useful
procedure of any sort along the lines of Prob. 7.15. But there was, based on the
following principle: With an enhancement, what worked in Davenport’s problem –
without the RET part – worked in general.

What allowed elimination of quantifiers was to extend the simple quantified
variable statements, and replace them by generalizations of monodromy statements
like that of Thm. 3.1. Here are some of the ingredients of the generalization; called
a Galois Stratification. Instead of 1-variable z, you would have many variables – in
the induction procedure, zzz,yyy1, . . . , yyym−1; and instead of the trace statement (3.2),
there would be a statement about elements falling in conjugacy classes.

We couldn’t expect with such general problems that there would be an idea like
Monodromy Precision (§3.2.1). For complete generality we must replace one cover
of P1

z by a stratification of the space with variables zzz,yyy1, . . . , yyym. Attached to each
piece of the stratification A there would be an attached Galois cover ϕ :A: XA → A
of the underlying space, with associated conjugacy classes CA.

You also need to extend the meaning that the variables would have values in a
finite field Z/p. Suppose zzz,yyy1, . . . , yyym−1 is within a particular A′ of the stratification
mod p for P ′, and Qm is ∃. Then, for some yyym with values in Z/p:

(7.22) with (zzz,yyy1, . . . , yyym) in a stratification piece A attached to P that projects
to A′, the Frobenius attached to that value is in CA.

There is a similar statement for ∀. Most seriously, no simple trick allowed re-
verting everything to existential statements, unlike Tarski’s situation. Of course,
the work comes in producing the stratification, covers and conjugacy classes, with
stratification pieces A′ that are projections of stratification pieces A of P .

The start and end of the procedure caused some confusion for those with pre-
conceptions. The start had to also be a Galois Stratification. The trick – use trivial
(degree 1) covers and the identity conjugacy class – maybe seemed so trivial as to
be inconsequential. When, however, you remove the first block of quantifiers, the
replacement Galois Stratification will be as consequential as the difference between
Davenport’s original problem, and the Thm. 3.1 monodromy statement.

There was one further confounding ingredient. Ax referred to his version [Ax68]
of a procedure special case as one-variable. That sounds like it included, say, prob-
lems like Davenport’s. But that was not so. The Galois Stratification procedure
recognized Ax’s case as the zero variable case: the base was an open subset of Spec
of the ring of integers of a number field.

The many variable Chebotarev density referred to in the comments after (3.2)
allowed uniformity with p. At each elimination of a block of quantifiers the pro-
cedure carried a possibly increasing exceptional set of primes: NDP |NDP ′ in the
equivalence of Prob. 7.15.

7.3.3. Introducing zeta functions. [FrJ86, Chap. 25 and 26]1 and [FrJ86, Chap. 31
and 32]2 have complete details of the most elementary form of the Galois Stratifica-
tion procedure along with the zeta function production – our next topic – based on
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Galois Stratification coefficients. I briefly remind what these things are, along with
the value of, and problems with, Chow motives. Then I conclude with problems
that tie to Schur’s Conjecture and Davenport’s Problem.

[DeLo01] and [Ni10] also have expositions of Galois Stratification, and they en-
hance the zeta function coefficients, extending them to Chow motive coefficients.
A Zeta function, Z(t), has an attached Poincaré series P(t). This is given by the
logarithmic derivative:

t
d

dt
log(Z(t)) = P(t).

Add that Z(0) = 1, and each determines the other. The catch: Z(t) rational (as a
function of t) implies P(t) rational, but not always the converse.

Given diophantine problem DP,zzz,Q1yyy1,...,Qmyyym as in Prob. 7.15, consider the
cardinality of the set of zzz0 with values in Fpk for which when you set zzz to zzz0

the parameter free statement DP,zzz0,Q1yyy1,...,Qmyyym
is true over Fpk . Denote this by

νp(DP,Q1,...,Qm , k). Abusing notation, the most elementary Poincaré series attached
to DP,zzz,Q1yyy1,...,Qmyyym at the prime p is

(7.23) PDP,Q1,...,Qm
(t) def=

∞∑
k=1

νp(DP,Q1,...,Qm , k)tk.

I don’t know when Ax introduced such νp(DP,Q1,...,Qm , k), but he told me the
problem of meaningfully computing them at IAS in Spring ’68. The Galois strati-
fication procedure concludes with an integer N∗DP and the following:

(7.24a) a quantifier free Galois stratification Pzzz over Azzz[1/N∗DP ], the affine space
over Z with the p|N∗DP removed; and

(7.24b) for each p|N∗DP , a stratification of Azzz mod p.

We call (7.24a) (resp. (7.24b)) the uniform – in p – (resp. incidental) stratification.
Both are important, but Denef-Loeser deal only with the uniform stratification.

Theorem 7.16. For each prime p, PDP,Q1,...,Qm
(t) is a rational function np(t)

dp(t) ,
with np, dp ∈ Q[t] and computable. The corresponding ZDP,Q1,...,Qm

(t) has the form

exp(m∗p(t))(
n∗p(t)

d∗p(t) )
1
` p with m∗p, n

∗
p, d
∗
p ∈ Q[t] and `p ∈ Z+ computable. Further, there

are bounds independent of p, for all those functions of t.

Comments on the proof of Thm. 7.16. These comments are highlights from [FrJ86,
§26.3]1 or [FrJ86, §31.3]2 (which are essentially identical) titled: Near rationality
of the Zeta function of a Galois formula. We point especially to the effect of
stratification choices and the use of Dwork’s cohomology for the result. What we
say here applies equally to the uniform and incidental stratifications.

The conclusion of the Galois stratification procedure over the zzz-space gives this
computation for νp(DP,Q1,...,Qm , k). It is the sum of the zzz with values in Fpk for
which the Frobenius falls in the conjugacy classes attached to the piece of the
stratification going through zzz.

The expression of that sum in Dwork cohomology is what makes the effective-
ness statement in the Thm. possible, and this is what suggests its direct relation to
Denef-Loeser. An ingredient for that is a formula of E. Artin. It computes any func-
tion on a group G that is constant on conjugacy classes as a Q linear combination
of characters induced from the identity on cyclic subgroups of G.
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A function on G that is 1 on a union of conjugacy classes, 0 off those conjugacy
classes, is an example. [FrJ86, p. 432-433]1 recognizes the L-series attached to that
function as a sum of L-series attached to those special induced characters. I learned
this from [CaFr67, p. 222] and had already used it in [Fr74a, §2]. Kiefe – working
with Ax – learned it, as she used it in [Ki76] – from me, as a student during my
graduate course in Algebraic Number Theory at Stony Brook in 1971. The core of
the course were notes from Brumer’s Fall 1965 course at UM.

Kiefe [Ki76], however, applied it to the list-all-Gödel-numbered-proof procedure
in §7.3.2; not to the Galois stratification procedure I showed her (see my Math
Review of her paper, Nov. 1977, p. 1454). Consider the the identity representation
induced from a cyclic subgroup 〈σ〉 of G. Then this L-Series is the same as the zeta
function for the quotient of the cover by 〈σ〉 [FrJ86, exp. 7-9, p. 433]1.

Given a rational function in t, its total degree is the sum of the numerator and
denominator degrees; assuming those two are relatively prime. [FrJ86, Lem. 26.13]1
refers to combining [Dw66] and [Bm78] to do the affine hypersurface case for explicit
bounds – dependent only on the degree of the hypersurface – on the total degree
of the rational functions that give these zeta functions. Then, some devissage gets
back to our case, given explicit computations dependent only on the degrees of the
functions defining these algebraic sets.

Finally, [FrJ86, Lem. 26.14]1 assures the stated polynomials in t have coefficients
in Q, and it explicitly bounds their degrees. The trick is to take the logarithmic
derivative of the rational function. Then, the Poincaré series coefficients are power
sums of the zeta-numerator zeros minus those of the zeta-denominator zeros. Using
allowable normalizations, once you’ve gone up to the coefficients of the total degree,
you have determined the appropriate numerator and denominator of P(t).

One observation is left to uniformly bound in p the degrees of the zeta polynomi-
als, etc. That is, we need a uniformity in the primes whereby you are applying the
uniform stratification (7.24a). It comes from this that the degrees of polynomials
describing the affine covers, in applying Dwork-Bombieri, do not change. �

7.3.4. Chow Motive Coefficients. The comments on Thm. 7.16 show we can express
the coefficients in the Poincaré series from the trace of Frobenius iterates acting
on the p-adic cohomology that underlies Dwork’s zeta rationality result. Positive:
The computation is effective. Negative: The cohomology underlying Dwork’s con-
struction varies with p. Nothing in 0 characteristic represents it.

Even, however, with Dwork’s cohomology (in his original proof in 1960), you
deal with stratifying your original variety. By “combining” the different pieces you
conclude the rationality of the zeta function from information on the Frobenius
action from the hypersurface case.

Every variety is birational to a hypersurface in some projective space. Yet,
reverting to hypersurfaces requires stratifying the original space in a problem. Also,
[FrJ86] stratifies the underlying space to assure covers are unramified (no branch
locus). This is to have monodromy precision (§3.2.1) along each underlying piece
of the stratification. If you adhere to avoiding branch loci, then covers of projective
spaces, for example, force refined stratifications.

Denef and Loeser in [DeLo01] applied Galois stratification (see the arXiv ver-
sion of [Hal07, App.]) to eliminate quantifiers in their p-adic problem goals. They
phrased these as p-adic integrations generalizing Prob. (7.14). [FrJ86, §26.4, last
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subsection]1 discusses several p-adic problems, but there is no [FrJ86, §31.4]2 corre-
sponding? The main Denef-Loeser innovation replaces Dwork cohomology of affine
hypersurfaces, varying with p, with `-adic (étale) cohomology of projective nonsin-
gular varieties in 0 characteristic.

That enhanced the uniformity in p in the uniform stratification (7.24a), the part
of the stratification they used. The effect in [DeLo01] was to compute Poincaré
series coefficients – it worked for similar reasons on their p-adic problems – through
coefficients in the category of Chow motives.

Roughly: an element in a Grothendieck group generated by nonsingular projec-
tive varieties replaces each piece of the uniform stratification. So, each Poincaré
coefficient is a formal “sum” of `-adic (` 6= p) vector spaces. This stratification
replacement uses resolution of singularities in 0 characteristic. [Den84], from a
one-prime-at-a-time period, was a forerunner. For that alone the primes of the
incidental stratification were untouchable.

A Tate twist of a cohomology group is a tensoring of the group by some power of
the cyclotomic character (§5.1.3). If a nonsingular projective variety has coefficients
in Q, then GQ acts on its Tate-twisted cohomology.

The vector spaces come from the étale cohomology groups of projective nonsingu-
lar varieties. The word motivic means that the weighted pieces – rather than from,
say, the mth cohomology of a projective nonsingular variety – might be a summand
of this, tensored by a Tate twist. A correspondence – cohomologically idempotent
– is attached to indicate the source of the projector that detaches a summand from
the full weighted cohomology. As you vary primes of the uniform stratification, you
compute the Poincaré series or zeta function coefficients by applying iterates of the
p Frobenius – followed by the trace – to the Chow motives.

The Denef-Löser approach adds canonical zetas to the pure Galois stratification
procedure. Still, it requires equivalences that relegate covers to the background of
the final result.

7.3.5. Étale cohomology observations. Let n be the modulus for an arithmetic pro-
gression Aa = Aa,n = {a + kn | 0 ≥ k ∈ Z} with 0 ≤ a ∈ Z. Call Aa a full
progression if a < n. A full Frobenius progression Fa = Fa,n is the union of the
full arithmetic progressions mod n defined by all residue classes a · (Z/n)∗ mod n.
Example: The full Frobenius progression F2,12 is A2,12 ∪A10,12.

The following, including Prop. 7.17, is an extension of [Fr05b, §8.2.2]. We call
any Q-linear combination of series PDP,Q1,...,Qm

(t) (as in (7.23)) a Weil vector. For
a particular Weil Vector PDP , its 0-support is the collection of k ∈ Z with the
coefficient of tk equal to 0. Denote that SupDP (0). We say two Weil vectors have
a Weil relation if their difference has an infinite 0-support.

Proposition 7.17. For any Weil vector, SupDP (0) differs by a finite (accidental)
set from a union of full (possibly empty) Frobenius progressions. Dependent on the
equations defining a Galois stratification, it is possible to find the accidental set and
union of Frobenius progressions attached to it explicitly.

Proof. Consider the near rational zeta function, Z(t) def= exp(m∗p(t))(
n∗p(t)

d∗p(t) )
1
` p , at-

tached to the Weil Vector by Thm. 7.16. The polynomial n∗p has the form
∏m1
i=1(1−

αit) while d∗p has the form
∏m2
j=1(1− βjt). The αi s and βj s are complex numbers.
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Take the logarithmic derivative of Z(t). The result is a polynomial in t plus a
constant multiple of an expression of form

(7.25)
∞∑
k=0

ν(DP , k)tk def=
∞∑
k=0

(m1∑
i=1

αki −
m2∑
j=1

βkj
)
tk.

The statement on Frobenius progressions follows by showing the collection

SupDP
def=
{
k ∈ N+ |

m1∑
i=1

αki −
m2∑
i=1

βkj = 0
}

is a union of full Frobenius progressions.
Lem. 7.18 is in [V87, Thm. 2.3.1] (result due to [vdP82]). The argument for

curves in [Fr94a, Median Value Curve Statement 3.11] requires a modification for
the general case. Take L to be the field generated by all the αi s and βi s. Then
take Γ to be the multiplicative subgroup generated by αi/α1, i = 2, . . . ,m1, and
βi−m2+1/α1, i = m1, . . . ,m1 +m2, and -1.

Lemma 7.18. With L a number field and Γ a finitely generated subgroup of L∗,
all but finitely many solutions in Γ of

(7.26) u1 + · · ·+ un = 1, ui ∈ Γ

lie in one of the diagonal hyperplanes HI defined by the equation
∑
i∈I xi = 0 with

I ⊂ {1, . . . , n} and 2 ≤ |I| ≤ n.

Apply this with n = m1 + m2 − 1. So, excluding a finite subset, elements of
SupDP (0) correspond to solutions on one of the hyperplanes

HI1∪I2(I1 ⊂ {2, . . . ,m1} and I2 ⊂ {m1 + 1, . . . ,m1 +m2}).
For each such HI1∪I2 , denote the corresponding set of k by S(I1, I2). We show
S(I1, I2), up to a finite set, is a union of full Frobenius progressions. Then, running
over such (I1, I2), we get SupDP (0) is such a union.

Apply an induction on n. Suppose for some infinite subset of k ∈ S(I1, I2),
there is a proper subset J of I1 ∪ I2 for which wi,t = (αi/α1)k , i ∈ I1 ∩ J and
wi,t = −(βi−m1/α1)k, i ∈ I2 ∩ J , which sum to 0. That gives two proper subsets
(for J and I1∪I2 \J) summing to 0. Find a union of Frobenius progressions for the
first (using induction on n), then we automatically get one for the second, giving
such for HI1∪I2 . Thus, in heading for our conclusion, assume no infinite set of k
gives a proper subset of the wi,k s summing to 0. Then, according to [V87, loc. sit.]:

(7.27) For this set of k, the collection wi,k is constant in k, for each i.
This says each of the αi/α1 and βi/α1 are roots of 1. Conclude this part of the

theorem easily. Under the hypothesis of explicit equations (given Thm. 7.16), we
get an explicit conclusion if the argument above can be made explicit. That is, we
need only decide if various subsets of the wi,k sum to 0, or are roots of 1. �

Remark 7.19. Prop. 7.17 didn’t attend to the cardinality of the accidental set:
k ∈ SupDP (0), yet not part of a Full Frobenius progression. [Ev03] has the following
result. Let K be a field of characteristic 0, and G ≤ K∗ a finitely generated
subgroup. Consider linear equations a1x1 + · · ·+ anxn = aaa ·xxx = 1, all ai s nonzero,
with xxx = (x1, . . . , xn) ∈ Gn. He says aaa and aaa′ are G-equivalent if there is uuu ∈ Gn
with aaa = uuu · aaa′. Let m(aaa,G) be the smallest m for which the set of solutions of
aaa · xxx = 1 is contained in the union of m proper linear subspaces of Kn. Clearly,
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m(aaa,G) depends only on the G-equivalence class of aaa. It is also finite. Gyory
and Evertse show (1988) that there is c(n) so that, for all but finitely many G-
equivalence classes aaa, m(aaa,G) < c(n). [Ev03] improves this to c(n) = 2n+1.

Let Xi,q, i = 1, 2, be normal and projective over Fq with this property:
(7.28) |X1,q(Fqk)| = |X2,q(Fqk)| for ∞-ly many k.
That is, their Poincaré series have a Weil relation. If we take an affirmative

answer to Prob. A.1 as a working hypothesis, then our questions below extend to
normal, rather than projective varieties. Prop. 7.17 shows how to decide for such
Xi,q s if they do have such a Weil relation. Now assume Xi,K is a normal projective
variety over a number field K, with its reduction mod ppp denoted Xi,K,ppp, i = 1, 2.
To consider the global version of (7.28) assume this property:

(7.29) The Poincaré series for X1,K,ppp and X2,K,ppp have a Weil relation for infin-
itely many ppp.

Problem 7.20. Find a procedure like that of Prop. 7.17 to check condition (7.29)
among the primes of the uniform stratification (in (7.24a)).

A pr-exceptional cover X → Z (any cover of normal varieties) over a finite field
Fq is one for which X(Fqk) → Z(Fqk) is surjective for ∞-ly many k. Similarly
for a pr-exceptional cover over a number field K (see (3.4d)). A pr-exceptional
correspondence between X1,q and X2,q is an algebraic set Yq ⊂ X1,q ×X2,q over Fq
such that for ∞-ly many k, Yq is simultaneously – by projection on the ith factor
– a pr-exceptional cover of Xi,q over Fqk , i = 1, 2. Similarly, there is an analogous
idea of a pr-exceptional correspondence Y between X1,K and X2,K .

Suppose, as above, Yq is a pr-exceptional correspondence with exactly one abso-
lutely irreducible component over Fqk for ∞-ly many k in the support of the Weil
relation (7.28). Then it is an exceptional correspondence [Fr05b, §3.1.2].

Similarly, over a number field K, Y is an exceptional correspondence if there are
infinitely many ppp for which reduction mod ppp is an exceptional correspondence. In
the respective cases the conditions (7.28) and (7.29) hold. [Fr05a, Prop. 4.3] notes
that if Yq is an exceptional correspondence, then:

(7.30) the support of the Weil relation has a full Frobenius progression contain-
ing k = 1, but it does not contain all k.

When X2 = Pm for some integer m we refer to the Weil relation as having
median value. The case m = 1 is significant.

Problem 7.21. Consider X1,K , X2,K satisfying (7.29), where (7.30) holds (for
X1,K,ppp, X2,K,ppp) for ∞-ly many ppp. Can you characterize this in Denef-Loeser co-
homology components (§7.3.4). Give an example where there is no exceptional
correspondence between X1 and X2.

Recall condition (4.1b) for Davenport pairs Xi → Z over Fq, i = 1, 2: The
number of points of Xi(Fq) having a given image z ∈ Z(Fq) is independent of
i = 1, 2. Such a Davenport pair is an i(sovalent)DP (over Fq). Then, (7.28) holds.
Similarly, we have iDP s over a number field, and then (7.29) holds.

For a cover X → Z, denote its u-fold fiber product over Z – I apologize for the
overloaded notation – by Xu

Z . [Fr05a, Prop. 3.9] characterizes the iDP property
by noting that there are pr-correspondences between Xu

1,Z and Xu
2,Z , u = 1, . . . , n,

where n is the common degree over Z of the Davenport pair. So, it to is a mon-
odromy precise condition (§3.2.1). Rem. §6.11 gives many dimension one iDPs.
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[Fr05a, Prop. 8.2]: For iDPs over Fq, the support set consists of all k ≥ 1; and for
iDPs over a number field, the support set includes all but finitely many ppp.

Problem 7.22. In analogy with Prob. 7.21, characterize when there is a v and a
system of pr-correspondences between Xu

1,Z and Xu
2,Z , u = 1, . . . , v accounting for

condition (7.28) over OK/ppp and all its finite extensions for almost all ppp.

Finally, a major problem would be to take advantage of the Denef-Loeser en-
hancement of Galois stratification, in the following form.

Problem 7.23. Both quantitatively and qualitatively separate the primes of the
incidental and uniform stratification.

7.3.6. Modestly motivic. Consider the Frobenius on the étale cohomology pieces
from Denef-Loeser in §7.3.4. Its eigenvalues have absolute value determined by
the weight of the cohomology and the Tate twist powers, from Deligne’s proof of
the Weil conjectures [Del74]. The Galois stratification procedure produced the
stratification pieces that allowed this application of étale cohomology.

Still, once we have it, [Fr86] aimed to distinguish “good” and “bad” primes
attached to a particular problem DP . That is, to separate conceptually the uniform
from the incidental primes in statements of, say, Prob. 7.23. For one, the eigenvalues
of the Frobenius don’t have the same archimedian virtues in Dwork cohomology.
[Del80] has techniques for treating the Frobenius on étale cohomology for families
of varieties, whose relevance §6.4 hints at.

For example, statements attached to our Davenport problems (over number
fields) seem to have no bad primes – either by §6 theory or §7.2 equations. This
contrasts with the primes that are exceptional for a given degree d in Artin’s Con-
jecture a la the Ax-Kochen “solution” (§7.3.1).

Following Deligne’s definition in [Del89, p. 90], you might aim to attach a motivic
object to a problem where it makes sense to consider various “realizations:” over
the reals, `-adics and p-adics. So, a motivic cohomology would be cohomologically
functorial on appropriate algebraic varieties with a de Rham, étale and, say, Dwork
cohomology realization, when they make sense. Deligne’s treatise was about motivic
integration giving “motivic” interpretation of polylogs.

Problem 7.24. Produce objects as zeta coefficients that specialize to Chow mo-
tives at the uniform primes and to Dwork cohomology at the incidental primes.

[Fr86] inspected, based on flat covers, how to avoid unnecessarily refining Galois
stratifications. It also produced the definition of an L-series on a Galois stratifica-
tion. That starts from a Galois stratification on the base (the space defined by no
quantified variables; given by zzz in, say, Prob. 7.15). Flatness also appears in [Be11]
which talks up a relation with Thm. 7.16 considerably. I comment.

The paper starts with a constructible equivalence relation over the base B over a
finite field. It considers the zeta function counting the Fqk equivalence classes and
produces a zeta exactly as in Thm. 7.16, essentially by quoting it.

A restatement: Given a constructible set C in An+m over Fq, you form Poincaré
series coefficients Nk = |{x ∈ An(Fqk)|p−1(x) ∩ C(Fqk)}| where p : An+m → An is
the projection. Understatement: The counting problem is a special case of ours,
for it is pure existential, in a 2-page Intersection-Union process section [FrS76, §2].

As in [Be11, Def. 3.6], a good and flat stratification: “A modicum of care is
needed to find an expression varying suitably ‘continuously’ in flat families.”Hilbert
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Schemes put edges on his stratification; monodromy precision does on ours. More
applications of these zeta functions would test these stratification conditions.

7.4. Applied group theory and challenges occuring ‘in nature’. The topic
of what groups occur ‘in nature’ started in §1.4 with a phrase of Solomon [So01].
§7.5.3 reconsiders that. Some, however, might prefer something less solemn like
[KSi08] (authors based at UM) in the Scientific American as a substitute. Their
article snuck in the topic of ‘what are simple groups?’ through a spirited analog of
Rubik’s cube. They based this on a Mathieu group, M12, property: like all simple
groups (consequence of the classification) it requires just two generators.

Most mathematicians, however, know that the technical – rather than playful –
side of group theory tends to dominate. §7.4.1 gets into how you, even if you had
little group theory training, could deal with it.

7.4.1. Extending both RET and the genus 0 problem. [So01] wanted to document
that the simple group classification – including the so-called quasi-thin part ques-
tioned by Serre [Se92, p. 79] – is available. That is, you may confidently apply it as
we suggest below. [Fr94b, §5] inspects Serre’s challenge in this light and concludes
“More than to complete our confidence in the classification, Gorenstein wanted it
accessible to a researcher not dedicated to group theory.”

Experience shows that most mathematicians who might use the monodromy
method – as in Davenport’s Problem – will require collaboration with a group
theorist. To show how that might work, I later took on one more problem in the
Davenport range. That was a version of Schur’s problem on polynomial covers, but
restricted to finite fields of a fixed characteristic.

Guralnick and Jan Saxl joined me in the 3rd section: Going through every step
of the [AOS85] classification, as in §7.1 and §A.3. I was not a passive purveyor of
Guralnick and Saxl. First, I caught the unusual new Schur covers for the primes 2
and 3 that were slipping by overly-optimistic group assumptions. Second, I showed
how using [AOS85] worked (§A.3).

Expression (3.5) has the definition of an exceptional cover over a given finite field.
The original proof of Schur’s conjecture in [Fr70] easily described all exceptional
(Schur) polynomial covers f over a finite field Fq, when deg(f) is prime to the
characteristic. When this hypothesis does not hold, the ramification group I∞ over
∞ is no longer generated by a single element, σ∞ (from §3.3.2).

Yet, a loosening of this statement works. There is a factorization aGf (1) · I∞ of
aGf : It is a set theoretic product of the stabilizer of a letter in the representation,
and I∞. Since p divides |I∞| any possible exceptional covers are wildly ramified
at a significant place. So, the traditional Riemann’s Existence Theorem no longer
applies, though we gained from experience with it.

A composition of two polynomials over a finite field gives a one-one map if only
and if each is one-one. Conclude that a polynomial over a finite field is exceptional
if and only if its composition factors over the field are. So, classifying exceptional
polynomials over a finite field, reverts to assuming the arithmetic monodromy, aGf ,
is primitive; Gf maybe not. What I understood was that organizing [AOS85] was
Guralnick’s job. Filling in possible factorizations of primitive groups that could
arise was Saxl’s – based on his familiarity with [LPS].

We easily solved Dixon’s 1897 conjecture classifying the exceptional covers of de-
gree p over a finite field of characteristic p [FrGS93, Thm. 8.1]. Moreso, we extended
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his conjecture to describe all exceptional polynomials with geometric monodromy
of the form V ×sC with C cyclic and acting irreducibly on V = Z/pa, an especially
easy affine group (§A.1). These are the semi-linear polynomials of Cohen [C90].
[FrGS93, Cor. 11.2] characterizes which of these are indecomposable over Fq, but
not over F̄q. This provides infinitely many examples showing the necessity of the
hypothesis p 6 |n in the Polynomial Primitivity Lem. 3.8.

That described all affine groups known then to be arithmetic monodromy groups
of exceptional indecomposable polynomials. But, then an unexpected event caused
the biggest stir. To understand, consider the two main results on exceptional f
over finite field Fq, q a power of p, that are not one of the examples above. §A.1
has the definition of PΓLpa .

(7.31a) If p 6= 2 or 3, then f has geometric monodromy an affine group acting
on V = Z/pa with deg(f) = pa [FrGS93, Thm. 13.6].

(7.31b) If p = 2 or 3 and Gf is not affine as in (7.31a), then it is between
PGL2(pa) and PΓL2a with a ≥ 3 odd. If p = 2 , deg(f) = 2a−1(2a−1)
and if p = 3, deg(f) = 3a(3a−1)/2 (which is odd) [FrGS93, Thm. 14.1].

With the group theory pointing the way in (7.31b), Peter Müller came up with
the first example. Then [CM94] and [LZ96] fulfilled the other degrees of these
here-to-fore unexpected exceptional covers.

We now use one-half (see (7.35a)) of Grothendieck’s famous RET version [Gr59]
that applies to tamely ramified covers in positive characteristic. It assures that if we
avoid primes dividing the orders of the groups that arise in Thm. 4.5, or Prop. 5.5,
then the solution of Davenport’s problem is essentially the same as it is in positive
characteristic. That is, for such a prime, you can figure exactly the fields Fq over
which there are Davenport pairs (f, g) with f and g having exactly the same ranges
over Fqt for every integer t ≥ 1.

Yet, here, too, there is a surprise. If we allow wild ramification, instead of
just those finitely many possible degrees 7, 11,13, 15, 21 and 31, we find a whole
new infinite collection of Davenport pairs of degrees prime to the characteristic,
arise over essentially every finite field. They aren’t esoteric; we understand them
precisely as an analog of the original Davenport pairs.

Let 〈j〉q
def= 1 + q + q2 + · · · + qj . [Fr99, Thm. 5.2] says, for each Fq and each

integer m ≥ 3, there is a Davenport pair (f, g) of degree n = 〈m−1〉q over Fq
with geometric monodromy group PGLm(Fq). Also, f(x) − g(y) has exactly two
absolutely irreducible factors, one of degree 〈m−2〉q. The result describes precisely
the arithmetic monodromy group in each case.

[Abh97] explicitly gives the polynomials f . We take these as corresponding to
the representation Tf on points of projective space. After what works unchanged
in this case from [Fr73a], the main problem is to guarantee that the cover resulting
from the representation of PGLm(Fq) on hyperplanes also has genus 0.

Since the cover for f wildly ramifies, R-H (5.1) doesn’t apply. We only know
that its substitute depends on computing orbits of the higher inertia groups (in this
case, from ramification over z′ = 0) as in [Fr99, Lem. 3.1]. As elsewhere, I didn’t
explicitly compute g attached to f , but [Bl04] did.

Thus, we see that the genus 0 problem has a different texture in positive char-
acteristic. In concentrating on Davenport’s problem, there are immensely more
covers in positive than 0 characteristic. Yet, characteristic 0 illuminated the way.
Ram Abhyankar’s goals included producing all groups as Galois groups over the
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algebraic closure of positive characteristic fields – as with Grothendieck, there was
no number theory objective – from genus 0 covers.

Though [Ra94] solved the conjecture made in [Abh57], using Harbater patching –
as epitomized in [H94] – even to this day it is referred to as a conjecture. The covers
in Prop. 7.25 violate both (5.6a) and product-one (5.6b): the RET constraints have
no obvious analog in positive characteristic.

Proposition 7.25 (Abhyankar’s Conjecture). Consider any finite group G gen-
erated by its p-Sylows (including all simple groups of order divisible by p). Then,
there is a Galois cover fG : XG → P1

z with group G ramified only over z =∞.

The critical proof piece in Abhyankar’s Conjecture might have you despair of
ever figuring which simple groups of order divisible by p might be “characteristic
p genus 0 groups” (as in §7.1.4). Yet, from [G03] it is known, for any fixed g, that
many simple groups are not monodromy groups of genus ≤ g covers of P1

z. This
defies Abhyankar’s empirical Galois group producing attempts.

Yes, the monodromy method works. Yet, solving Davenport’s problem, as in
§6.4, gives us spaces whose points exactly correspond to production of Davenport
pairs. §7.5.2 concludes this paper by discussing a result – inspired by these examples
– that extends Grothendieck’s Theorem to wildly ramified covers.

7.4.2. Davenport and Müller’s Conjecture. This subsection and the next consider
the immense divide between Davenport’s problem and Schinzel’s, once you drop
the indecomposability (read, primitivity) assumption of, say, Prop. 5.4 that assures
their essential equivalence.

First consider Davenport’s Problem (over Q). Peter Müller has gone after find-
ing exceptions from polynomials with exactly two composition factors. His list
[Mü98, p. 25] considers f(x) = a(b(x)), a, b ∈ K[x] of degree exceeding 1 and each
indecomposable (K a number field). His conclusion: g has the form a(b∗(x)).

He assumes (b, b∗) don’t form a Davenport pair over K: otherwise, composing
any a with both b and b∗ gives an obvious Davenport pair. He lists the finite many
resulting monodromy groups. He notes [Mü98, p. 27] a recurrance from Thm. 4.1
(DS2 ): Tf and Tg are equivalent as group representations. That is, as in (4.1b)
(or below (7.32)), the values of f and g are achieved with the same multiplicity.
Finally, he has this conjecture [Mü98, Conj. 11.3] (augmented by [Mü06]), using
the degree 8 pairs (fd, gd) from Ex. 2.2 up to our usual equivalence.

Conjecture 7.26 (Müller’s Conjecture). Let f, g ∈ Q[x] be a Davenport pair over
Q. Then, they are either linearly equivalent over Q, or f = h(fd) and g = h(gd) for
some polynomial h ∈ Q[x] and (fd(x), gd(x)) as given above.

I start to consider that there may be vastly different conclusions to the Dav-
enport and Schinzel hypotheses when f is decomposable. Consider a Galois cover
over a number field K with group aG having two faithful (no kernel) permutation
representations Tf and Tg. Assume these are inequivalent as permutation represen-
tations. (The f and g subscripts identify with our previous topics; we don’t assume
polynomials yet.) We summarize a hierarchy of conditions. Again, aG(Tf , 1) is the
stabilizer in aG of a particular letter on which Tf acts.

(7.32a) Tf and Tg are are equivalent as group representations.
(7.32b) For each σ ∈ aG, tr(Tf (σ)) > 0⇔ tr(Tg(σ)) > 0.
(7.32c) aG(Tf , 1) is intransitive on the letters of the representation Tg.
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We have a one group, two faithful representations, hypothesis. [Fr73a, Lem. 3]
says (7.32b) implies (7.32c): You need not assume the same degree. It also says
(7.32c) – restating Schinzel’s hypothesis in (2.3d), that f(x) − g(y) is reducible
– group theoretically. If f is indecomposable, condition (7.32a) – equivalent to
Tf (σ) = Tg(σ) for each σ ∈ aG – comes from Thm. 4.1, (4.1a).

Without assuming f is indecomposable, (7.32a) implies a S(trong) D(avenport)
hypothesis from the converse statement of (4.1a): For almost all primes ppp, not only
are the ranges of f and g the same over OK/ppp, but each element in the range is
assumed with the same multiplicity. Condition (7.32b) is equivalent to the ranges
are the same, but drops the “with the same multiplicity” conclusion.

[Fr73a, Lem. 2] notes (7.32a) and (7.32b) are equivalent if both Tf and Tg are
doubly transitive, a conclusion of f being an indecomposable polynomial.

Yet, none of the the (7.32) hypotheses include that the covers attached to f and
g have genus 0. Also, we can proceed if desired to an algebraic closure, without
regard to ranges over residue class fields. So, for reducibility of variables separated
expressions, we may consider if (7.32b), or even (7.32a), might hold, too.

7.4.3. Schinzel’s problem and group challenges. Lem. 4.2 starts by noting that if
f = f1 ◦ f2, g = g1 ◦ g2 and f1(u)− g1(v) is reducible, then so is f(x)− g(y).

Definition 7.27. Assume f(x)−g(y) is reducible. Also, for no (f1, g1) with either
deg(f1) < deg(f) or deg(g1) < deg(g) is f1(u) − g1(v) is reducible. Then, we say
(f, g) is newly reducible.

To properly focus on unknowns in Schinzel’s problem, we restrict attention to
newly reducible (f, g). Further, Lem. 4.2 lets us conclude that for a newly reducible
(f, g), the Galois closures of the covers for f and g are the same.

Recall the discussion of [So01] in §1.4 asking about groups that occur in nature. If
you assume that Schinzel’s problem occurs ‘in nature,’ then there is the challenge of
non-primitive groups, which aren’t close to simple groups. Now I give two problems
that distinguish Schinzel (2.3d) from Davenport (2.3c) (as in Conj. 7.26): The
Reduced Equivalence Problem and the (m,n) Problem.

The former starts like this. Assume f, g ∈ K[x], deg(f) > 1, are reduced equiv-
alent (§5.4.1; but not affine equivalent over Q̄, as in §1.2). That is, up to affine
change in x and y, g(x) = af(x) + b, a, b ∈ Q̄. Consider two possible events:

(7.33a) No translation of f is affine equivalent to a cyclic polynomial and the
covers f, g : P1

x → P1
z have the same geometric Galois closures; or

(7.33b) no translation of f is composite with a non-trivial cyclic polynomial and
f(x)− g(y) is reducible ((7.32c) holds).

Prop. 7.28 includes a quick proof of [Gu10, Thm. 3] with the same condition on
g as (7.16b), but it asks only when is the variables separated expression reducible,
without concern for the genus of the projective normalization of a component.
Recall the branch cycle, σ∞, at ∞ for a polynomial cover from §3.3.2. As in §2.3
denote the (geometric) Galois closure of the cover for f by f̂ : X̂f → P1

z.

Proposition 7.28. We may assume a = ζv = e2πi/v, v 6= 1, and translating f by
a constant, also that g = ζvf if either (7.33a) or (7.33b) holds. Then, a acts as a
permutation ua of the finite branch points,

If (7.33a) holds, then z 7→ az + b gives a cyclic cover µ : P1
z → P1

u with group
〈a∗〉 = Z/v where the following holds. The composite cover µ ◦ f̂ : X̂f → P1

u is
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Galois. If σ∗∞ ∈ Gµ◦f̂ is a branch cycle over ∞ for µ ◦ f̂ , then we can take its
natural image in 〈a∗〉 to be a∗, and σ∞ = (σ∗∞)v. Denote conjugation by σ∗∞ by
cAZ. It has trivial action on σ∞, and no element of Sn represents it.

Let Z ′ be a cycle of branch points under ua. If (7.32a) (resp. (7.32b)) holds, then
tr(Tf (σ′z)) is constant for (resp. tr(Tf (σ′z)) > 0 holds, independent of) z′ ∈ Z.

Proof. Assume (7.33a) holds. Then the covers given by f and g have exactly the
same branch points. If a = 1, then translation by b permutes the finite branch
points of f . The only translation mapping a finite set in the complex plane into
itself is b = 0. So, this contradicts that f and g are affine inequivalent.

So, we may assume a 6= 1. Substitute f(x) by f(x)+ c with c = b/(1−a). Then,
with no loss, b = 0. Now our hypothesis says that multiplying by a permutes the
finite branch points of f . Unless those branch points only consist of 0 – so f is a
cyclic polynomial contrary to assumption – then a must be a root of 1.

Now assume (7.33b) holds. [Fr73a, Prop. 2], as in (4.3), says f1 ◦ f2 = f , and
g1 ◦ g2 = g, where f1 and g1 satisfy (7.33a); and factors of f(x)− g(y) correspond
one-one with those of f1(x)− g1(y) with deg(f1) = deg(g1).

[FrM69, Prop. 3.4] says, up to affine equivalence, at most one composition factor,
f1 (resp. g1), of f (resp. g) has a given degree. So, we know g1 = af1 + b, (f1, g1)
satisfy (7.33a), and the final conclusion holds in this case, too.

Assume, again, (7.33a) holds to address the 2nd sentence. Assume the normal-
ization above. Expand a solution, x, of f(x) = z over z =∞ as a Laurent series in
1/z−

1
n . Express all solutions as x(ζjn/z

− 1
n ) def= xj , j = 0, . . . , n−1. The hypothesis

about a says that the substitution σ∗∞ : 1/z−
1
n 7→ ζv/z

− 1
n in all the xi s gives ele-

ments in the field generated by the xj s. The fixed field of σ∗∞ and Gf identifies,
with u = zv, with C(u). Since σ∞ is a power of σ∗∞, the two elements commute. As
in the proof of Lem. 6.2, the only elements of Sn commuting with σ∞ (an n-cycle)
are powers of σ∞. So conjugation by σ∗∞ cannot act through Sn.

Finally, consider a branch point z′ ∈ Z in the statement. The branch cycle for
az′ and the cover f is in the conjugacy class of the branch cycle for z′ for the
cover g. For example, if (7.32b) holds, then the positive trace condition must hold
simultaneously for both Tf and Tg, if it holds for one, etc. �

Conjecture 7.29. If (7.33b) holds, but f(x)−g(y) is newly reducible, then a = −1,
and deg(f) = 4 [Gu10, Conj.].

[FrGu11] interprets Prop. 7.28 entirely in branch cycles. That means it is matter
about groups, but here we must face the challenge of dealing with imprimitive
groups. §7.2.4 introduces notation for the Galois closure group of a composite of
covers as a subgroup of a wreath product. In Rem. 7.7 the whole wreath product
occurs. Here, however, the actual Gµ◦f̂

def= Gf∗ is the smallest subgroup of the full
wreath product, Gf o Z/v = Gvf ×sZ/v, satisfying wreath conditions (7.17).

The key element inside Gf∗ is the n · v-cycle σ∗∞. Akin to the computation in
Rem. 7.7, identify v copies of {1, . . . , n} as {1i, . . . , ni}, i = 1, . . . , v. With no loss,
up to renaming the letters – using that (σ∗∞)v = σ∞ – you can take σ∗∞ as

(11 12 . . . 1v 21 . . . 2v . . . n−11 . . . n−1v n1 . . . nv).

Then, as on [Fr70, p. 47] (see Lem. 7.4), the conjecture is true if and only if σ∞
generates a normal subgroup in G. Exactly then, the other branch cycles acting by
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conjugation on 〈σ∞〉 have precisely determinable branch indices; the result is that
f is equivalent to a Chebychev (or cyclic) polynomial.

From Lem. 7.4 we see that the only possibility in this case to assure newly
reducible is that n must be even. Yet, even then if n > 4, f = f1 ◦ f2 with f1

a proper composition Chebychev factor, of degree either odd or 4. So, g has the
proper composition factor −f1, and from Lem. 7.4, (f, g) isn’t newly reducible.
Note for n = 4, from Lem. 7.4, since one finite branch cycle has shape (2)(2) the
other of shape (2), (7.32b) does not hold. That is, (f, g) is not a Davenport pair.

A bigger context for Conj. 7.29 starts with f : P1
x → P1

z, f ∈ C(x) and with some
torsion α ∈ PGL2(C), giving g def= α ◦ f : P1

x → P1
z where f and g have the same

Galois closures (as in (7.32)).

Problem 7.30. Classify this. Then, restrict to the subcase where f is a polynomial
and decide when (Tf , Tg) could form a Schinzel pair (satisfy (7.32c)).

The wreath product challenge given by the (m,n) Problem starts with polyno-
mials with simple finite branch points, akin to literature quoted in §7.2.4.

Problem 7.31 ((m,n) Problem). For a ‘general’ pair (f ′, g′) of polynomials (over
the complexes), of respective degrees m and n, with n ≥ 3, is the following true?

(7.34) No matter what are the nonconstant polynomials f ′′(x) and g′′(y),
f ′(f ′′(x))− g′(g′′(y)) is irreducible [Fr87, p. 17].

[Fr87, p. 18] has branch cycles for such (f ′(f ′′(x)), g′(g′′(y))) of degree 4, given
any degree 2 pair (f ′, g′), so that f ′(f ′′(x))−g′(g′′(y)) reducible. This is essentially
the factorization in the case n = 4 from Lem. 7.4; also the one case of Conj. 7.29.
That is, the excluded (2,2) problem is false.

It suffices to take for (f ′, g′) any polynomials of respective degrees m and n
(≥ 3) giving simple-branched covers, and, outside∞, disjoint branch points. Then,
the (m,n) problem holds if, for nonconstant f ′′(x) and g′′(y) (their degrees are
irrelevant), f ′(f ′′(x))− g′(g′′(y)) is irreducible.

Let N be the least common multiple of m and n. Then, the reduction in Thm. 4.1
shows it suffices to consider deg(f ′′) = kN/m, deg(g′′) = kN/n.

For example, in the (2,3)-problem: it suffices to consider f ′′(x) and g′′(y) of
respective degrees 3k and 2k. [Fr87, Prop. 2.10] shows neither k = 1 or 2 gives
a contradiction to (7.34). Still, there was a close call already with k = 2 for
providing new Schinzel pairs (satisfy (7.32c)), except for a failure of the genus 0
(from Riemann-Hurwitz, (5.1)) condition.

7.5. Final UM and RET Comments. What attributes would make it clear
that I took great advantage from my three years at UM? For me, these come to
mind. I was (almost) never frightened by prestigious mathematicians, or by being
on my own in hot-house mathematical environments. Yet, even papers solving
long unsolved problems appearing in prestigious journals didn’t do much for either
myself or those who found those problems attractive.

My career (barely) survived by my interactions with European and Israeli math-
ematicians, doing what they wanted me to, rather than what my own convictions
suggested. Later, I turned to the topics I’d put aside for years.

7.5.1. UM upon my graduation. There were over 200 grad students at UM in 1967.
I have seen only one from my graduate years more than once after grad school.
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That was the topologist Bob Edwards who twice sat in on talks of mine at AMS
conferences. It would have helped if other UM students, even slightly related, inter-
acted with me from the hundreds of talks I’ve given, from the many papers to which
I’ve corresponded with – especially, young – authors, or the many conferences I’ve
attended or run. Especially for the effort I’ve put into level-raising and correction
of papers for which editors claimed they previously found no referees.

The three others who got PhDs in 1967 were all analysts, one much more famous
than anyone who might be reading this. That was “The Unabomber,” a no-show at
the going away party Paul Halmos gave us. You can find a picture of me from years
related here – opposite the page with Grothendieck – in [HM87]. I ’m standing in
front of my Schur Conjecture diagram at the end of my 1968 UM lecture on it.

I didn’t know about that picture until many years later, just prior to my giving
a talk at a conference that, excluding myself, were Harvard affiliated arithmetic
geometers in Tempe, Arizona. Several at that conference were visibly upset that
I had maneuvered to give an hour talk. This was thanks to Armand Brumer – a
snowstorm interrupted no-show – conceding his spot to me.

I discovered Halmos’ picture by accident during the coffee break before my talk,
while I was purposely off in a side commons room. It was appropriate inspiration
– showing a 25 year-old me, facing the UM audience, in a confident pose. That
helped me handle with equanamity giving my 1987 talk to a likely antagonistic
audience. One – younger than myself – Harvard faculty member asked me before
the talk of my topic. It was a presentation of GQ, related, but superior in ways,
to that from [FrV92]. His response: “Well, that would be a dream come true!” I
never heard another word from him after my presentation, and publication in the
conference volume, about the ‘dream come true.’

At the ’68 UM talk, Mort Brown (from whom I had algebraic topology) and Jim
Kister (a course in vector/micro bundles) had left early while Davenport held forth
after my talk. They came up to me later, to explain why they left. They were
annoyed by Davenport’s remarks, which seemed to suggest that there was nothing
new in what I had done. Halmos’s picture had a surprisingly sympathetic caption
under it about the mathematical direction I seemed to be going, perhaps influenced
by how well I had handled Davenport’s “interrogation.”

Halmos’ picture helped me do better than just get through that Tempe Arizona
talk. Still, either I, or the Schur Conjecture, must have been funny. Once I saw
that picture, I realized it was the answer to a New Yorker cartoon – containing a
version of my Schur Conjecture diagram – that I had puzzled over years before. It
was posted on Paul Kumpel’s (a Stony Brook colleague) office door. It charicatured
(I now saw) my satisfaction with that diagram.

7.5.2. More on RET?. LeVeque had translated to English Siegel’s proof of his Thm.
(§7.1.3). That introduced me to θ functions. Especially, the production from them
of an arithmetic form of Riemann’s version of Abel’s Thm: Weil’s Decomposition
Theorem. Despite its masterful use in the Mordell-Weil Theorem [We28], you
don’t see it much these days. It gave an apparatus relating function theory and
statements about rational points. That topic, led to the influence of Siegel’s papers
and Riemann upon me. Springer’s book [Sp57], on Riemann Surfaces, has neither
RET nor much group theory savvy. The proof of RET in [RET4] is mine. So is the
particular use of braids, albeit braids were long ago in the literature.
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Some mathematicians (several co-writers included) either have no training with
analytic continuation, or like neither it nor paths, etc. One who was in this category,
but not a cowriter, had been particularly critical of the value of [Fr77] on a Harvard
stage in the late ’80s. So, it seems perfectly appropriate that [Se90, p. 480, Rem]
is the residue of my correcting his initial guess at a formula, and informing him he
had seen the technique at the Delange-Pisout-Poutteau talk for [Fr90].

Let Rppp be the completion of the ring of integers of some number field at a non-
archimedian prime ppp. The (integral domain of) Witt vectors, R̄ppp, attached to Rppp
contains the latter, and a generator of its maximal ideal generates the maximal
ideal of R̄ppp. They differ essentially only in that the residue class field of the former
is F̄p, rather than Z/p. Denote by Wppp the quotient field of R̄ppp.

[Fr99, Thm. 3.3] has a form of Grothendieck’s Thm., [Gr59], emphasizing it is
a result about families of covers attached to a given Nielsen class Ni(G,C) over
the base (parameter) space Spec(R̄p): a tiny space, but significantly more than one
point. Assume (NC, p) = 1 (§5.1.3). The result is that you can form a smooth
family with a constant Nielsen class in either of two situations.

(7.35a) Start with fWppp
: XWppp

→ P1
z, a cover over Wppp, with p′ monodromy group,

but the family ends up over R̄ppp′ a possibly larger Witt vector ring. The
family then has a cover equivalent to fWppp over its generic point.

(7.35b) You start with fZ̄/p : XZ̄/p → P1
z, a tamely ramified cover over Z̄/p. The

family has this cover over its special point.

Each result refers to P1
z, though the spaces are over different fields. That is, there

is a natural family of P1
z s reasonably labeled P1

z,R̄p . Grothendieck’s use of Ab-
hyankar’s Lemma in §7.2.3 produced the change of base in (7.35a). I understood
Grothendieck’s theorem from the detailed exposition in [Fu66], referenced in [Fr70]
and discovered in Spring 1968 by accident while I was at IAS.

Suppose Ψ : T → F × P1
z is a smooth family of r (distinct) branch point cov-

ers, with F absolutely irreducible. (Generalizing polynomial families as in §6.2.4.)
Grothendieck’s theorem gives the following for tamely ramified covers in positive
characteristic, from it holding in characteristic 0.

(7.36) If the branch points, as a function of ppp ∈ F , are constant, then there is
an étale cover F ′ → F , so that the family’s pullback over F ′ is constant.

In characteristic 0 this reverts to its truth locally in the complex topology. Then,
if the branch points don’t move, you don’t need to move the classical generators or
the base point for them, either. That means, the branch cycle description of the
cover doesn’t change, and all covers nearby a given ppp ∈ F are equivalent.

Prop. 7.32 includes an analog of (7.36) which also holds for wildly ramified covers.
All spaces and covers are defined over the algebraic closure of a finite field. We use
the phrase “in the finite topology” to mean that we can adjust any morphism by
pullback over a finite, not necessarily flat (§A.4.1), morphism.

Suppose f : X → P1
z is a wildly ramified cover. Then, [FrMz02, Iso-trivial

Prop. 6.8] constructs an explicit configuration space Pf – generalizing the role of
Ur to wild ramification – with the following property.

Proposition 7.32. Given any irreducible smooth family of covers Φ : T → P ×P1
z

containing f at a particular fiber ppp ∈ P, then – in the finite topology – there is a
morphism (unique in the finite topology) ΨP,Pf : P → Pf .
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Over the range RΨ of ΨP,Pf there is a finite cover PΨ → RΨ that supports a
family of covers of P1

z whose pullback by ΨP,Pf is equivalent to Φ. Further, ΨP,Pf
is constant if and only if Φ is constant (in the finite topology).

7.5.3. Families over the space Pf . Denote the ring of formal power series over k̄ by
k̄[[z]]. In constructing Pf we must deal with this:

(7.37) There are many more wildly, versus tamely, ramified local (separable)
ring extensions of k̄[[z]].

Further there is a serious complication with going to the Galois closure. Look
again at “grabbing a cover by its branch points” in §6.1. The construction allowed
uniquely continuing a given cover, with branch points zzz0 ∈ Ur, to a cover with
branch points zzz ∈ Ur along any path in Ur between zzz0 and zzz. The branch cycle
description continues along the path. So the geometric monodromy – generated by
the branch cycles – is locally constant.

Assume we start with any Nielsen class Ni(G,C)∗ of r-branch point covers, ∗
indicating absolute or inner equivalence. Over C, there is always a Hurwitz space
H(G,C)∗. [Fr77, §3-§4] considers the existence of total families Φ : T → P × P1

z

with fibers Tppp → ppp × P1
z that are covers in Ni(G,C)∗. The proof shows by the

nature of H(G,C)∗, any such family induces an analytic map Ψ : P → H(G,C)∗

with Ψ(ppp) the point representing the equivalence class of the fiber. Prop. 6.3 notes
that if fine moduli conditions hold, then there is a family over H(G,C)∗ so that
the family Φ is the pullback by Ψ of this family.

That construction also includes Prop. 7.33, even without fine moduli.

Proposition 7.33. For r ≥ 3, there is an étale (unramified) cover P → H(G,C)∗

supporting a total representing space. That is, in one fell swoop, all covers in
Ni(G,C)∗ are in one family over P, though possibly many times.

([Fr77, §3, Ex. 2] shows r = 2 does not work.) [Fr77, Prop. 3] gives a condition
that shows even without fine moduli we can choose P = H(G,C)∗ in Prop. 7.33.

(7.38) From Grothendieck: If (p, |G|) = 1, the conclusions just above are the
same over the algebraic closure of Z/p; ditto the fine moduli condition.

Now consider the other half of Grothendieck, starting with a Nielsen class and a
tamely ramified cover ϕ0 : X → P1

z in this class –(NC, p) = 1 as in §5.1 – from char-
acteristic p where possibly (p, |G|) = p. Lifting p-adically does allow comparison
with results in the complex topology. You can then analytically continue the lifted
cover along a path in characteristic 0. Also, the geometric monodromy is constant
in any smooth family of r-branch point covers over an irreducible base.

(7.39) Yet, if you only know (NC, p) = 1, you may not be able to reduce modulo
p. You don’t know how “far” in characteristic p the cover extends.

By contrast, even the Galois closure of the quotient fields of wildly ramified
extensions can change in a family without moving the branch points. Abelian wild
ramification is not a good model for this. That is, without (p, |G|) = 1, there
is no notion of continuing a characteristic p cover with branch points zzz0 to one
with branch points zzz; not even with tame ramification. Indeed, for some zzz ∈ Ur,
there may be no such cover in the Nielsen class in positive characteristic. An
extreme version of being supersingular, akin to how supersingular points occur in
the modular curve Nielsen class (Ex. 7.5).

The space Pf in Prop. 7.32 depends on computing two sets of data from the
cover f : ramificiation and and regular ramification data (introduced first in [Fr74c,
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§1]). The former is an array – indexed by points x′ ∈ X ramified over P1
z. Each

element in the array is a Newton polygon attached to a not necessarily Galois
extension k̄((x∗))/k̄((z)) with x∗ a uniformizing parameter around x′. Regular
ramification refers to the convex hull of this. [FrMz02, Lem. 5.1] gives a rubric
based on computing the number of tame embeddings of k̄((x∗))/k̄((z)). From the
slopes in the regular ramification data one computes the composite ramification
index of all the tame embeddings.

Some properties of Pf as a configuration space use [Ga96] as reformulated in
[FrMz02, Thm. 6.6]: wild ramification does have a significant lifting to 0 character-
istic using curves with ordinary cusps. Here is the fundamental problem.

Problem 7.34. What part of Pf is in the image of a family of covers with given
ramification data.

Our approach, assuming (|G|, p) = p, puts the case of wild ramification and tame
ramification under one roof. Problems about Davenport pairs and exceptional
covers also fit under one roof, as in [Fr05b]. To solve this problem in positive
characteristic, no simple reversion to Galois covers works.

Continuing §7.4, Solomon didn’t define the phrase‘appearing in nature.’ Maybe
he won’t consider these problems as being ‘in nature.’ My response is to ask: Do
any rational functions – in positive or 0 characteristic – appear ‘in nature?’ As §1.4
notes, characteristic 0 rational functions are intrinsically impossible in 3 dimensions.
The same for electricity and magnetism: Many electromagnetic spheres in the world
composed, say, of protein molecules, interact. Those interactions are mostly from
van der Waals attractions, hydrogen and ionic bonds. Are these what we should
regard as appearing in nature? Or is it the symmetry groups of molecules or particle
arrays by which chemists interpret quantum mechanics that we should regard as in
nature? If the latter I doubt that the topic is any more restricted to simple groups
than should the topics be that I’ve presented here.

Appendix A. Group and cover comments

Standard field notation for an algebraic closure of a field K is K̄. A finite
extension L/K is one in which L is finite dimensional, as a vector space over K.
That dimension is deg(L/K) def= [L : K], the degree of L/K. Any finite extension
of K has a field embedding, as an extension of K, in K̄. If L/K is separable,
the number of such embeddings is deg(L/K); all characteristic 0 fields (and finite
fields) have only separable extensions.

The maximal cardinality of automorphisms of L/K (of L fixed on K) is [L : K],
a cardinality achieved exactly when L/K is Galois. A field K is perfect if it has
only separable finite extensions. In that case, K̄/K is Galois, in that it is a union of
Galois extensions. Denote the projective limit of those groups by GK . We call it the
absolute Galois group of K. [FrJ86] distinguishes properties of fields by enhancing
Galois theory. It uses no covering space theory or fundamental groups.

A.1. Affine groups and related topics. Use the notation of §4.3. An n di-
mensional group representation of a group G over a field K is a homomorphism
T : G→ GLn(K). It’s character is the function σ ∈ G 7→ tr(T (σ)): tr denotes the
trace of the matrix. The symmetric group on {1, . . . , n}, Sn, natural embeds in
GLn(Q) by mapping a permutation σ(i) = ji, i = 1, . . . , n, to the matrix with 1 in



68 M. D. FRIED

all (i, ji) positions, 0 elsewhere. We can apply tr to a permutation representation.
The result is the number of fixed points of T (σ).
§4.3 has defined PGLn(K), and there is similarly PSLn(K), the quotient of the

matrices of determinant 1 over the field K by its diagonal matrices. The relation
between primitive groups and simple groups starts by recognizing that the two
most common sets of finite, far from abelian groups, are symmetric groups, Sn s,
and general linear groups, GLn(Fq) s, where q is a power pt of some prime p. For
most values of n (and p) both are in evident ways close to simple. We call these
groups almost simple for those values n ≥ 5 (resp. n and q, excluding n = 2 and
p = 2 or 3) for which An (resp. PSLn(Fq)) is simple [Ar57, Thm. 4.10].

The goals of algebraic covers and group theory don’t match perfectly. For the
latter, at the end of the 20th century there was an emphasis on the simple group
classification. This could sometimes strip a group to an essential core, tossing data
of significance for covers. We give the full definition of almost simple, to show what
it means to get to that core. Still, by staying with primitive groups – a concept
natural for covers – App. A.3 reminds of a tool sufficient, modulo considerable
expertise, for handling covers from knowledge of simple groups.

According to [GLS], a quasisimple group G is a perfect central cover G → S
of a simple group S. Here: cover means onto homomorphism; perfect means the
commutators g1g2g

−1
1 g−1

2 in G generate G; and central means the kernel is in the
center of G. Such a cover is a special case – because we don’t assume S is simple
– of a Frattini central cover: where the map, if restricted to a proper subgroup of
G, won’t be a cover. Then, if S is perfect, so is G.

A component, H ≤ G, of G, is a quasisimple subgroup which has, between H
and G, a composition series – a sequence of groups each normal in the next. The
group generated by components and the maximal normal nilpotent subgroup of G
is called the generalized Fitting subgroup, F ∗(G), of G. [GLS] calls a group G
almost simple if F ∗(G) is quasisimple.

We don’t lose the almost simple property if we extend PGLn(Fq) to PΓLn(Fq),
the extension given by adjoining a Frobenius, Frp (pth power map on coordinates),
for Fp to PGLn(Fq). That extends permutations on lines and hyperplanes (on
linear spaces of any dimension). The notation differs from its use today, but [Ca37,
Chap. XII] is where I learned about these groups in graduate school.

A chief series of a group G is a maximal series of normal subgroups of G (no
possible further refinement of the series with normal subgroups of G, [Is94, p. 102]).
Supersolvable means G has a chief series whose consecutive subquotients have prime
order, and then the commutator subgroup of G is nilpotent [Is94, p. 133].

An affine group is a subgroup of the full group that combines the actions of
GLn(Fq) and translations on the vector space (Fq)n of dimension n over Fq. The
case that arose in Burnside’s Theorem (§3.4.1) is n = 1.

A.2. Residue class fields and their relation to general algebra. The nor-
malization subject described in §2.1 applies to any finite extension K – number
field – of Q. The elements, OK , of K satisfying a monic polynomial over Z are
called its integral closure (or its ring of integers). Excluding the 0 ideal, all prime
ideals ppp are maximal. So their residue classes, OK/ppp, are fields.

Indeed, the general idea of normalization is based on starting with an object
defined “locally” by an integral domain, and taking its integral closure in a field
extension. In our cases, when we are close to Davenport’s problem, the field is
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the function field of an algebraic curve that is a component of an algebraic object
defined by a fiber product.

[Cox05] attempts to define algebra, sufficiently widely to say how it arises where
you might not regard it as naturally related to algebra. His basic premise is that
computations involve addition and multiplication, and sometimes division. That is,
you work within a ring, and sometimes a field. Actual computations may limit ma-
nipulations by considering a finite set of elements which generate – by computation
– all the others you use. If, then, you assume the multiplication is commutative –
he does not consider quantum mechanics, or Hopf algebras – you are working in
a polynomial ring. So, it is reasonable to say that such computations fall within
algebraic geometry.

Elimination theory , a very old topic, was the forerunner of [Cox05]. Until desktop
computers, comparing your mathematical objects with mine by pure computation
was difficult. Yet, that was the central topic of elimination theory.

A.3. Group theory in [FrGS93]. I could have phrased this appendix as a question:
How could I – without formal training in groups – have possibly understood (been
confident of) the group theory in [FrGS93, Part III]?
§7.4.1 reminds of the essential results about exceptional polynomials, based

on using the factorization of a monodromy group into a product of a stabilizing
group and the inertia group over ∞. [FrGS93, Part III] establishes a list of group
properties of the Galois closure of f . These allow a characterization using the
A(schbacher)-O(’Nan)-S(cott) Classification of primitive groups [AOS85]. Exclud-
ing (primitive) affine groups, there are four primitive group types. Each is shaped
by dropping almost simple groups into particular positions. Three points about
this process call for clarification.

(A.1a) Reduction to where aGf is primitive (in its natural permutation repre-
sentation; see §7.4.1).

(A.1b) Unlike the (2.3b) version of Schur’s Conjecture, if (deg(f), p) 6= 1, no im-
mediate version of (A.1a) assures the geometric group, Gf , is primitive.

(A.1c) [FrGS93, Part III] starts by clarifying the definitions in [AOS85]. Then,
this combines with the appropriate factorizations of groups that arose
from [LPS]. The result is (7.31).

The most important addendum is to (A.1c). I could not have completed this
result alone. Also, rarely has academia found a formula for apportioning the sig-
nificance and interpretation of such respective contributions. Finally, it was the
unanticipated surprises in (7.31b) that got the attention of others.

A statement due to Wan, that an exceptional polynomial should have degree
prime to q−1, was immediate from [FrGS93] before Wan formulated his conjecture.
It wouldn’t have occurred to the authors of [FrGS93] to take that conjecture se-
riously, until we found that others mistakenly thought it meant that elementary
methods had achieved our result. Wan’s statement told little about exceptional
polynomials, not even their degrees. By contrast, [FrGS93] characterized much:
Even in the one mystery, the precise monodromy groups in the affine case in (A.1c),
it has the degree of f a power of the characteristic (see http://math.uci.edu/paplist-
ff/carlitz-quick.html).

A.4. What is a cover? Grothendieck’s definition of a cover of algebraic varieties
is a finite, flat morphism ϕ : X → Z. We deal with varieties over a field K.
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Points on these spaces are geometric: with coordinates in some extension of K.
Components are defined over an algebraic closure K̄.

A.4.1. Role of flatness. Finiteness of ϕ allows us to put a measure – degree – on
the fibers of Xz, z ∈ Z, of ϕ. For irreducible X, flatness says this degree is constant
– the degree of the function field extension [K(X) : K(Z)] – in z [Mu66, Prop. 2,
p. 432]. For finite morphisms, that characterizes flatness [Mu66, Cor. p. 432].

It would simplify many things if we could restrict to unramified covers. In
characteristic 0 these come from topology: A finite index subgroup, H, of the
fundamental group, π1(Z), produces up to equivalence of covers, an unramified
cover XH → Z. The story, however, of monodromy precision, is exactly about
going beyond this limitation, as noted in Thm. 3.1.

The subtlety is that we use fiber products to mean, after taking the standard fiber
product, you normalize the result (§2.1). If ϕ is finite and X and Z are nonsingular,
then ϕ is automatically flat [Har77, p. 266, 9.3a)]. This doesn’t extend to weakening
nonsingular to normal varieties. [Mu66, p. 434] has a finite morphism, where X is
nonsingular (it is A2), and Z is normal, where the fiber degree is 2 over each z ∈ Z
excluding one point where it is 3.

Suppose each of ϕi : Xi → Z, i = 1, 2, is a cover. Then the usual fiber product,
denoted X1×set

Z X2 in §2.1, is also flat (therefore a cover) over Z. This follows from
base change and transitivity of flatness [Har77, p. 253, Prop. 9.1a]. Yet, I don’t
know if the normalization, giving X1 ×Z X2 → Z, is also.

Therefore, [Fr05b, §1.1] defines the nonsingular locus of ϕ: the complement of
the (at least) co-dimension 2 union of the image of the singular locus of Xand the
singular locus of Z. It calls a finite morphism exceptional if restricting ϕ over the
nonsingular locus – the resulting morphism is a cover – is exceptional.

There is a similar definition for Davenport pairs. This is conservative. It doesn’t
say what to expect over the singular locus, but it suffices for now.

Problem A.1. Do the monodromy precision results of Davenport pairs, excep-
tionality, and more generally pr-exceptionality extend over the singular locus?

[GTuZ08] asserts an affirmative answer to Prob. A.1 for exceptional covers.
[Fr05b] says it should therefore hold for Davenport pairs, and pr-exceptionality.
Their proof is exactly the same as that of [Fr74b, Thm. 1], except they declare it
works even over the singularity locus.

A.4.2. Fiber product universality. As in §2.1, consider X1×set
Z X2. As Grothendieck

emphasized, it has the following universal property. Given ϕW : W → Z, a finite
morphism that factors through ϕi, i = 1, 2, it factors through X1 ×set

Z X2.
(A.2) If we restrict our morphisms ϕ to normal varieties, then ϕ factors through

the normalization X1 ×Z X2 of X1 ×set
Z X2.

Certain properties of covers come purely from group theory, using the Galois
correspondence between subgroups of the monodromy group and quotients of the
Galois closure cover. An example is the see-saw correspondence that produced
[Fr73a, Prop. 2] as in Lem. 4.2, especially (4.3). It has nothing to do with the covers
being genus 0 curves, or that they cover P1

z or even that they have dimension 1. I
did Lem. 7.12 as an example to show how generally it works.

The use of Riemann-Hurwitz is just for curves. Using Abyhankar’s Lemma in
(7.13) is purely local from tame ramification. So, assume the fiber product of
f : X → P1

z and g : Y → P1
z is irreducible. More generally replace P1

z by Z. Then,
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Figure 1. Example Classical Generators

•

•

•

• •
•

z0

z1

zi

zr

•

•

•

•

σ∗r↘

σ∗0
↗

σ∗i ↗

σ∗1↘

δ1
↗

δi
↗

←δr

b1
↗

bi
↗

←br

•

•

•

a1
↗

ai↘

←ar

•

•

•

to compute the genus of the fiber product use this (well-known) generalization of
(5.1) for R-H with gZ denoting the genus of Z:

(A.3) 2(deg(f) + gf − 1) = 2 deg(f)gZ +
r∑
i=1

ind(σi).

Appendix B. Classical Generators and Definition Fields

B.1. Classical Generators. Figure 1 explains classical generators of the funda-
mental group, π1(Uzzz, z0), of the r-punctured sphere, with the punctures given by
zzz = {z1, . . . , zr}. These are ordered closed paths δiσ

∗
i δ
−1
i = σ̄i, i = 1, . . . , r.

Here are their properties. There are discs, i = 1, . . . , r: Di with center zi; all
disjoint, each excludes z0; bi is on the boundary of Di. Their clockwise orientation
refers to the boundary of Di. The path σ∗i has initial and end point bi; δi is a
simple simplicial path with initial point z0 and end point bi. We also assume δi
meets none of σ∗1 , . . . , σ

∗
i−1, σ

∗
i+1, . . . , σ

∗
r , and it meets σ∗i only at its endpoint.

There is a crucial condition on meeting the boundary of D0. First: D0, with
center z0, is disjoint from each D1, . . . , Dr. Consider ai, the first intersection of δi
and boundary σ∗0 of D0. Then, δ1, . . . , δr satisfy these conditions:

(B.1a) they are pairwise nonintersecting, except at z0; and
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(B.1b) a1, . . . , ar are in order clockwise around σ∗0 .
Since the paths are simplicial, (B.1a) is independent of D0, for D0 sufficiently

small. For any ordering of the collection zzz, many sets of classical generators have or-
derings corresponding to the order of zzz. That means, given branch cycles of a cover
there will be several branch cycles descriptions – up to, say, absolute equivalence –
corresponding to a given cover of P1

z branched over zzz.

B.2. Hurwitz space definition fields. Davenport’s problem distinguishes be-
tween a cover and its Galois closure. That subtlety culminates in Thm. 6.9 distin-
guishing between parametrizing Davenport pairs and their Galois closures. While
the same space parametrizes both, I will explain the distinction.

I’ll also mend an oversight in [FrV91, Main Thm.]. In comparing inner and
absolute Hurwitz spaces, it didn’t appropriately – as the subject started from the
absolute case [Fr77, Thm. 5.1] – put their definition fields on the same footing.

B.2.1. Inner Hurwitz spaces. The space H(G,C)in parametrizes inner equivalence

classes of Galois covers ϕ̂ : X̂ → P1
z in the Nielsen class Ni(G,C). Let (ϕ̂i, X̂i) be

such covers with an explicit identification µi of Aut(X̂i/P1
z) with G, i = 1, 2.

Definition B.1. We say (ϕ̂i, µi), i = 1, 2, are inner equivalent if there is a contin-
uous ψ : X̂1 → X̂2, commuting with ϕ̂i, i = 1, 2, with µ1 ◦ ψ∗ ◦ (µ2)−1 an inner
automorphism of G.

Consider this inner analog of expression (6.3):

(B.2) M̂C = {c ∈ (Z/NC)∗ | ∃β ∈ Sr,Cci = C(i)β , i = 1, . . . , r}.

This, too, defines a cyclotomic field, the fixed field of M̂C in Q(e2πi/NC): QM̂C
.

Given an absolute Nielsen class, [FrV91, Main. Thm.] gives three results, using
the inner Hurwitz space of a Nielsen class, H(G,C)in.

(B.3a) There is a natural map Ψin,abs : H(G,C)in → H(G,C)abs: the class of
ϕ̂ : X̂ → P1

z maps to the class of ϕ : X̂/G(1)→ P1
z.

(B.3b) The definition field of (Ψin,abs,H(G,C)in) is precisely QM̂C
.

(B.3c) Restricting Ψin,abs to a connected component H′ of H(G,C)in gives a
Galois cover H′ → Ψin,abs(H′). Its group is H def= HH′ ≤ NSn(G,C)/G.

Explaining (B.3b). A more precise statement would start: ‘As a moduli space.’ It
means consider the collection of families, F ∈ F∗G,C, of covers in the Nielsen class
Ni(G,C)in defined over Q̄. (* is again inner or absolute equivalence.)

Then, γ ∈ GQ acts on the elements of F ∈ F in
G,C (through equation coefficients):

F 7→ F γ , giving another family of covers. [Fr77, §4] shows that every cover – up to
equivalence – in a given Nielsen class appears in a family of covers defined over Q̄
parametrized by a finite cover of a Zariski open subset of Ur. Further, F γ is in the
Nielsen class defined by (G,Ccγ ) with cγ as in §5.1.

Therefore, the collection is fixed under γ if and only if the resulting Nielsen class
under the equivalence class * is the same as that given by (G,C). That means the
respective γ s that fix the families defined by abs (resp. in) equivalence appear from
the equation (6.3) (resp. (B.2)). �

The notation of (B.3c) indicates that the Galois group of an inner component
over an absolute component can vary with the component.
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B.2.2. Braid Components vs braidable automorphisms. [BiFr82, Lem. 3.8] says, for
h ∈ G, there is a q ∈ Hr with (ggg)q = hgggh−1: inner automorphisms are braidable.
Yet, an h ∈ NSn(G,C) may not be (see Ex. B.5). This is one reason an absolute
Hurwitz space may have smaller definition field than its corresponding inner space.

Denote the braid orbit on H(G,C)in,rd corresponding to H′ by O′.

Definition B.2. Define the set of braidable outer automorphisms as follows:

Nbr
Sn(G,C)O′

def= {h ∈ NSn(G,C) | ∃ q ∈ Hr with (ggg)q = hgggh−1}.

From the above remark, this group contains G.

Lemma B.3. Per notation, Nbr
Sn

(G,C)O′ depends only on O′. Also, the geometric
automorphism group of the cover H′ → Ψin,abs(H′) identifies with Nbr

Sn
(G,C)O′/G.

Proof. First consider ggg ∈ O′ and (ggg)q′ = ggg′. Assume h(ggg)h−1 = (ggg)q∗ for some
q∗ ∈ Hr. Since conjugation by h and application of q′ commute,

(hgggh−1)q′ = h(ggg′)h−1 = ((ggg)q∗)q′ = (ggg′)(q′)−1q∗q′.

That proves the first sentence.
Now consider the 2nd sentence. The fiber of Ψin,abs is in one-one correspondence

with the elements of NSn(G,C)/G. So, if we restrict to the connected component
H′, the fiber restricts to the action of elements of NSn(G,C) that are braidable. �

Expression (6.3) defines MC. Here is the generalization of that:

(B.4) MO′ = {c ∈ (Z/NC)∗ | ∃β ∈ Sr, h ∈ NSn(G,C)br
O′ ,

h−1Ccih = C(i)β , i = 1, . . . , r}.

The argument explaining (B.3b) gives the following.

Proposition B.4. With H and other notation as above, consider the collection
JH of components H′ (with their maps to Ur) with the group of H′ → Ψin,abs(H′)
equal to a subgroup of NSn(G,C)/G isomorphic to H. Then, the collection JH has
definition field the fixed field in Q(e2πi/NC) of MO′ .

Two techniques have located examples of multiple Hurwitz space components:
(B.5a) the Fried-Serre Lifting invariant as in [Fr95b, Part II] and [Se90]; and
(B.5b) unbraidable outer automorphisms as above ([BiFr82, §3] is the first).

If the lifting invariant precisely delineates the components, then – generalizing
the original [Fr77, Thm. 5.1] result – the definition fields of those components
are known cyclotomic fields. [Fr10, Main Thm.] uses 3-cycle Nielsen classes to
illustrate how effectively (B.5a), based on Frattini central extensions (§A.1; and
their kernels, quotients of Schur multipliers) detects components. Our approach to
Schur multipliers (developed along with Modular Towers) has simplified how they
appear, removing the intimidating group theory that once accompanied them.

If unbraidable outer automorphisms precisely delineate the components, then
the story is rougher. Still, among the many known examples, the only mysteries
for definition fields are the two described in [BFr02, §9.1]. Each has components
whose descriptions come from both types of (B.5). Two j-line covers of genus 1
are conjugate by an unbraidable outer automorphism. A particular Inverse Galois
conclusion depends on whether they have a nontorsion Q point, and this depends
on whether their definition field is Q or a quadratic extension of Q.
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All examples we know that have multiple Hurwitz space components can be
ascribed to some combination of the limitations posed by the conditions (B.5).

Example B.5. [Fr10, Ex. 1.5] has the example of the Nielsen class Ni(An,C4
n+1

2
)∗,

n ≡ 1 mod 8, four repetitions of n+1
2 -cycles. For ∗ = in there are two braid orbits,

corresponding to not being able to braid the outer automorphism of An. The
corresponding Hurwitz space components have definition field a quadratic extension
of Q. There is just one absolute component. For n ≡ 5 mod 8 there is just one
braid orbit for both absolute and inner classes.

B.2.3. Little use of branch cycles. Why have so few papers that quote [Fr73a], and
related papers, used branch cycles? (A notable exception is Müller, say, in [Mü96]
and [GMu97].) Maybe it was the confluence of three historical events that affected
all of mathematics, in addition to the lack of training on these topics.

First: In the early 80’s libraries massively moved many journals to archives. This
was to make way for the generation of new journal/society generated publicatons.
Mathematics, where positions were rapidly disappearing lost heavily in the politics
of that process. This deserves further attention, but where is do such topics have
a natural publishing venue? It seems the only convenient means to find many of
my papers before 1985 (including [Fr73a] and [Fr77]), and even some afterwards, is
from their scanning on my web site.

Occasional pdf files from journal web sites ([FrS76], say) are unsearchable, while
mine are mostly now. I’ve used html expositions to improve access – even beyond
searchability – to what has turned out most significant. LATEX generated pdf’s are
theoretically searchable. Still, I’ve yet to see that turned into minable data, much
less a linked database. So far it looks as if html is easier that way.

Second: I’ve noted many examples of the following in this paper. Refereeing
is nowhere near the quality to indicate community awareness of what was proved
previously, nor what has a history of relating to ongoing research. An author who
wants credit for significant results – according to what it adds to existing literature
– needs hooks to their work. Then, they need ways to get others to use those hooks.
This last is too hard right now for those without high prestige connections.

I don’t agree it is the sole responsibility of the author to assure results are
correct. That would mean the author is the most aware of the area’s pitfalls, and
has no hidden or psychological reasons to mentally avoid subtle points. I’ve said
how wrong this is in public places [Fr07]. I note that mathematics is hardly alone in
the neglect of its works. No less than Doris Lessing, she of “The Golden Notebook”
fame, has seen it from a far perspective: “The shame of the 20th century will be
all the research that is left unread on the shelves.”

Third: within algebraic geometry, there was a prevailing attitude in the 60’s and
’70s that it was now time to diminish moduli of curves for the sake of moduli of
higher dimensional objects. While number theory wasn’t ready for any such move,
the field of arithmetic geometry was not well-defined. It still suffered from sorting
those who used vs those who railed against, Grothendieck’s techniques.

Mumford’s research topics were much into curves and their Jacobians (as in
[Mu76]), but neither [Har77] nor [Mu66] touched coverings or group theory and
certainly not their moduli. Also, they worked entirely over an algebraically closed
field, without any profinite aspects, when they didn’t emphasize schemes. For
example, you would find it difficult even now to place the Branch Cycle Lemma
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within either book. [Se92] doesn’t have it despite its clear relevance, though its
review discussed and used it [Fr94b, §3 and §7]. This, too needs a thoughtful
perspective, if it is to be available.
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[Hi1892] D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Ko-
effizienten, J. für die reine und angewandte Math. 110 (1892), 104–129.

[Is94] I.M. Isaacs, Algebra, a Graduate Course, Brooks/Cole Publishing, 1994.
[Ka89] V. Kanev, Spectral curves, simple Lie algebras, and Prym-Tjurin varieties, Theta

function–Bowdoin 1987, Part 1 (1989), (Brunswick, ME, 1987), Proc. Sympos. Pure

Math., 49, JAMS, Prov., RI, 627–645.
[Ki76] K. Kiefe, Sets definable over finite fields: Their zeta functions, TAMS 223 (1976),

45–59.

[Kz81] N.M. Katz, Monodromy of families of curves: Applications of some results of Davenport-
Lewis, Sem. on No. th., Paris 19791980, Prog. in Math. 12, Birkhauser, Boston (1981),

171–195.

[KSi08] I. Kriz and P. Siegel, Simple Groups at Play, July 2008 Sci. Amer., 84–89.
[La71] S. Lang, Algebra, Addison-Wesley, 1971.

[LZ96] H.W. Lenstra and M. Zieve, A family of exceptional polynomials in characteristic 3,

eds. Cohen and Neiderriter, London Math. Soc. Lecture nts. 233, CUP (1996), 209–218.
[Le64] W.J. LeVeque, On the equation ym = f(x), Acta. Arith. 9 (1964), 209–219.

[LSc80] D.J. Lewis and A. Schinzel, Quadratic diophantine equations with parameters, Acta
Arith. 37 (1980), 133-141.

[LMT93] R. Lidl, G.L. Mullen and G. Turnwald, Dickson Polynomials, Pitman monographs and

Surveys in pure and applied math. textbf65, Longman Scientific, 1993.
[LPS] M. Liebeck, C. Praeger, J. Saxl, The maximal factorizations of the finite simple groups

and their automorphism groups, Mem. AMS 86 #432 (1990).

[Mac67] C. MacCluer, On a conjecture of Davenport and Lewis concerning exceptional polyno-
mials, Acta. Arith. 12 (1967), 289–299.

[Mat84] R. Matthews, Permutation polynomials over algebraic number fields, J. Number Theory,

vo.. 18 no. 3 (1984), 249–260.
[Ma77] B. Mazur, Modular curves and the Eisenstein ideal , IHES Publ. Math. 47 (1977),

33–186.
[Me96] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, In-

vent. Math. 124 (1996), 437–449.

[Mes90] J.-F. Mestre, Extensions régulières de Q(t) de groupe de Galois Ãn, J. of Alg. 131
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