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Abstract. In this paper, we derive a thermodynamically consistent phase-field model for flows containing three
(or more) liquid components. The model is based on a Navier-Stokes (NS) and Cahn-Hilliard system (CH) which
accounts for surface tension among the different components and three-phase contact lines. We develop a stable
conservative, second order accurate fully implicit discretization of the NS and three-phase (ternary) CH system. We
use a nonlinear multigrid method to efficiently solve the discrete ternary CH system at the implicit time-level and
then couple it to a multigrid/projection method that is usedto solve the NS equation. We demonstrate convergence
of our scheme numerically and perform numerical simulations to show the accuracy, flexibility, and robustness of
this approach. In particular, we simulate a three interfacecontact angle resulting from a spreading liquid lens on
an interface, a buoyancy-driven compound drop, and the Rayleigh-Taylor instability of a flow with three partially
miscible components.
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miscibility

1. Introduction. Many biomedical, chemical, and industrial processes involve mixtures
of three or more liquids components. In spite of the importance of three-phase flows, most
studies of three-phase systems do not consider hydrodynamical interactions (e.g. see [4, 5, 6,
7, 10, 15, 18, 20]). There have been few theoretical and numerical studies of flows containing
three or more liquid component compared to the large body of research for two-phase fluid
flows. This is partly due to the difficulties in dealing with hydrodynamics associated with
interfaces and triple junctions. In [41], a projection method is used for the motion of a triple
junction in level set framework. In this approach, a linear projection of the level set functions
onto a reduced set of variables is used to solve problems at triple lines and other multiple
junctions (i.e., quadruple points). In [28], a compound drop consisting three immiscible
fluids is simulated using the immersed boundary method [37].The presence of the interface
and its effect on the flow is established via source terms in the governing equations.

There are a number of three-phase models that describe two immiscible fluids and sur-
factant. In low Reynolds number flows, boundary integral methods have been used to study
the effect of surfactants on drop dynamics (e.g. [33, 35, 42]) and tip-streaming [17]. In
[22, 24, 39], the effect of insoluble surfactants on drop deformation is studied in two and three
dimensions using volume-of-fluid methods. In [25] the effect of surfactants on the dynamics
of rising bubbles is investigated using an immersed boundary/front-tracking algorithm. In
[13], a hybrid level-set/ front-tracking algorithm was used to study the effect of surfactants
on capillary waves. Further, in [27], the effect of surfactants on the evolution of the shape
of an initially nonspherical drop translating in an otherwise quiescent fluid at low Reynolds
number is examined. A combination of the boundary-integralmethod and a finite-difference
scheme is used to solve the coupled fluid dynamics and surfactant transport problems.

In this paper, we build upon our results for two phase hydrodynamic systems [30] and
three-phase systems in the absence of hydrodynamic interactions [31] to model and simulate
general three-phase hydrodynamic systems. Advantages of this approach over level-set and
immersed boundary approaches described above, for immiscible three-phase systems, are:
(1) we do not need to perform any correction steps to multiplejunctions; (2) it is easy to
incorporate other physical properties such as miscible andimmiscible fluid components.
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We derive a thermodynamically consistent system of governing equations based on a
phase-field approach. The system of equations couples the Navier-Stokes equations for the
fluid motion to a system of Cahn-Hilliard type (fourth order nonlinear advection-diffusion
equations) for the phase variables. Here the phase fields have a definite physical meaning:
they are the mass ratios of the fluid components.

We develop a conservative, second order accurate fully implicit discretization of the NS
and three-phase (ternary) CH system. It can be shown that if the time step is small enough,
the discretization has a discrete energy functional that isthe natural discretization of the free
energy on the continuous level. In practice, we find that the discrete energy is always non-
increasing. We use a nonlinear multigrid method to efficiently solve the discrete ternary CH
system at the implicit time-level and then couple it to a multigrid/projection method that is
used to solve the NS equation.

We present examples of flow with miscible and immiscible components. We demon-
strate the convergence of our algorithm through a resolution study. In addition, we find good
agreement with the theory for an equilibrium liquid lens (lying atop an interface). We provide
demonstrations of liquid/liquid remediation. In the first example, a compound drop is simu-
lated, in which a light fluid encapsulated a heavy contaminant drop. The light fluid causes the
compound drop to rise and deposit the contaminant at an interface where it may be removed.
In the second example, we investigate the diffusional transfer of a preferentially miscible con-
taminant from one immiscible phase to another. In this example, the transfer is enhanced by
the flow and in particular the Rayleigh-Taylor instability.

The contents of this paper are as follows. In Section 2, the governing equations are de-
rived. In Section 3, we derive the discrete scheme and numerical solution. We also present
the approximate projection method used to solve the discrete generalized NS equations. Nu-
merical experiments are presented at Section 4. In Section 5, conclusions are drawn.

2. Derivation of the governing equations.We begin by deriving a thermodynamically
consistent system of governing equations for a general heterogeneous, isothermal mixture of
Nf fluids following the strategy developed for binary (two component) fluids by Lowengrub
and Truskinovksy [34]. Let the mass concentrations beck = Mk/M for k = 1, . . . , Nf ,
whereMk are the masses of the components in a representative material volumeV andM

is the total mass of the mixture. SinceM =
∑Nf

k=1 Mk, we have
∑Nf

k=1 ck = 1. Suppose
that each component moves with a velocityuk and has densityρk = Mk/Vk whereVk

is the volume of fluidk. Introducing volume fractionφk = Vk/V , we have the relation
ρck = ρkφk whereρ =

∑Nf

k=1 ρkφk is the density of the mixture. Herein, we will assume
that each component is incompressible, i.e.ρk is constant. Note that this does not mean that
the mixture densityρ is constant sinceρ depends onφk or, equivalently, onck. The relation
betweenρ andci is given by

1

ρ
=

Nf
∑

k=1

ck

ρk
(2.1)

Such mixtures were termed quasi-incompressible by Lowengrub and Truskinovsky [34].

2.1. Balance equations.The balance of mass for each component is

∂ (ρkφk)

∂t
+ ∇ · (ρkφkuk) = 0. (2.2)
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Define the mass-averaged (mixture) velocity field

u =
1

ρ

Nf
∑

k=1

φkρkuk =

Nf
∑

k=1

ckuk, (2.3)

then summing Eq. (2.2) ink we obtain the balance of mass for the mixture

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.4)

From Eqs. (2.2) and (2.4), we obtain the mass concentration equation:

ρċk = ∇ · Jk, (2.5)

where˙ = ∂t + u · ∇ is the advective derivative with respect to the mixture velocity, and

Jk = −ρckwk, where wk = (uk − u) , (2.6)

is the diffusion flux.
For each component, we have the balance of linear momentum

ρck
Dkuk

Dt
= ∇ · Pk + ρckg + πk, (2.7)

whereDk/Dt = ∂t + uk · ∇ is the advective derivative with respect to the component
velocity,Pk is the stress tensor,g is the gravity force andπk are the forces per unit volume
due to interactions with other phases. Note that as yetPk andπk are unspecified. Summing
overk, and requiring that

∑Nf

k=1 πk = 0, which is necessary for the conservation of linear
momentum of the mixture, we get the following linear momentum equation for the mixture:

ρu̇ = ∇ · P + ρg, (2.8)

whereP =
∑Nf

k=1 (Pk − ρckwk ⊗ wk) is the stress tensor of the mixture.
Following classical theory (e.g. see [21] and Lowengrub andTruskinovsky [34]), we

focus on the mixture equations and not on the detailed force interactions (e.g.πi). Therefore,
we consider an energy balance for the entire system and derive thermodynamically consistent
constitutive relations forP andJk as follows. LetΩ be an arbitrary domain that moves with
the mixture velocityu. Then, the integral form of the energy balance for the mixture is

d

dt

∫

Ω(t)

(

ρe +
1

2
ρ|u|2

)

dΩ =

∫

∂Ω



Pn · u +

Nf
∑

k=1

(tk · n) ċk



 d∂Ω+

∫

Ω

(r + ρg · u) dΩ,

(2.9)
wheree is the internal energy,ρ|u|2/2 is the kinetic energy andn is the outward normal
vector to∂Ω. The first term on the right hand side is the rate of work done on∂Ω by the fluid
stress and the extra stresses due to concentration gradients, i.e.tk is a generalized force that
is as yet undetermined. This term is suggested by the variational analysis of Lowengrub and
Truskinovsky [34]. In the second term on the RHS,r is the density of heat sources necessary
to ensure that the temperature is constant and the remainingterm is the rate of work done due
to gravity.

Using the mixture mass (2.4) and momentum balance equations(2.8), the local form of
the energy balance Eq. (2.9) is

ρė = P : ∇u +

Nf
∑

k=1

∇ · (tk ċk) + r. (2.10)
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2.2. Thermodynamics and constitutive relations.Because we are dealing with isother-
mal flow, it is useful to introduce the Helmholtz free energyF rather than the internal energy.
The relation between the two is

F = e − Ts. (2.11)

whereT is the temperature. Thus, Eq. (2.10) becomes

ρT ṡ = −ρḞ + P : ∇u +

Nf
∑

i=1

∇ · (tiċi) + r. (2.12)

Next, we make the constitutive assumption that the free energy

F = F
(

c1, . . . , cNf
,∇c1, . . . ,∇cNf

)

, (2.13)

such that

Ḟ =

Nf
∑

k=1

(

∂F
∂ck

ċk +
∂F

∂∇ck
(∇ck)

˙

)

. (2.14)

Using the identity(∇ck)
˙
= ∇ċk − (∇u)T · ∇ck (e.g. see [34]) and plugging Eq. (2.14) in

Eq. (2.12) gives

ρT ṡ =



P + ρ

Nf
∑

k=1

∇ck ⊗ ∂F
∂∇ck



 : ∇u

+

Nf
∑

k=1

(

tk − ρ
∂F

∂∇ck

)

· ∇ċk − ρ

Nf
∑

k=1

(

∂F
∂ck

− 1

ρ
∇ · tk

)

ċk + r (2.15)

Next observe that because the fluid components are incompressible the velocity gradient∇u

and ċk are not independent. They are related via Eqs. (2.1) and (2.5). That is, there is a
degeneracy in Eq. (2.15) since

∇ · u = −
Nf
∑

k=1

1

ρ

∂ρ

∂ck
ċk = −

Nf
∑

k=1

1

ρ2

∂ρ

∂ck
∇ · Jk. (2.16)

Note that from Eq. (2.1) we have

− 1

ρ2

∂ρ

∂ck
= αk ≡ 1

ρk
, for k = 1, . . .Nf , (2.17)

is a constant.
To exploit the degeneracy introduce a scalar Lagrange multiplier p. This is the mixture

pressure. Then,

pI : ∇u =

Nf
∑

k=1

αkpρċk, (2.18)
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whereI is the identity matrix. Using Eq. (2.18) in Eq. (2.15), we get

ρT ṡ =



P + pI + ρ

Nf
∑

k=1

∇ck ⊗ ∂F
∂∇ck



 : ∇u

+

Nf
∑

k=1

(

tk − ρ
∂F

∂∇ck

)

· ∇ċk − ρ

Nf
∑

k=1

(

∂F
∂ck

+ αkp − 1

ρ
∇ · tk

)

ċk + r.

(2.19)

According to the second law of thermodynamics, in the form ofthe Clausius-Duhem inequal-
ity, we have

ρχ ≥ 0, where ρχ ≡ ρṡ + ∇ · J − r/T (2.20)

whereχ is the internal dissipation andJ is the entropy flux (see Truesdell and Noll [45]).
Now, from Eq. (2.19) together with Eq. (2.5), we obtain

ρχ =
1

T



P + pI + ρ

Nf
∑

k=1

∇ck ⊗ ∂F
∂∇ck



 : ∇u +
1

T

Nf
∑

k=1

(

tk − ρ
∂F

∂∇ck

)

· ∇
(

ρ−1∇ · Jk

)

+
1

T

Nf
∑

k=1

∇µk · Jk + ∇ ·



J −
Nf
∑

k=1

µkJk

T



 , (2.21)

whereµk is the generalized chemical potential given by

µk =
∂F
∂ck

+ αkp − 1

ρ
∇ · tk. (2.22)

Next, because
∑Nf

k=1 Jk = 0 this leads to additional constraints on the constitutive relations

for the stress tensorP, the forcestk and the fluxesJk. Since
∑Nf

k=1 ck = 1, the concentration

fields are not independent. We may thus definecNf
= 1 −∑Nf−1

k=1 ck. This leads to the
equivalent entropy form

ρχ =
1

T



P + pI + ρ

Nf
∑

k=1

∇ck ⊗
(

∂F
∂∇ck

− ∂F
∂∇cNf

)



 : ∇u

+
1

T

Nf
∑

k=1

(

tk − ρ

(

∂F
∂∇ck

− ∂F
∂∇cNf

))

· ∇
(

ρ−1∇ · Jk

)

+
1

T

Nf
∑

k=1

∇
(

µk − µNf

)

· Jk + ∇ ·



J −
Nf
∑

k=1

(

µk − µNf

)

Jk

T



 , (2.23)

Taking the diffusion fluxJ =
∑Nf

k=1

(

µk − µNf

)

Jk/T we are now in a position to pose
thermodynamically consistent constitutive relations forP, tk andJk. Following Coleman
and Noll [14] where∇u is varied independently from the other quantities leads to the consti-
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tutive assumptions

P = −pI− ρ

Nf
∑

k=1

∇ck ⊗
(

∂F
∂∇ck

− ∂F
∂∇cNf

)

+ η

(

D− 2

3
(∇ · u) I

)

, (2.24)

tk = ρ

(

∂F
∂∇ck

− ∂F
∂∇cNf

)

, (2.25)

Jk = νk∇
(

µk − µNf

)

, for k < Nf , and JNf
= −

Nf−1
∑

k=1

Jk (2.26)

whereD =
(

∇u + ∇uT
)

is the rate of strain tensor andη is the viscosity (note that the bulk
viscosity is assumed to be 0 for simplicity and thatη may be a function ofc). We thus obtain

ρχ =
η

T
D : D +

1

T

Nf
∑

k=1

νk|∇
(

µk − µNf

)

|2 ≥ 0 (2.27)

and so the second law of thermodynamics is satisfied. Note that concentration gradients give
rise to extra fluid stresses. As will be discussed later, these mimic surface tension stresses.
Finally, although we have singled out one of the components,we demonstrate later that the
evolution of our system does not depend on the labeling of thecomponents. We also note that
other constitutive relations may be taken (e.g. see Appendix A as well as [19]). Our choice
here is consistent with that considered previously by Morral & Cahn [36] for linearized three-
phase systems.

2.3. Summary of general equations.Putting together the results from the previous
section, the thermodynamically consistent system of equations governing a mixture ofNf

fluids is

∇ · u =

Nf
∑

k=1

(

αk − αNf

)

∇ ·
(

νk∇
(

µk − µNf

))

, (2.28)

ρu̇ = −∇p −∇ ·



ρ

Nf
∑

k=1

∇ck ⊗
(

∂F
∂∇ck

− ∂F
∂∇cNf

)





+ ∇ ·
(

η(c)

(

D− 2

3
(∇ · u) I

))

+ ρg,

(2.29)

ρċk = ∇ ·
(

νk∇
(

µk − µNf

))

, (2.30)

and

µk =
∂F
∂ck

+ αkp− 1

ρ
∇ ·
(

ρ

(

∂F
∂∇ck

− ∂F
∂∇cNf

))

, αk =
1

ρk
(2.31)

for k = 1, . . . , Nf − 1 andcNf
= 1−∑Nf−1

k=1 ck. This system couples a generalized Navier-
Stokes equation with a nonlinear advection-diffusion equation for the concentration.

2.4. Special choice of free energy, the Navier-Stokes-Cahn-Hilliard system and nondi-
mensionalization. To make further progress, we need to choose the form of the Helmholtz
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free energy. Following Cahn and Hilliard [12], we take

F = F
(

c1, . . . , cNf

)

+

Nf
∑

k=1

ǫ2k
4
|∇ck|2 (2.32)

This gives

∂F
∂∇ck

=
1

2
ǫ2k∇ck (2.33)

Note that this makes the concentration equation (2.30) a fourth order nonlinear advection
diffusion equation and is a generalization of the classicalCahn-Hilliard equation used to
describe phase separation in binary mixtures [12]. Further, the extra stress in the Navier-
Stokes equation (2.29) can be written as

ρ

Nf
∑

k=1

∇ck ⊗
(

∂F
∂∇ck

− ∂F
∂∇cNf

)

= ρ

Nf
∑

k=1

ǫ2k
2
∇ck ⊗∇ck, (2.34)

where we have used that
∑Nf

k=1 ck = 1. Further, we have

µk−µNf
=

∂F

∂ck
− ∂F

∂cNf

+
(

αk − αNf

)

p− 1

2ρ
∇·



ρ∇



ǫ2kck + ǫ2Nf

Nf−1
∑

j=1

cj







 , (2.35)

where we have again used that
∑Nf

k=1 ck = 1. We may therefore define, fork = 1,. . . ,Nf −1,

F̃ (c1, . . . , cNf−1) = F



c1, . . . , cNf−1, 1 −
Nf−1
∑

k=1

ck



 , (2.36)

α̃k = αk − αNk
(2.37)

so that

∂F̃

∂ck
=

∂F

∂ck
− ∂F

∂cNf

. (2.38)

Analogously, one may define

µ̃k = µk − µNf

=
∂F̃

∂ck
+ α̃kp − 1

2ρ
∇ ·



ρ∇



ǫ2kck + ǫ2Nf

Nf−1
∑

j=1

cj







 , (2.39)

for k = 1,. . . ,Nf − 1. The resulting system is a coupled Navier-Stokes and Cahn-Hilliard
system (see also [34]). We note that by equipping this systemwith natural boundary condi-
tions, i.e.u = 0 and∇ck ·n and∇µ̃k ·n = 0, this system (with gravityg = 0) has a discrete
(free) energy functional

E(t) =

∫

Ω

ρ



F̃ (c1, . . . , cNf−1) +

Nf
∑

k=1

ǫ2k
4
|∇ck|2



+
ρ

2
|u|2 dΩ (2.40)
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whereΩ is the (fixed) physical domain. In the remainder of the paper,we drop the tilde
notation for simplicity.

We nondimensionalize the system as follows (e.g. see also [34]). Let L∗ andV∗ denote
characteristic scales of length and velocity. Then introduce the dimensionless independent
variablesx̄ = x/L and t̄ = V∗t/L∗ and the natural scaling of the dependent variablesū =
u/V∗, ρ̄ = ρ/ρ∗, η̄ = η/η∗, p̄ = p/(ρ∗V

2
∗ ), µ̄k = µk/µ∗

k, etc...., where again the stars denote
characteristic quantities. We also assume that the Helmholtz free energy is given by the sum

F =

Nf
∑

k=1

µ∗

kF̄k. (2.41)

The flow is then governed by the following nondimensional parameters:

Ck =
ǫk

L∗

√

µ∗
k

, Mk =
σk/ρ∗
L∗µ∗

k

, P ek =
ρ∗V∗L∗

ν∗
kµ∗

k

,

Ak = ρ∗αk, Wek =
ρ∗L∗V

2
∗

σk
, Re =

ρ∗V∗L∗

η∗
, F r =

V∗
√

L∗|g|
, (2.42)

where the top row are the nonclassical additional parameters introduced in the model and the
second row are the classical fluid dynamics parameters. In the top row, the first parameter
Ck is the Cahn number that is a nondimensional measure of the interface energy of thekth
component, the secondMk is a measure of the relative strength of the surface tension and
chemical energies and the thirdPek is the diffusional Peclet number that measures the relative
strengths of (chemical) diffusion and advection. In the bottom row, the first parameterAk is
a nondimensional measure of the density differences between components, the secondWek

is the Weber number whereσk is the phase specific surface tension (see [41] and below), the
third Re is the Reynolds number that measures the relative strength of inertial and viscous
forces, and finally the lastFr is the Froude number that measures the relative strengths ofthe
inertial and gravitational forces.

Omitting the bar notation, the nondimensional Navier-Stokes-Cahn-Hilliard (NSCH)
system (2.28)-(2.31) is written as

∇ · u =

Nf−1
∑

k=1

Ak

Pek
∇ · (νk∇µk) , (2.43)

ρu̇ = −∇p −∇ ·



ρ

Nf
∑

k=1

C2
k

MkWek
∇ck ⊗∇ck





+
1

Re
∇ ·
(

η(c)

(

D − 2

3
(∇ · u) I

))

+
ρ − 1

Fr2
G,

(2.44)

ρċk =
1

Pek
∇ · (νk∇µk) , (2.45)

where we have subtracted a linear termρ∗x · g from the pressure andG = g/|g|. Further,
the chemical potential is

µk =
∂ ˜̃F

∂ck
+ AkWekMkp − 1

ρ
∇ · ρ





C2
k

2
∇ck +

C2
Nf

2

Nf−1
∑

i=1

∇ci



 , (2.46)
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for k = 1, . . . , Nf − 1, where

∂ ˜̃F

∂ck
=

Nf
∑

j=1

µ∗
j

µ∗
k

∂F̄j

∂ck
. (2.47)

Finally, the nondimensional total free energy is

E(t) =

∫

Ω

ρ

2
|u|2 dΩ +

3
∑

k=1

1

MkWek

∫

Ω

ρ

(

F̄k +
C2

k

4
|∇ck|2

)

dΩ. (2.48)

Hereafter, we drop the bar and double tilde notation.

2.5. Asymptotics and the sharp interface regime.The miscibility properties of the
flow components can be described through the free energyF (c1, c2). For example, if all
the components are miscible the free energy is a convex function of its components (i.e.
Hessian matrix is positive definite). If the components are immiscible, the free energy is a
non-convex function of its components to reflect the coexistence of multiple phases. Various
mixtures of miscible and immiscible components can analogously be described. When the
flow components are immiscible, the NSCH system should reduce to the classical Navier-
Stokes equations together with the Laplace-Young surface tension jump conditions across
interfaces and multi-junctions. This requires assumptions on the nonclassical parametersCk,
Mk andPek. Following the asymptotic analyses of Lowengrub and Truskinovsky [34] and
others (e.g. see the review [2]) leads to the scaling

Ck = ǫ2, Mk = ǫ/β and Pek = O(1) or O(1/ǫ), (2.49)

where the parameterǫ is a nondimensional measure of interface thickness. Then, it can be
shown that in the sharp interface limitǫ → 0, the classical Navier-Stokes system equations
and jump conditions are recovered. An interface separatingtwo immiscible fluids has an
equilibrium profileceq(z) wherez is the coordinate in the normal direction to the interface.
The parameterβ is then given by

β =

(

∫ +∞

−∞

ρ(ceq)

(

∂ceq

∂z

)2

dz.

)−1

(2.50)

For example, with a free energyF (c) = 1
4c2

1c
2
2, where we assume thatc3 = 0, then

ceq(z) =
(

1 − tanh
(

z/2ǫ
√

2
))

/2 (2.51)

and, ifρ(c) = 1, thenβ = 6
√

2.
For three-phase flows, following [41], the surface tensionσij between immiscible flow

componentsi andj are decomposed into the phase-specific surface tensionsσi andσj by

σij = σi + σj (2.52)

That is, givenσij , a linear system of equations is solved forσi andσj . The phase-specific
surface tensions are used in the definition of the Weber number (2.42). For flows containing
four or more immiscible fluids, the decomposition above is overdetermined and it is possible
that no solution exists. Nevertheless, the model system (2.43)-(2.48) is still valid although an
alternate means may need to be used to determine the individual Weber numbersWek. This
is currently under study.
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2.6. The Boussinesq approximation and the ternary system.We next consider the
special case of a ternary system and use the Boussinesq approximation. In the Boussinesq
approximation, the densities of the flow components are nearly matched such thatρ ≈ 1 but
the Froude number may be small enough such that(ρ − 1) /Fr2 is non-negligible. Thus, in
Eqs. (2.43)-(2.46), we takeρ = 1 except in the gravitational term and we takeAk = 0. The
resulting system is the ternary version of model H in the nomenclature of Hohenberg and
Halperin [23].

The composition of a ternary mixture (A, B, and C) can be mapped onto an equilateral
triangle (the Gibbs triangle [38]) whose corners represent100% concentration of A, B or C
as shown in Fig. 2.1(a). Mixtures with components lying on lines parallel toBC contain
the same percentage of A, those with lines parallel toAC have the same percentage of B
concentration, and analogously for the C concentration. InFig. 2.1(a), the mixture at the
position marked ‘◦’ contains 60% A, 10% B, and 30% C (The total percentage must sum to
100%).

A B

C

O

(a)

(0,0,1)

(0,1,0)(1,0,0)

(b)

FIG. 2.1.(a) Gibbs triangle. (b) Contour plot of the free energyF (c)

Let c = (c1, c2) be the phase variable (i.e. concentrations of component A and compo-
nent B). Sincec1 + c2 + c3 = 1 we only need to solve the equations withc1 andc2. Here,
for simplicity, we consider a constant mobility1 (νk ≡ 1). F (c) is the Helmholtz free energy
which is defined on the Gibbs triangle. For three immiscible fluids, the free energy can be
modeled by

F (c) =

3
∑

k=1

Fk, Fk = c2
k(c2

rem(k,3)+1 + c2
rem(k+1,3)+1)/8 (2.53)

whererem(x, y) is the remainder of the ratiox/y andc3 = 1− c1 − c2. The contours of the
free energyF (c) projected onto the Gibbs triangle are shown in Fig. 2.1(b). Note the energy
minima are at the three vertices and the maximum is at the center.

1The extension to more generalνk = νk(c1, c2) is straightforward.
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The non-dimensional Boussinesq ternary NSCH system is as follows:

∇ · u = 0, (2.54)

u̇ = −∇p +
1

Re
∇ · (η(c)(∇u + ∇uT ))

−
3
∑

k=1

ǫβ

Wek
∇ · (∇ck ⊗∇ck) +

ρ − 1

Fr2
g, (2.55)

ċ =
1

Pe
∆µ, (2.56)

µ = f(c) − Γǫ∆c, (2.57)

wheref(c) = (f1(c), f2(c)) = (∂c1
F (c), ∂c2

F (c)) andΓǫ is the matrix

Γǫ ≡
(

ǫ2 ǫ2/2
ǫ2/2 ǫ2

)

.

The natural boundary and initial conditions for the ternaryNSCH equation are

∂c

∂n
=

∂µ

∂n
= 0, and u = 0 on∂Ω, c(x, 0) = c0(x), u(x, t) = 0, (2.58)

wheren is the normal unit vector pointing out ofΩ. Finally, the nondimensional total free
energy for the Boussinesq system is

E(t) =

∫

Ω

1

2
|u|2 dΩ +

3
∑

k=1

1

MkWek

∫

Ω

ρ

(

Fk +
C2

k

4
|∇ck|2

)

dΩ, (2.59)

whereF =
∑3

k=1 Fk.

3. Numerical Solution. The numerical solution of the ternary NSCH system uses a
second-order accurate spatial discretization and a Crank-Nicholson type time stepping method.
For simplicity and clarity of exposition, we will present the numerical method in 2D, but the
extension to 3D is straightforward. The computational gridconsists of square cells of a uni-
form sizeh; these cellsΩij are centered at(xi = (i − 0.5)h, yj = (j − 0.5)h), where
i = 1, · · · , L andj = 1, · · · , M . Givenun−1,un, cn−1, cn, defined at cell centers and
pn− 1

2 defined at cell corners, we want to findun+1, cn+1, andpn+ 1

2 . The outline of the
algorithm is as follows:

Step 1. Initialize c0 to be the locally equilibrated concentration profile andu0 to be the
divergence-free velocity field.

Step 2. Solve the CH system and update the concentration fieldcn to cn+1. We use a
nonlinear Full Approximation Storage (FAS) multigrid method to solve the nonlinear discrete
system (3.1) and (3.2) given below at implicit time level. The nonlinearity is treated using
a nonlinear Gauss-Seidel relaxation. Details of this step are presented in our recent paper
[31]. Here, however, we have additional source term due to advection. That is, we solve the
following second-order accurate discrete system

cn+1
ij − cn

ij

∆t
=

1

Pe
∆dµ

n+ 1

2

ij − (u · ∇dc)
n+ 1

2 , (3.1)

µ
n+ 1

2

ij = φ̂(cn
ij , c

n+1
ij ) − 1

2
Γǫ∆d(c

n
ij + cn+1

ij ), (3.2)
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where∆d is the standard five point discretization of Laplacian operator in 2D. The advection
term(u·∇dc)

n+ 1

2 is approximated by using a fifth order weighted essentially non-oscillatory
(WENO) scheme [26] and is described in Sec. 3.1. The termφ̂ = (φ̂1, φ̂2) andφ̂1(...) and
φ̂2(...) denote Taylor series approximations tof1 andf2 up to second order, respectively:

φ̂1(c
n, cn+1) = f1(c

n+1) − 1

2
∂c1

f1(c
n+1)(cn+1

1 − cn
1 )

−1

2
∂c2

f1(c
n+1)(cn+1

2 − cn
2 ) +

1

3!
∂2

c1
f1(c

n+1)(cn+1
1 − cn

1 )2

+
2

3!
∂c2

∂c1
f1(c

n+1)(cn+1
1 − cn

1 )(cn+1
2 − cn

2 ) +
1

3!
∂2

c2
f1(c

n+1)(cn+1
2 − cn

2 )2

and

φ̂2(c
n, cn+1) = f2(c

n+1) − 1

2
∂c1

f2(c
n+1)(cn+1

1 − cn
1 )

−1

2
∂c2

f2(c
n+1)(cn+1

2 − cn
2 ) +

1

3!
∂2

c1
f2(c

n+1)(cn+1
1 − cn

1 )2

+
2

3!
∂c2

∂c1
f2(c

n+1)(cn+1
1 − cn

1 )(cn+1
2 − cn

2 ) +
1

3!
∂2

c2
f2(c

n+1)(cn+1
2 − cn

2 )2.

As described in [31], this discretization ensures that in the absence of flow, a discrete
version of Eqs. (2.56)-(2.57) is non-increasing in time independent of the choice of∆t. This
gives enhanced stability.

Step 3. Update the velocityun to un+1 and the pressurepn+ 1

2 . We use the following
approximate projection method adapted from [8]. We solve

u∗ − un

∆t
= −∇dp

n− 1

2 +
1

2Re
∇d · η(cn+1)[∇du

∗ + (∇du
∗)T ] +

ρ(cn+ 1

2 ) − 1

Fr2
G

+
1

2Re
∇d · η(cn)[∇du

n + (∇du
n)T ] + F

n+ 1

2

st − (u · ∇du)n+ 1

2 (3.3)

using a multigrid method for the intermediate velocityu∗ without strictly enforcing the in-
compressibility constraint. We useFst =

∑3
k=1

ǫβ
Wek

∇ · (|∇ck|2I − ∇ck ⊗ ∇ck) and the

pressure field is replaced byp +
∑3

k=1
ǫβ

Wek
|∇ck|2. This modification is performed for two

reasons. First, by taking into account analytic cancellation a simpler and more accurate dis-
cretization may be obtained. Second, when the interface is flat, this term is equal to zero
which is consistent with the fact that the interfacial forcevanishes for flat interfaces.

The discretization ofFst is given in Sec. 3.2. The terms∇dp and∇d·η(c)[∇du+∇du
T ]

are defined as following.

(∇dp)ij =

(

pi+ 1

2
,j+ 1

2

+ pi+ 1

2
,j− 1

2

− pi− 1

2
,j+ 1

2

− pi− 1

2
,j− 1

2

2h
,

pi+ 1

2
,j+ 1

2

− pi+ 1

2
,j− 1

2

+ pi− 1

2
,j+ 1

2

− pi− 1

2
,j− 1

2

2h

)

.

The first component of the viscous term∇d · η(c)[∇du + ∇du
T ] is discretized as

(

∇d · η(c)[∇du + ∇du
T ]
)1

ij
=

1

h2

(

2η(ci+ 1

2
,j)(ui+1,j − uij) − 2η(ci− 1

2
,j)(uij − ui−1,j)

+ η(ci,j+ 1

2

)(ui,j+1 − uij + 0.25(vi+1,j+1 − vi−1,j+1 + vi+1,j − vi−1,j))

−η(ci,j− 1

2

)(uij − ui,j−1 + 0.25(vi+1,j − vi−1,j + vi+1,j−1 − vi−1,j−1))
)

.
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The second component of the viscous term is discretized in a similar manner. The term
(u · ∇du)n+ 1

2 is computed using a fifth order WENO scheme described in Sec. 3.1.
Then projectu∗ onto the space of approximately divergence-free vector fields and get

the velocityun+1, i.e.,u∗ = un+1 + ∆t∇dφ, whereφ satisfies∆dφ = ∇d · u
∗

−u
n

∆t with the
Neumann boundary condition,∂φ

∂n
= 0, see [1] for more general boundary conditions. Note

∇d · un+1 ≈ 0 see [8]. Finally, update pressure bypn+ 1

2 = pn− 1

2 + φ. This completes one
time step.

3.1. Approximation of the advection terms. In this section, we describe the discretiza-

tion of the advection terms. The valuesu
n+ 1

2

ij and c
n+ 1

2

ij are calculated using a second-

order accurate extrapolation from previous values, i.e.,u
n+ 1

2

ij = (3un
ij − un−1

ij )/2 and

c
n+ 1

2

ij = (3cn
ij − cn−1

ij )/2. From these cell centered values we obtain cell edged values

by u
n+ 1

2

i+ 1

2
,j

= (u
n+ 1

2

ij + u
n+ 1

2

i+1,j)/2 andu
n+ 1

2

i,j+ 1

2

= (u
n+ 1

2

ij + u
n+ 1

2

i,j+1)/2.

In general, the normal velocitiesu
n+ 1

2

i+ 1

2
,j

andv
n+ 1

2

i,j+ 1

2

at the edges are not divergence-free.

To reduce the overall error, we apply the MAC projection [43]before construction of the
convective derivatives. The equation

∆dφ = ∇MAC · un+ 1

2 (3.4)

is solved for a cell centeredφ, where

(∇MAC · un+ 1

2 )ij =
u

n+ 1

2

i+ 1

2
,j
− u

n+ 1

2

i− 1

2
,j

h
+

v
n+ 1

2

i,j+ 1

2

− v
n+ 1

2

i,j− 1

2

h

with the Neumann boundary condition,∂φ
∂n

= 0 The resulting linear system (3.4) is solved
using a multigrid method with Gauss-Seidel relaxation. Then the discrete divergence-free
cell-edge velocities̃u andṽ are defined by

ũ
n+ 1

2

i+ 1

2
,j

= u
n+ 1

2

i+ 1

2
,j
− φi+1,j − φij

h
, ṽ

n+ 1

2

i,j+ 1

2

= v
n+ 1

2

i,j+ 1

2

− φi,j+1 − φij

h
.

The convective terms are discretized as:

(u · ∇du)
n+ 1

2

ij =
ũ

n+ 1

2

i+ 1

2
,j

+ ũ
n+ 1

2

i− 1

2
,j

2h
(ū

n+ 1

2

i+ 1

2
,j
− ū

n+ 1

2

i− 1

2
,j
)

+
ṽ

n+ 1

2

i,j+ 1

2

+ ṽ
n+ 1

2

i,j− 1

2

2h
(ū

n+ 1

2

i,j+ 1

2

− ū
n+ 1

2

i,j− 1

2

),

(u · ∇dc)
n+ 1

2

ij =
ũ

n+ 1

2

i+ 1

2
,j

+ ũ
n+ 1

2

i− 1

2
,j

2h
(c̄

n+ 1

2

i+ 1

2
,j
− c̄

n+ 1

2

i− 1

2
,j
)

+
ṽ

n+ 1

2

i,j+ 1

2

+ ṽ
n+ 1

2

i,j− 1

2

2h
(c̄

n+ 1

2

i,j+ 1

2

− c̄
n+ 1

2

i,j− 1

2

),

where the edge values̄c
n+ 1

2

i± 1

2
,j
, ū

n+ 1

2

i± 1

2
,j
, c̄

n+ 1

2

i,j± 1

2

, andū
n+ 1

2

i,j± 1

2

are computed using projected

velocity fields,ũ, ṽ, and a fifth order WENO algorithm [26].
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3.2. Discretization of surface tension terms.In this section we describe the finite dif-
ference approximation to the surface tension term,Fst. Let

Fst = −
3
∑

k=1

ǫβ

Wek
(fk, gk) =

3
∑

k=1

ǫβ

Wek
∇ · (|∇ck|2I −∇ck ⊗∇ck)

= −
3
∑

k=1

ǫβ

Wek
(∂xck∂yyck − ∂yck∂xyck, ∂yck∂xxck − ∂xck∂xyck).

Then, the surface tension force components(f1, g1) are discretized as

(f1)ij =
1

2h3
(c1i+1,j − c1i−1,j)(c1i,j+1 − 2c1ij + c1i,j−1) (3.5)

− 1

8h3
(c1i,j+1 − c1i,j−1)(c1i+1,j+1 + c1i−1,j−1 − c1i+1,j−1 − c1i−1,j+1)

(g1)ij =
1

2h3
(c1i,j+1 − c1i,j−1)(c1i+1,j − 2c1ij + c1i−1,j) (3.6)

− 1

8h3
(c1i+1,j − c1i−1,j)(c1i+1,j+1 + c1i−1,j−1 − c1i+1,j−1 − c1i−1,j+1)

and the other components,(f2, g2) and(f3, g3), are similarly defined by replacingc1 in Eqs.

(3.5) and (3.6) byc2 and1 − c1 − c2, respectively. Further,F
n+ 1

2

st in Eq. (3.3) is evaluated
usingcn+ 1

2 = (cn + cn+1)/2.

3.3. The discrete energy functional.The discrete energy functional for the Boussinesq
approximation is

Eh(t) =
1

2
(u,u)h +

3
∑

k=1

1

MkWek

(

(Fk, 1)h +
ǫ2k
4
|ck|21

)

(3.7)

where(f, g)h = h2
∑Nx

i=1

∑Ny

j=1 fijgij and|g|21 =
∑Nx

i=1

∑Ny

j=1((gi+1,j − gij)
2 + (gi,j+1 −

gij)
2) taking into account the Neumann boundary conditions to handle the boundary terms.

Following the analysis in [29], it can be shown that if the time step∆t is small enough, the
discrete energyEh is non-increasing. In practice, we find thatEh is nonincreasing for∆t
such that our multigrid methods converge.

We note that an alternate discretization may be developed following our work on phase-
field models of two-phase flows [30]. In that work, we formulated a version of the projection
method using a special discretization of the Navier-Stokesequations such that the coupled
discrete Navier-Stokes-Cahn-Hilliard system had a non-increasing discrete energy functional
for any value of∆t. We find that the scheme presented here results in slightly better accuracy
than that used in [30].

4. Numerical experiments. In this section, we demonstrate convergence of our scheme
numerically and simulate a three-phase contact angle, a buoyancy-driven compound drop,
and liquid/liquid remediation enhanced by the Rayleigh-Taylor instability. Unless otherwise
specified, we use the free energy function,F (c) by Eq. (2.53). From our choice of the
homogeneous free energy density Eq. (2.53) and an equilibrium profile Eq. (2.51), the con-
centration field varies from0.05 to 0.95 over a distance of about4

√
2ǫ tanh−1(0.9). We have

4-8 grid points across interface in most of our simulations.Note that since we are taking a
polynomial form of the free energy,F (c), we may have non-physical value of concentra-
tion (i.e. less than zero and greater than one), but its deviation from the physical values are
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negligible (most of cases, the deviations are order10−3). The time step is determined by
restrictions due to the CFL condition, gravity, viscosity,and surface tension [40]:

∆t < min
Ω

(

min
k=1,2,3

√

(ρ1 + ρ2 + ρ3)WekWerem(k,3)+1

8π(Wek + Werem(k,3)+1)
h

3

2 ,
3Reρnh2

14ηn
,

h

|un| ,
√

2h

|Fn|

)

,

whereFn is the right hand side of Eq. (2.55) at timet = n∆t.

4.1. Convergence test.To obtain an estimate of the rate of convergence, we perform a
number of simulations for a sample initial problem on a set ofincreasingly finer grids. The
initial data is

c1(x, y, 0) =
1

2

(

1 − tanh

(

y − 1
3

2
√

2ǫ

))

, (4.1)

c2(x, y, 0) =
1

2

(

tanh

(

y − 1
3

2
√

2ǫ

)

− tanh

(

y − 2
3

2
√

2ǫ

))

. (4.2)

That is, narrow transition layers separate three immiscible fluids. The initial velocity is a
swirling flow

(u(x, y, 0), v(x, y, 0)) = (−0.25 sin2(πx) sin(2πy), 0.25 sin2(πy) sin(2πx)) (4.3)

on a domain,Ω = (0, 1)× (0, 1). No-slip boundary conditions are applied to top and bottom
planes and periodic ones are to the side walls. The numericalsolutions are computed on the
uniform grids,h = 1/2n for n = 5, 6, 7, 8, and9. For each case, the calculations are run to
time T = 0.2, the uniform time steps,∆t = 0.1h, Re = 10, We1 = We2 = We3 = 100,
Pe = 2, andǫ = 0.005

√
2, are used to establish the convergence rates. Fig. 4.1(a) and (b)

show the initial configuration and a snapshot of the solutionat timeT = 0.2, respectively
with h = 1/64 andRe = 100.

TABLE 4.1
Convergence Results withRe = 10 —u, v, c1, andc2.

Case 32-64 64-128 rate 128-256 rate 256-512 rate

u 5.4530e-4 4.4986e-5 3.5995 1.0895e-5 2.0458 2.7798e-6 1.9706

v 6.8462e-4 2.9858e-5 4.5191 7.5194e-6 1.9894 1.8850e-6 1.9961

c1 2.9211e-2 3.1969e-3 3.1918 7.5863e-4 2.0752 1.8755e-4 2.0161

c2 4.1640e-2 4.2759e-3 3.2836 1.0037e-3 2.0908 2.4801e-4 2.0169

Since a cell centered grid is used, we define the error to be thedifference between that
grid and the average of the next finer grid cells covering it:

eh/ h
2 ij

def
= chij −

(

ch
2 2i,2j

+ ch
2 2i−1,2j

+ ch
2 2i,2j−1

+ ch
2 2i−1,2j−1

)

/4.

The rate of convergence is defined as the ratio of successive errors in the discretel2-norm:

log2(||eh/ h
2

||/||eh
2

/ h
4

||).

The errors and rates of convergence withRe = 10 andRe = 100 are given in Tables
4.1 and 4.2, respectively. The results suggest that the scheme is indeed second order accurate
whenRe number is small. WhenRe = 100, the rate of convergence decreases.
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TABLE 4.2
Convergence Results withRe = 100 —u, v, c1, andc2.

Case 32-64 64-128 rate 128-256 rate 256-512 rate

u 7.9061e-4 2.1666e-4 1.8675 6.3568e-5 1.7691 1.8657e-5 1.7686

v 1.8242e-4 4.4618e-5 2.0316 1.4104e-5 1.6615 4.4661e-6 1.6590

c1 1.6055e-2 3.1327e-3 2.3576 7.6571e-4 2.0325 1.9041e-4 2.0077

c2 2.5432e-2 4.4223e-3 2.5238 1.0388e-3 2.0899 2.5764e-4 2.0114

(a) (b)

FIG. 4.1.Snapshots of the solutions at (a)T = 0 and (b)T = 0.2. The uppermost layer is fluid 3, the middle
layer is fluid 2, and the lower layer is fluid 1. The contour lines are fromc2 = 0.1 to c2 = 0.9 with 0.1 step size.

We also examined the time evolution of the total energy (withF andFk defined as in
Eqs. (3.7) and (2.53) respectively). The results are shown in Fig. 4.2 together with the inter-
facial (dotted) and kinetic energy (dot-dashed) components. The interfacial energy contains
both the gradient and Helmholtz free energy terms. The solidcurve marks the total energy.
The insets show the layer morphology (c2 = 0.5 filled contour) at various times. The initial
data, boundary conditions and all the parameters are the same as considered previously except
that the Weber numbers areWe1 = We2 = We3 = 10 so that surface tension plays a more
important role in the evolution. Here the Reynolds numberRe = 10. Observe that the total
energy is non-increasing throughout the evolution. The kinetic energy also monotonically de-
creases due to viscous dissipation. The interfacial energyis non-monotone, however. At early
times, the initially flat layer deforms and the surface energy increases. Around approximately
t = 0.4, the surface energy reaches a peak due to the increased deformation of the layer and
then decreases towards an equilibrium value correspondingto a flat layer (two interfaces).
When the layer is most deformed, the surface tension force induces a reversal of the velocity
field such that the deformed layer relaxes back to a flat configuration at later times.

4.2. Contact angles.Following [41], we next investigate the spreading of a liquid lens
consisting of an initially circular immiscible droplet of fluid located at an interface between
two other immiscible fluids. See Fig 4.3(a).

The initial condition is a circular droplet,Ω2, (located at a free surface betweenΩ1 and
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0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

time

total energy
interfacial energy
kinetic energy

FIG. 4.2.The time dependent energies of the numerical solutions withthe initial data Eqs. (4.1)-(4.6) and with
Re = 10, We1 = We2 = We3 = 10. Snapshots of the concentration field,c2 are shown with filled contour at
c2 = 0.5.

Ω3) and the initial velocity is zero, i.e.,

c1(x, y, 0) = max

[

0.5

(

1 + tanh

(

y − 0.5

2
√

2ǫ

))

− c2(x, y), 0

]

, (4.4)

c2(x, y, 0) = 0.5

(

1 + tanh

(

0.15 −
√

(x − 0.5)2 + (y − 0.5)2

2
√

2ǫ

))

, (4.5)

u(x, y, 0) = v(x, y, 0) = 0. (4.6)

The computational domain isΩ = [0, 1]× [0, 1]. The fluids are density and viscosity matched
(ρ = 1, η = 1) and

Re = 60, andWe2 = 60, We1 = We3 = 108, 60, 36.

In Figs. 4.3(b)-(d), the evolution of thec2 = 1/2 contour line is shown for three cases
with Re = 60, andWe2 = 60, We1 = We3 = 108, 60, 36, respectively. In all cases,
ǫ = 0.005

√
2, P e = 100/ǫ, h = 1/256, and∆t = 0.25h. As the droplet spreads, it reaches

an equilibrium shape. The most deformed curve in each figure is the numerical steady-state.
Theoretically, the shape of the steady-state drop is controlled by the drop-volume and the
three surface tensions (inverse Weber numbers). The equilibrium three-phase contact angle
is determined by

sin θ1
1

We2
+ 1

We3

=
sin θ2

1
We1

+ 1
We3

=
sin θ3

1
We1

+ 1
We2

and the relation between the lens areaA, its lengthd (the distance between triple junctions),
and the contact anglesθi of thei-th phase (Young’s law) is

d =

(

1

8A

(

2(π − θ1) − sin(2(π − θ1))

sin2(π − θ1)
+

2(π − θ3) − sin(2(π − θ3))

sin2(π − θ3)

))−
1

2

.
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FIG. 4.3. (a) Initial configuration: the upper fluid is phase 1, the lower fluid is phase 3, and the droplet is
phase 2. (b), (c), and (d) are evolutions of initial circulardrop for We2 = 60 andWe1 = We3 = 108, 60, 36,
respectively. The arrow shows the direction of the evolution and the most deformed lines in (b), (c), and (d) are
corresponding steady shapes and the enclosing box size is[0.23, 0.77] × [0.23, 0.77].

TABLE 4.3
Equilibrium measurements

We1, We2, We3 dexact dnumerical dnumerical, ǫ/2

108, 60, 108 0.3746 0.3982 ·
60, 60, 60 0.4138 0.4368 ·
36, 60, 36 0.4578 0.4622 0.4502

Thus, the accuracy of the steady lens shape can be measured bycomparing the observedd
with the analytical value.

The evolution ofd for the three cases is shown in Fig. 4.4. The numerical value of a d
is obtained from thec2 = 1/2 contour line. Note that in all cases, there is rapid increasein
d at early times followed by a slow approach to equilibrium. Note also there is an overshoot
in the early evolution of theWe3 = 36 andWe3 = 108 cases. In table 4.2, the equilibrium
values ofd are shown for the three cases together with the corresponding theoretical values.
There is very good agreement between the theory and simulation.
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FIG. 4.4. Time evolution ofd, distance between triple junctions.We3 = 108 (◦), We3 = 60 (∗), and
We3 = 36 (⋄).

In Fig. 4.5(a) and (b), we plot the contours of the concentration c2 at the five levels
c2 = 0.1, 0.3, 0.5, 0.7, and0.9 for the case withWe1 = We3 = 36, andWe2 = 60.
In the left columnǫ = 0.005

√
2 while in the right columnǫ = 0.0025

√
2. Not only do the

concentration contours appear to converge, also note that whenǫ = 0.0025
√

2, we obtain
dnumerical = 0.4502, which is closer to the exact result than is the case withǫ = 0.005

√
2.

Interestingly, thec2 = 0.1 contour appears to be elongated near the triple junctions– afact
that seems to persist under refinement ofǫ.

We next show that numerical results are not sensitive to the choice of component labels.
We take the same initial configuration but change the component labels, i.e.

c1(x, y, 0) = max

[

0.5

(

1 + tanh

(

y − 0.5

2
√

2ǫ

))

− c3(x, y), 0

]

, (4.7)

c3(x, y, 0) = 0.5

(

1 + tanh

(

0.15 −
√

(x − 0.5)2 + (y − 0.5)2

2
√

2ǫ

))

. (4.8)

We then solve the equations for the concentrations,c1 andc2 = 1 − c1 − c3 with We1 =
We2 = We3 = 60. In Fig. 4.6, the initial concentration profiles are shown: for the original
case (hereafter referred to as case 1) - (a1)c1 and (a2)c2, the new case (referred to as case 2)
(b1) c1 and (b2)c2. The time evolution of the distanced between the triple junctions for the
two cases (case 1 (∗) and case 2 (◦)) are shown in (c). As can be seen from this figure, the
values ofd from these two cases are essentially identical and thus the results are insensitive
to label switching.

In Fig. 4.7, the time evolution of total energy (withF andFk defined as in Eqs. (3.7) and
(2.53) respectively) is shown together with the corresponding interfacial and kinetic energy
components of the numerical solutions. In addition, the filled contourc2 = 0.5 is shown
at various times indicating the corresponding morphology of the drop. The initial data are
Eqs. (4.4)-(4.6) and the parameters correspond to the case in which We1 = We3 = 36,
andWe2 = 60. In the figure, the solid line is the total energy, the dotted line is interfacial
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FIG. 4.5.Contour lines of concentrationc2 at the five levelsc2 = 0.1, 0.3, 0.5, 0.7, and0.9 in the case of
We1 = We3 = 36, andWe2 = 60. Left column:ǫ = 0.005
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2 and right column:ǫ = 0.0025
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2, respectively.
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FIG. 4.6. Initial concentration profiles: case 1 - (a1)c1 and (a2)c2, case 2 (b1)c1 and (b2)c2. Time
evolution ofd, distance between triple junctions with two cases (case 1 (∗) and case 2 (◦)) with We3 = 60.

energy, and the dash-dotted line is the kinetic energy. The inset shows a blow-up of the
kinetic energy. Since the initial velocity is zero and the evolution is primarily surface energy
driven, the kinetic energy is very small. At early times, a small amount of surface energy is
transferred to kinetic energy as the drop begins to elongate. At later times, the kinetic energy
rapidly decays as the drop approaches its equilibrium configuration. As expected, the total
energy monotonically decreases to its equilibrium value. Correspondingly, the interfacial
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FIG. 4.7. The time dependent energies of the numerical solutions withthe initial data Eqs. (4.4)-(4.6) and
the case withWe1 = We3 = 36, andWe2 = 60. Snapshots of the concentration field,c2 are shown with filled
contour atc2 = 0.5.

energy also decreases.
Next, we consider a similar problem in three-dimensions. Weplace a periodic array

of spheres on an interface between two immiscible fluids analogously to that shown in Fig.
4.3(a) in two dimensions. The computational domain isΩ = [0, 1] × [0, 1] × [0, 1] and the
mesh size is64 × 64 × 64 with time step,∆t = 0.001. ǫ = 0.008

√
2, andPe = 100/ǫ.

No-slip boundary conditions for the top and bottom planes and periodic boundary conditions
for the side walls are applied. Specifically, the initial data in a single period box are

c1(x, y, z) = max

[

0.5

(

1 + tanh

(

z − 0.5

2
√

2ǫ

))

− c2(x, y), 0

]

,

c2(x, y, z) = 0.5

(

1 + tanh

(

0.35 −
√

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2

2
√

2ǫ

))

,

u(x, y, z) = v(x, y, z) = w(x, y, z) = 0.

We take the viscosities and densities of the components to bematched(η1 = η2 = η3 = 1)
and(ρ1 = ρ2 = ρ3 = 1) with the following parameters.

Re = 60, We1 = We3 = 36, We2 = 60.

In Fig. 4.8, evolution is shown and only the spheres are visualized with a reference plane
passing through equator of the spheres. The actual interface deforms. As the drops spread
out and flatten due to surface tension forces, the drops interact with their periodic neighbors.
In this case, the distance between the neighbors is less thanthe equilibrium length of an
isolated drop. As seen in Fig. 4.8, this leads to merger with the periodic images and results
in a lattice-like microstructure of the second fluid on the interface between the two other
immiscible fluids.

4.3. Numerical simulation of a buoyancy-driven compound drop. In this section, a
buoyancy-driven evolution a 3-D compound drop is investigated. In Fig. 4.9, a schematic of
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t=0.0 t=0.2 t=0.6

t=1.8 t=2.6 t=3.2

FIG. 4.8. Evolution of spheres under surface tension forces, the nondimensional times are shown below each
figure.

the initial configuration is shown. The three fluids are immiscible where a heavy droplet of
fluid I is encapsulated by a light fluid II. Fluid I is the heaviest component. This models a
flow in which a heavy fluid contains a dispersed contaminant. Releasing drops of the light
fluid II from the bottom of the container, provides the means to encapsulate the contaminants.
Restricting this to a single drop yields the initial condition we consider.

I

II

III

II ρ2, η2

ρ3, η3

ρ1, η1

σ23

σ23

σ12

FIG. 4.9.Schematic of a compound drop.

Specifically, the initial data are

c1(x, y, z) = 0.5

(

1 + tanh

(

0.3 − r

2
√

2ǫ

))

,

c2(x, y, z) = 0.5

(

2 + tanh

(

0.5 − r

2
√

2ǫ

)

+ tanh

(

z − 2.5

2
√

2ǫ

))

− c1(x, y, z),

u(x, y, z) = v(x, y, z) = w(x, y, z) = 0,

wherer =
√

(x − 1)2 + (y − 1)2 + (z − 1.5)2. We take the viscosities and surface tensions
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of the components to be matched(η1 = η2 = η3 = 1) and(σ1 = σ2 = σ3 = 1) with the
following parameters.

ρ1 = 1.044, ρ2 = 0.957, ρ3 = 1, Re = 36, We1 = We2 = We3 = 1127, andFr = 1.

The computational domain isΩ = [0, 2] × [0, 2] × [0, 4] and the mesh size is32 × 32 × 64
with time step,∆t = 0.002. ǫ = 0.01

√
2, andPe = 10/ǫ. No-slip boundary conditions for

the top and bottom planes and periodic boundary conditions for the side walls are applied.

t=0.0 t=6.0 t=8.0 t=12.0

t=14.0 t=17.0 t=20.0 t=44.0

FIG. 4.10.Evolution of a compound drop, the nondimensional times are shown below each figures.

The evolution is presented in Fig. 4.10. An upper (flat) interface separates the heavy
ambient from same fluid that encapsulates the heavy drop. Thecompound drop is lighter
than the heavy ambient and so it rises and deforms. The encapsulating fluid rises faster than
the heavy inner drop but nevertheless the compound drop remains intact until it penetrates the
upper interface. The heavy inner drop is carried upwards as the encapsulated fluid is released.
The drop then falls back on the interface remaining trapped there by surface tension forces
even though if is heavier than the lower ambient. At this point, the drop could be removed
from the system by “sucking” it off the interface. Imaginingthat the heavy inner drop is a
contaminant in the lower ambient, this provides a mechanismof liquid/liquid extraction by
which fluid III may be cleansed.

4.4. Rayleigh-Taylor Instability of Ternary Fluid Flows. In this section, we exploit
the fact that our ternary NSCH system is capable of describing multicomponent fluid flows
containing immiscible, miscible and partially miscible components. The miscibility of the
components is modeled through the properties of the free energy F (c1, c2). It is nontrivial to
construct free energies capable of describing partially miscible systems where, for example,
two components are immiscible and the third component is preferentially miscible in one of
the immiscible components. Nevertheless, we have been ableto construct a class of such a
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FIG. 4.11.Contour plot of the free energyF (c1, c2)
on the Gibbs triangle.

FIG. 4.12.schematic of initial configuration

free energies and one example of which is given below:

F (c1, c2) = 2c2
1(1 − c1 − c2)

2 + (c1 + 0.2)(c2 − 0.2)2 + (1.2 − c1 − c2)(c2 − 0.4)2.

A contour plot of the free energyF (c1, c2) on the Gibbs triangle is shown in Fig. 4.11. The
two minima ofF (c1, c2) are at(0.7779, 0.2330,−0.0109) and(−0.0151, 0.3651, 0.6499).
These minima lie very slightly outside the Gibbs triangle. As a demonstration of the evo-
lution possible in partially miscible liquid systems, we present an example in which there
is a gravity-driven (Rayleigh-Taylor) instability that enhances the transfer of a preferentially
miscible contaminant from one immiscible fluid to another in2D. The initial configuration is
shown in Fig. 4.12. The top half of the domain consists of a mixture of fluid I and fluid II,
and the bottom half consists of fluid III, which is immisciblewith fluid I. Fluid II is prefer-
entially miscible with fluid III. Fluid I is assumed to be the lightest and fluid II the heaviest.
The density of the I/II mixture is heavier than that of fluid III, so the density gradient induces
Rayleigh-Taylor Instability.

In particular, the initial data are

c1(x, y) = c2(x, y) = 0.25

(

1 + tanh

(

y − 0.5 − 0.1 cos(2πx)

2
√

2ǫ

))

u(x, y) = v(x, y) = 0

and the simulation parameters are

ρ1 = 1, ρ2 = 4, ρ3 = 2, F r = 1, Re = 313, We1 = We2 = We3 = 9.8 × 106.

The computational domain isΩ = [0, 1] × [0, 1] and the mesh size is128 × 128 with time
step,∆t = 0.5h. ǫ = 0.01

√
2 andPe = 10/ǫ. Here, we assume that the surface tension is

small so that the interface undergoes the Rayleigh-Taylor instability (e.g. see paper [16] for
the effect of surface tension on the instability).

The evolution of the three phases is shown in Fig. 4.13. The top row shows the evolution
of fluid I, middle and bottom correspond to fluid II and fluid III, respectively. That is, the
contours ofc1, c2, andc3 are visualized in gray-scale where darker regions denote larger
values ofc1, c2, andc3, respectively. As the simulation begins, the I/II mixture falls and
fluid II diffuses into fluid III. A characteristic Rayleigh-Taylor (inverted) mushroom forms,
the surface area of the I/III interface increases, and vorticity is generated and shed into the
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FIG. 4.13. Evolution of concentration of fluid I (top row), II (middle row), and III (bottom row). The con-
tours ofc1, c2, andc3 are visualized in gray-scale where darker regions denote larger values ofc1, c2, andc3,
respectively. Nondimensional times are t = 0, 3.91, 7.81, 15.63, and 195.31.

bulk. As fluid II is diffused from fluid I, the pure fluid I rises to the top as shown in Fig. 4.13.
Imagining that fluid II is a contaminant in fluid I, this configuration provides an efficient
means of cleansing fluid I since the buoyancy-driven flow enhances the diffusional transfer
of fluid II from fluid I to fluid III.

4.5. Example of Adaptive Mesh Refinement - binary spinodal decomposition. In
the typical setting, solutions to the Cahn-Hilliard equation are nearly constant in the so called
“bulk” regions. Between the bulk regions, solutions exhibit thin transition layers, through
which the solution takes on values intermediate to those in the bulk regions. Typically, the
bulk regions comprise the largest portion, by far, of the computational domain. Since in most
of the applications it is sufficient to finely resolve only thetransition layers, fixed grid meshing
represents a waste of computational resources. Thus, efficient, adaptive-mesh solvers for the
CH equation, able to finely resolve only the diffuse interface, are highly desirable.

In preliminary work [32], we are currently adapting block-structured adaptive methods
originally designed by Berger and Oliger [9] for conservation laws and general hyperbolic
equations. The block-structured framework was adopted in the CHOMBO package [3], which
we utilize. However, we do not use the multi-level multigridalgorithm from CHOMBO (see
[3]), but rather we employ a nonlinear adaptive multigrid solver [44] following our work here
and in [30, 31].

To illustrate the potential of this approach, we present preliminary results on adaptive
mesh refinement for the binary CH equation from [32]. The governing equations are

∂c

∂t
= ∆µ, (4.9)

µ = c3 − 1.5c2 + 0.5c− ǫ2∆c. (4.10)

For the following test, we consider spinodal decompositionusing the off-critical aver-
age compositionc = 0.3. The results are shown in Fig. 4.14. The interface parameteris
ǫ = 0.0025. The initial condition has the composition being nearly uniform with random
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(a) t=2 (b) t=5

(c) t=20 (d) t=25

FIG. 4.14.Evolution of the concentrationc(x, y, t) with an average concentrationcave = 0.3. The times are
shown below each figure.

perturbations of maximum magnitude1 × 10−3. The spatial domain is1 × 1 and periodic
boundary conditions are applied to both directions. The overall coarse computational grid is
64 × 64 and there are two levels of adaptivity. The AMR libraries automatically generate
a grid structure that adapts to the locations of the phase interfaces. The effective fine grid
resolution is256 × 256. As we would expect from Cahn’s theory [11], in Fig. 4.14 isolated
particles form relatively quickly as the two phase regions form, associated withc = 1 and
c = 0, respectively. Over a much longer time scale the system coarsens, and the mesh adapts
around the isolated particles. More detailed studies will be presented in a forthcoming work
[32].

5. Conclusion. In this paper we have presented a general model of three-phase flows
and developed an associated efficient, second-order accurate finite difference method to solve
the model equations numerically. The three-liquid phases may be fully miscible, partially
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miscible or immiscible. The miscibility of the phases is modeled thermodynamically through
the Helmholtz free energy. An additional advantage of the model is that triple interfaces are
handled without resorting to ad-hoc procedures.

We presented examples of flow with miscible and immiscible components. We demon-
strated the convergence of our algorithm through a resolution study. In addition, we found
good agreement with the theory for an equilibrium liquid lens (lying atop an interface). We
provided demonstrations of liquid/liquid remediation. Inthe first example, a compound drop
was simulated, in which a light fluid encapsulated a heavy contaminant drop. The light fluid
causes the compound drop to rise and deposit the contaminantat an interface where it may be
removed. In the second example, we investigated the diffusional transfer of a preferentially
miscible contaminant from one immiscible phase to another.The transfer is enhanced by the
flow and in particular the Rayleigh-Taylor instability.

In future work, we will perform more extensive studies of liquid/liquid remediation. In
addition, we will investigate the complex morphologies generated from the application of
chaotic mixing flow to three-phase dispersion. Under appropriate conditions, a coalescence
cascade ensures and the three-phases may become interpenetrating and continuous. We will
also investigate the limit in which one of the phases lies on the boundary between the other
phases, thus mimicking a surfactant. To perform these studies, we will incorporate adaptive
block-structured mesh refinement techniques [32].
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6. Appendix A. In this appendix, we present an alternative set of constitutive assump-
tions based on an equivalent form of the entropy expression in Eq. (2.21) different from that
in Eq. (2.23). Rather than taking quantities relative to thecontributions from theNf com-
ponent, as done in Eq. (2.23), we instead may consider quantities relative to the mean of the
components. Accordingly, using that

∑Nf

k=1 Jk = 0, re-write Eq. (2.21) as

ρχ =
1

T



P + pI + ρ
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∇ck ⊗
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− 1
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 · Jk + ∇ ·



J −
Nf
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)

Jk

T



 ,

(6.1)

Taking the diffusion fluxJ =
∑Nf

k=1

(

µk − 1
Nf

∑Nf

j=1 µj

)

Jk/T we are now in a position

to pose thermodynamically consistent constitutive relations forP, tk andJk. Arguing as in
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section 2.1, we obtain the constitutive assumptions

P = −pI− ρ

Nf
∑

k=1

∇ck ⊗





∂F
∂∇ck

− 1

Nf

Nf
∑

j=1

∂F
∂∇cj



+ η

(

D − 2

3
(∇ · u) I

)

, (6.2)

tk = ρ
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∂F
∂∇cj



 , (6.3)

Jk = νk∇



µk − 1

Nf

Nf
∑

j=1

µj



 , for k, . . . , Nf . (6.4)

Using the form of the free energy from section 2.4, we obtain

1

Nf

Nf
∑

j=1

∂F
∂∇cj

=
1

Nf

2Nf
∑

j=1

ǫ2j∇cj . (6.5)

Note that ifǫj = ǫ, then the sum in Eq. (6.5) vanishes. Therefore the extra fluidstess induced
by concentration gradients is the same as obtained in section 2.4). However, the chemical
potential

µ̃k = µk − 1

Nf

Nf
∑

j=1

µj =
∂F

∂ck
− 1

Nf
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∑
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αNf
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2ρ
∇ ·



ρ∇



ǫ2kck − 1

Nf

Nf
∑

j=1

ǫ2jcj







 , (6.6)

is slightly different than that obtained in section 2.4. Thus, even though Eq. (6.1) is equivalent
to Eqs. (2.21) and (2.23), somewhat different constitutiverelations may be taken.
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