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Abstract

In this paper, we demonstrate the existence of noncircular shape-invariant (self-similar) growing and melting two-
dimensional crystals. This work is motivated by the recent three-dimensional studies of Cristini and Lowengrub in
which the existence of self-similar shapes was suggested using linear analysis (J. Crystal Growth, 240 (2002) 267) and
dynamical numerical simulations (J. Crystal Growth 240 (2003) in press). Here, we develop a nonlinear theory of self-
similar crystal growth and melting. Because the analysis is qualitatively independent of the number of dimensions, we
focus on a perturbed two-dimensional circular crystal growing or melting in a liquid ambient. Using a spectrally
accurate quasi-Newton method, we demonstrate that there exist nonlinear self-similar shapes with k-fold dominated
symmetries. A critical heat flux Jj is associated with each shape. In the isotropic case, k is arbitrary and only growing
solutions exist. When the surface tension is anisotropic, k is determined by the form of the anisotropy and both growing
and melting solutions exist. We discuss how these results can be used to control crystal morphologies during growth.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction phase via heat transfer. A well-known and remark-
able feature observed during the phase transforma-
Crystal growth is a classical example of a phase tion is the occurrence of various patterns and
transformation from the liquid phase to the solid morphologies of the solid/liquid interface—flat,
— _ ) cellular or dendritic. The patterns depend on the
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tions have received considerable attention from the
materials research community, see Refs. [3-7].
Much of this research is concerned with detailed
and extensive studies of dendritic growing shapes.
We note that in very recent work, Glicksman et al.
[8] developed a quasi-static theory to describe self-
similar melting of prolate spheroids in the absence
of surface tension. Good agreement between this
theory and data of melting dendrite fragments in
microgravity was attained although surface tension
effects were observed near the dissolution time [8].
Here, we focus our study on the growth and melting
of compact self-similar crystals in a pure liquid
phase without any restrictions on the crystal
morphology and in the presence of both isotropic
and anisotropic surface tension.

Historically, studies of the growth and equili-
brium shapes of crystals arise from the desire to
understand and control material production. This
has led to many interesting and fundamental
problems involving the geometry of surfaces. For
example, Wulff first developed the concept that the
equilibrium shape is given by minimizing the total
surface free energy of a crystal at a fixed volume
[9]. For a two dimensional crystal with fixed area,
for instance, the equilibrium shape is a circle if the
surface energy is isotropic.

The morphology of a growing crystal is com-
plicated by the dynamics of diffusing heat through
the system. A number of models have been used to
describe the morphology during crystal growth,
see Refs. [7,10-12] among many others. Using a
quasi-steady model, Mullins and Sekerka were the
first to perform a linear morphological stability
analysis of growing crystals in a supercooled liquid
[13]. They investigated the behavior of an infini-
tesimal perturbation of a spherical solid by a single
spherical harmonic, and found that below a
critical radius the perturbation decays and above
the critical radius the perturbation grows. The
critical radius depends on the polar perturbation
wavenumber and on the supercooling. As the
crystal grows, larger and larger wavenumbers
become unstable, leading to the development of
complex shapes (e.g. snowflakes) [13,17]. Mullins
and Sekerka [13] also identified the possibility of
growing crystals with compact shapes when the
supercooling is kept sub-critical by interparticle

interactions. This was not quantified further,
however. Coriell and Parker performed an analo-
gous linear analysis for a growing cylinder [14,18].
Hardy and Coriell conducted an experiment of a
single crystal ice cylinder and found that the
growth rates of perturbations in the circular shape
of the cylinder are in agreement with the predic-
tions of the linear stability analysis [15,16].

Recently, Cristini and Lowengrub [1,2] recon-
sidered the three-dimensional quasi-steady crystal
growth problem studied originally by Mullins—
Sekerka[13] and Coriell-Parker[14,18], and sug-
gested that there exist critical conditions of an
imposed far-field heat flux (rather than a far-field
supercooling) such that the classical Mullins—
Sekerka instability can be suppressed and that the
morphologies of growing crystals can be compact
and controlled. This quantifies and goes beyond the
prediction of Mullins and Sekerka [13]. Using linear
analysis Cristini and Lowengrub [1] also found that
there exist critical conditions of flux for which the
growth of nonspherical crystals is actually self-
similar. Note that what we mean by flux in Refs.
[1,2] and this paper is the integral flux applied at the
far-field boundary. Using a 3D adaptive boundary
integral method, Cristini and Lowengrub [2]
performed dynamical simulations that suggest the
existence of nonlinear self-similar shapes.

For an isolated quasi-steady evolving crystal, an
imposed far-field heat flux J represents the rate of
area (2D) or volume (3D) change in time. The heat
flux and the supercooling AT are related by J~
—RAT, in 3D [19,2] and by J~ —log(1/R)AT in
2D where R is the effective radius of the crystal
(radius of a sphere with the same volume) and AT
denotes the difference between the far-field tem-
perature and the phase change temperature for a
flat interface[19,2]. Thus, conditions of specified
flux can be enforced by varying AT with the
crystal radius.

In this paper, we extend the recent studies of
Cristini and Lowengrub [1,2] by developing a
nonlinear theory of self-similar crystal growth. We
focus on 2D crystals. Our analysis reveals that the
governing equations for nonlinear self-similar
crystals are qualitatively similar in 2D and 3D
once the difference between the 2D and 3D heat
fluxes (i.e. area vs. volume growth) is scaled out.
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Therefore our work here provides insight to the
3D nonlinear problem.

We focus our study on a perturbed circular
crystal growing in an supercooled liquid. We
derive the governing equations for nonlinear self-
similar growth, and implement a quasi-Newton
method to solve these equations numerically. The
equation takes the form of a highly nonlinear,
nonlocal eigenvalue problem where the shape is
the eigenvector and the heat flux is the eigenvalue.
Our numerical results indicate that nonlinear,
noncircular self-similarly evolving crystals do
indeed exist. From the solution to these equations,
we obtain the self-similar shape and the associated
nonlinear critical far-field heat flux. Our numerical
results reveal that for a k-fold dominant self-
similar shape (with k arbitrary), only mode k& and
its harmonics (integer multiples of the wavenum-
ber k) appear in the Fourier series description of
the interface.

One of the effects of nonlinearity is to reduce the
nonlinear critical flux compared to that predicted
by linear theory. One of the effects of anisotropy is
to reduce the critical flux further (from the
isotropic value). The flux for anisotropic self-
similarly evolving crystals may even be negative
which implies the existence of self-similar melting
crystals. Self-similar melting does not occur under
isotropic surface tension (in the absence of inter-
face kinetics). In a subsequent work, we consider
the stability of the self-similar shapes [20].

This paper is organized as follows: in Section 2,
we present the governing equations and review the
linear stability analysis. We formulate the non-
linear self-similar theory in Section 3. In Section 4,
we present the numerical scheme. We present
numerical results and comparisons to linear theory
in Section 5. Conclusions and a discussion of work
in progress are given in the last section.

2. Governing equations and linear stability analysis
2.1. Governing equations
We consider a two-dimensional solid crystal

growing quasi-statically in a supercooled liquid
phase. The interface X separates the solid phase €2

from the liquid phase 2, (Fig. 1). We assume for
simplicity that local equilibrium holds at the
interface, and the thermal diffusivities of the two
phases are identical. The results presented herein
apply more generally however [21]. Using the
nondimensionalization given in Refs. [1,2], the
following equations govern the growth of the
crystal:

VT, =0 in @ i=12, (1)

V=(NT,—VT;)-n on 2, (2)

T,=T,=—1t(n)x on X, 3)
1

J=— [ Vds, “)
27'5 >

and the interface X evolves via

n- Ccli_}; =V onZ, ®))
where T; is the temperature field, i = 1 for solid
phase and i = 2 for liquid phase, V is the normal
velocity of the interface, m is the unit normal
directed towards 5, x is the curvature, 7 is the
anisotropic surface tension and J is the far-field
heat flux. In Eq. (4) we have used the fact that the

n*

Fig. 1. A schematic diagram of a perturbed circular crystal in
liquid.
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T; are harmonic [2] so that J specifies the time
derivative of the area of the solid phase. In 2D, the
normal vector n = (n1,n,) can be characterized in
terms of a single variable which can be taken to be
the tangent angle 0 = tan~!(—n; /n,), i.e. the angle
the tangent vector makes with the xj-axis.
Thus the anisotropic surface tension t = t(0).
Further, 7(0) = y(0) 4+ y"(0) where y(0) is the
anisotropic surface energy. For a general m-fold
anisotropy,

7(0) = 14 v, cos m0,
and
©(0) = 1 — (m* — 1)v,, cos m0), (6)

where vy, is the strength of the anisotropy (e.g. see
Ref. [22]).

2.2. Linear analysis

In this section, we analyze the linear stability of
a growing crystal following [13,14,23,2]. We take
the perturbed crystal-melt interface to be given by
a linear combination of Fourier modes,

r(0,1) = R(t) + zoo: Sx(1) cos k0, (7)
k=2

where R(f) is the radius of a underlying growing
circle. We assume that the anisotropy v, is on the
same order as Jy so that products of v,, and J, are
neglected. We obtain the rate of area growth

dR
R(t)— = 8
(tyg, = J (). ®)
and the growth rate of the k-th mode perturbation,
S\ A (o) _ (k=2 — ) )
R) di\R) R ’

where the critical flux and the linear flux constant
are

2k(k> = 1) (1 =vuR/0m k=m,
Coh=—"+-—"- 10
T k2 1 kzm 10
The far-field temperature is
R

Eq. (9) shows that perturbations grow (decay) for
J > Ji (J<Ji). Since Jy~1/R, taking a constant
flux J > 0 results in the instability of perturbations
with successively higher wavenumbers as the
crystal grows. This is the Mullins—Sekerka in-
stability [13].

When J = Ji, the perturbation is unchanged in
time and so linear theory predicts self-similar
growth if the crystal contains a single mode k.
That is, the shape factor o = dx(f)/R(¢) is time-
independent. Note that when k = m, the critical
flux J,, is a decreasing function of the anisotropy
ratio v,,/o. In fact, for v, /o> 1, the critical flux
Jn<0. This predicts the existence of linear self-
similar melting shapes. Such shapes do not exist
for isotropic surface tension v,, = 0. As we see
later, self-similar melting shapes for the full
nonlinear problem do indeed exist for the aniso-
tropic case.

When k =2, Eq. (10) shows that when v,, =0,
Cr— oo and self-similar evolution is not possible
(perturbations always decay) [13]. In contrast,
when v,#0, it may be possible to achieve self-
similar evolution since the ratio (1 — v,,/o)/(k — 2)
may be finite. However, the problem is indetermi-
nate (since any finite flux J can be used). Later, a
nonlinear investigation of this case will be
performed which suggests that nonlinear 2-fold
dominated self-similar shapes exist when v, > 0.

Eqgs. (8)—(11) are qualitatively similar to those
obtained by Cristini and Lowengrub [2] for the
isotropic case (v, = 0) in 3D. In 3D, the isotropic
critical flux is [2]

(k + 2)(k — 1)(1 + 2k)
k—2 :

where k is the polar wavenumber of a spherical
harmonic perturbation. As discussed in Ref. [2],
the critical flux in 3D is independent of R, which
implies that the Mullins—Sekerka instability in 3D
can be suppressed by taking a constant far-field
flux J > 0 since no new unstable modes are created
during the evolution (in the absence of interface
kinetics). In contrast, Eq. (9) shows that in 2D,
Mullins—Sekerka instability can be suppressed if
the 2D far-field flux decreases as J~1/R. This
difference exactly reflects the different scaling of
the flux between 2D and 3D (area vs. volume

TPt = (12)
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evolution). If one rescales the far-field flux J by R,
i.e. J= RJ, then R%dR/dt = J and the right-hand
side of Eq. (9) becomes (k — 2)(J — Cy)/R>. These
equations are identical to those obtained in 3D if
Cy is replaced by J}P and the 3D far-field flux is J
[2]. This suggests that our 2D work provides
insight to the 3D problem.

3. Nonlinear self-Similar theory

In this section, we derive the full nonlinear
system of equations that a self-similar evolving
crystal must satisfy. We begin by re-formulating
Egs. (1), (2) and (3) as a system of boundary
integral equations where we represent the tem-
perature field through a single-layer potential. This
yields the first-kind Fredholm integral equations
[28,29]

—1(0)k(x) = /Z Gx—xYWVX)dsx)+ T, (13)

1 ! !
J:E/Z V(x') ds(x'), (14)

where G(x) = 1/2nloglx| is the Green’s function,
V(x) is the normal velocity of the interface X, and
T (2) is the far-field temperature.

A fundamental feature of self-similar evolution
is that time and space are separable. Therefore, the
position vector of the interface during self-similar
evolution can be written as

x = R()X(s), (15)

where X(s) specifies the self-similar shape, R(¢) is a
scaling function related to the effective radius of
the growing crystal, and s is the arclength along
the self-similar interface. Substituting Eq. (15) into
Eq. (13), we obtain

—1(0(s))’*(s) = JR% /2 X(s') - n(s)G(X(s)
— X(s)) ds + T (0), (16)

where 0 is the tangent angle of the self-similar
shape, k = /R and we have used, from Eq. (14),
that J=A/nRR, R=dR/d:, and T.,(1)=
1/n, ARR*log R + T, R, where A is the area of
the self-similar shape X.

To proceed further, we separate time and space
by differentiating Eq. (16) with respect to ar-
clength. This gives

—(x(0)),/GIX], = JR% -C, (17)

where the notation (.), = 0/0s, C is the heat flux
constant (in space and time), and

G[X](s) = /Z X - n()G(X(s) — X(5)) ds . (18)

We note from Eq. (17) that the coefficient of the
integral term in Eq. (16) is constant in time. The
resulting equation is identical to the 3D equation
for nonlinear self-similar crystal shapes if the
constant C is replaced by the 3D nonlinear self-
similar flux, G is replaced by the 3D Green’s
function and T, (¢) is defined appropriately [21].
This further supports our contention that 2D
analysis can provide insight to 3D self-similar
evolution.
The spatial part of Eq. (17) gives

1, &
G, = A(x(0F),, (19)

which is a nonlinear, nonlocal eigenvalue problem
where the shape is the eigenvector and the inverse
heat flux constant is the eigenvalue. To remove the
constant C, we differentiate Eq. (19) to get

(x(0)7) .Gy — Gys((O)R) = 0. (20)

All self-similar shapes must satisfy this equation.
Since circles automatically satisfy this equation in
the isotropic case (r =1), Eq.(20) must have
nonunique solutions in the isotropic case if
noncircular self-similar shapes exist. It is also
reasonable to expect that nonunique solutions may
exist in the anisotropic case as well. However,
Eq. (20) involves fourth order derivatives of the
interface position and is highly nonlinear and
nonlocal. Hence, even if solutions exist, they may
be difficult to obtain. In the appendix, we develop
a quasi-Newton method to solve Eq. (20) numeri-
cally and demonstrate numerically that noncircu-
lar solutions to Eq.(20) do exist for both the
isotropic and anisotropic cases.

If we can solve Eq. (20) for the shapes, we can
determine the constant C through Eq. (19) and
obtain the corresponding far-field flux J(¢) =
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/IC/nR(Z). The original dimensionless far-field
temperature 7', is given by

T (1)

R

where T, is determined through Eq. (16) if we
know X(s) and the flux J. Notice that if one
rescales J by R, then rescaled flux /= RJ = AC/=n
is constant. Once the flux constant C is known, the
scaling function R(?) is given by

R(1) = (1 +3Cn)'/3. (22)

T (1) = — J(nlog(R), 20

This is exactly the same growth law for self-similar
shapes as that obtained by Cristini and Lowengrub
in 3D (with C replaced by the 3D flux), even
though the fluxes scale differently in 2D and 3D.
This suggests that the underlying mechanism for
self-similar evolution is the same in 2D and 3D.

4. Self-Similar shapes
4.1. Isotropic surface tension

In this section, we implement the quasi-Newton
scheme to solve Eq. (20) when t = 1. We begin by
considering a 4-fold dominant self-similar shape.
We use as an initial guess a perturbed sphere with
wavenumber k = 4 (i.e. we prescribe 54 and set the
amplitudes of other modes to zero except for g
which is set to 1). After the self-similar shape is
found, the nonlinear flux constant is obtained
from Eq.(17). In this calculation, we set the
number of mesh points to be N = 256 along the
interface. We find numerically that a solution to
Eq. (20) exists and that the Newton solver yields
up to 1076 precision when solving Eq. (20). For all
mesh points, at least 5 digits after the decimal
point are identical for the ratio on the left hand
side of Eq. (17). Fig. 2(a) shows the difference of
flux constants between the linear theory and
nonlinear simulations versus the square of the
shape factor for the 4-fold dominant nonlinear
self-similar shape. The shape factor is

d/R = max||%|/ Ry — 1], (23)

where X is the position vector from the centroid of
the shape to the interface and R is the effective

0
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Fig. 2. (a) The difference of flux constant between linear
prediction and nonlinear theory for a 4-fold dominant self-
similar shape. The nonlinear flux constants are calculated
through Eq. (17), the linear flux constant is 60 by Eq. (10) with
k = 4. (b) Resolution study of a 4-fold dominant self-similar
shape.

radius of the nonlinear (self-similar) shape. The
different nonlinear solutions are obtained by
varying 04 for the initial guess. Two associated
interface morphologies are shown corresponding
to small and large values of §/R, respectively We
note that, according to linear theory, the flux
constant is related to the wavenumber k£ only (i.e
independent of J/R) and is equal to 60 (from
Eq. (10)) for a k = 4 self-similar shape. As we can
see, when J/R is small, the deviation of the
nonlinear results from linear theory is quadratic
in 0/R, as expected. However, when J/R is large,
the deviation is no longer quadratic. Nonlinear



S. Li et al. | Journal of Crystal Growth 267 (2004) 703-713 709

effects result in a lowered flux constant. Interest-
ingly, the Fourier series descriptions of these
nonlinear self-similar shapes involve only mode 4
and its harmonics (integer multiples of wavenum-
ber 4). Analogous results were found to hold for
other k-fold self-similar shapes as well.

To assess the accuracy of the quasi-Newton
solver, we perform a resolution study of a 4-fold
dominant self-similar shape. The results for
isotropic surface tension are shown in Fig. 2(b),
where the error is measured in terms of the
magnitude of d/R. Analogous results hold when
the surface tension is anisotropic. To determine the
error, the self-similar shapes are computed using
four resolutions, N = 64, 128, 256, 512 with the
initial guess 64 = 0.07. The quasi-Newton solver is
found to be spectrally accurate with the following
error expansion

9 _ 3\* )
(#), (&) e 9

where (6/R)* is the exact solution. Taking (5/R)y
from the results of our numerical simulations
((6/R)y = 7.005 x 1072, 6.9699 x 1072, 6.9354 x
1072, 6.9216 x 1072, for N = 64, 128, 256, 512,
respectively), we obtain f; = 0.0016239, f, =
0.0092455, and the exact solution (§/R)* =
0.0692017. The error is equal to the difference
between (5/R)y and (5/R)*.

We next consider the effects introduced by
different symmetries. Fig. 3 shows the flux
constants and morphologies for general k-fold
self-similar crystals. We start the calculation by
specifying dy as the initial guess. We plot the linear
theory prediction as the solid curve C = 2k(k* —
1)/(k —2) from Eq.(10). Symbols denote the
nonlinear simulation results. The flux constants
are in very good agreement with linear theory
when the perturbations are small. For self-similar
shapes with large 6/R, the flux constants are
smaller than the prediction of linear theory. The
scaling with k is similar to but slightly smaller than
the linear theory as can be seen from the dashed
curve, which shows a fit of nonlinear data C =
3k(k'7 —1)/(k — 2). Observe that the nonlinear
self-similar shapes with small 6/R are convex while
those with large 6/R have concave regions
(negative curvature).

200 T
5/R=0.0284
180 t O
160 + & /R=0.015
% 140 | Linear Theory
= 5/R=0.0276 -1
< 120 + -
S ~
O 100 5 /R=0.0402 Q B\ 5IR 01{2:1:5}
x 3 -7 =0.
: O
L 80 | 5 /R=0.0308 _ /{} 5/R=0.1281
60 | 5/R=0.1346
5/R=0.1483
40 ¢ <>6/R:0.l445
4 5 6 7 8

k-fold symmetry

Fig. 3. Flux constants of self-similar shapes and selected
morphologies with isotropic surface tension. Flux constants
from linear theory (solid line) are given by Eq.(10), C =
2k(k*> — 1)/(k — 2). Symbols denote the nonlinear quasi-New-
ton results. The dashed line is a best fit for the nonlinear self-
similar shapes with large shape factor §/R, C = 3k(k'7 —
D/ ~2).

As an additional confirmation of self-similarity
as well as a test of robustness, these self-similar
shapes (and also those presented in the next
section) were used as initial data in a nonlinear
time evolution code [20]. In all cases, the resulting
evolution was self-similar up to small numerical
errors.

Finally, we note that when the surface tension is
isotropic, there are no self-similar solutions with
negative critical flux (i.e. melting).

4.2. Anisotropic surface tension

We next consider the effect of anisotropic
surface tension. Fig. 4 shows the flux constants
and morphologies for general m-fold self-similar
crystals with a number of different anisotropies v,,,.
The flux constants are divided by the linear
isotropic flux constant C = 2k(k> —1)/(k — 2)
and are shown as a function of the anisotropy
ratio v, /o (recall o = §/R). Symbols denote the
nonlinear quasi-Newton results and the solid line
is the result of linear theory. The dotted straight
lines on the (left) y-axis marked by k =4, 6 and 8
correspond to isotropic results from Fig. 3.



710 S. Li et al. | Journal of Crystal Growth 267 (2004) 703-713

12 ¢ ' ' 1
Oél R=0.155 Q 3/ R=0.0281
l [OS, Avom”: ) / T

- 4
c - 6 \ N
£ 08 8 <:> e
c . 8/ R=0.01
o 3/ R=0.156, O .
O 06t 3/ R=0.097 \
= 3/ R=0.102 \
x 3
T 041} 8/ R=0.048
©
@
< 02} o v,=2e-3 t
3 . 3"?22 3/ R=0.0476 } rowth
ov,=2e-! % Growtl
0t o v2:2e-3 R
v Va:29'3 ~—a g Melting
02| 3/ R=0.019 ‘ i
10 102 10 10

vp/a

Fig. 4. Flux constants of self-similar shapes and selected
morphologies with anisotropic surface tension. The flux
constants are divided by the linear isotropic flux constant C =
2k(k* —1)/(k —2) and are shown as a function of the
anisotropy ratio v,,/a (recall « = J/R). Symbols denote the
nonlinear quasi-Newton results and the solid line is the result of
linear theory. The dotted horizontal lines on the left y-axis
correspond to isotropic results. The dot-dashed horizontal line
on the right y-axis denotes the value C = 0 below which melting
occurs.

The numerical results strongly suggest that
nonlinear self-similar shapes exist. When the
anisotropy v,, and the shape factor « are both
small, the results agree well with the prediction of
linear theory (linear theory assumes that v,, and «
are of the same order).

The horizontal dashed-dot line at the (right) y-
axis in Fig. 4 marks the zero flux value (equili-
brium shape). Below this value, the flux is negative
and the solutions correspond to melting. Note that
for v, /a>1, the nonlinear simulations generate
negative flux constants. This implies the existence
of nonlinear self-similar shapes during melting in
the presence of anisotropy.

When v,,/o—0, either v,, tends to 0 (isotropic
limit) with o finite or o is large and v,, is finite. In
both cases, this limit corresponds to the nonlinear
regime and deviation from the linear prediction is
seen. The scaled flux constants are smaller than the
linear prediction and are decreasing functions of m
and v,,. Moreover, the nonlinear results do not just
depend on the ratio v,,/a.. A careful examination of

the results indicates that the flux constants also
weakly depend on v,, and « individually.

Fig. 4 also suggests that there are many ways to
achieve a desired crystal shape. For example,
consider a 4-fold shape with 6/R~0.048. Our
results indicate that this shape can be obtained
either by using v4 =2 x 1073 with flux constant
C4 = 56.8 or by using v4 = 2 x 1072 with a smaller
flux constant C4 = 33.5. Moreover, the same shape
can achieved with v4 = 0 (isotropic) with an even
larger flux. See, for example, the 4-fold shapes with
d/R~0.156.

Next we investigate the case when m = 2. Recall
from Section 2.2 this case is indeterminate and
self-similar solutions do not exist for the isotropic
case. We found numerically that there exist
solutions to Eq. (20) when v, >0 (the solutions
actually contain all even modes). All solutions we
have found thus far have associated critical fluxes
J> >0 and so describe growing crystals. One such
nonlinear self-similar shape is plotted in Fig. 5. In
this case, v, =0.15 and the flux J, =99.8I.
Interestingly, this case yields the value v,/ =
1.39 which, when plugged into Eq. (10), predicts a
linear critical flux of negative infinity.

15
4/ R=0.1075

05 }

-15 - - - - -
45 -1 05 0 05 1 15

Fig. 5. A 2-fold self-similar shape with v, = 0.15 and flux J, =
99.81 (growth). Note that the isotropic linear flux is 4+ oo which
is why this plot is not included in Fig. 4.
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5. Conclusions and future work

In this paper, we developed a nonlinear theory
of self-similar crystal growth in 2D. Our analysis
reveals that the governing equations for nonlinear
self-similar crystals are qualitatively similar in 2D
and 3D once the difference between the 2D and 3D
heat fluxes (i.e. area vs. volume growth) is scaled
out. Thus, our work here provides insight to the
3D problem.

Our numerical results indicate that nonlinear,
noncircular self-similarly evolving crystals do
indeed exist. Our results also suggest that for a
k-fold dominant self-similar shape, only mode &
and its harmonics (integer multiples of the
wavenumber k) appear in the Fourier series
description of the interface. In the isotropic case,
k is arbitrary and only growing solutions exist.
When the surface tension is anisotropic, k is
determined by the form of the anisotropy and
both growing and melting solutions exist.

One of the effects of nonlinearity is to reduce the
nonlinear critical flux compared to that predicted
by linear theory. One of the effects of anisotropy is
to reduce the critical flux further (from the
isotropic value) and the flux may even be negative.
When the flux for anisotropic self-similarly evol-
ving crystals is negative, self-similar melting
occurs. Further, we have demonstrated the ex-
istence of nonlinear self-similar growing crystals
with 2-fold anisotropy.

In a companion paper [20], we will discuss the
stability of the self-similar shapes found here and
the implications for controlling the shape of
growing and melting crystals. Using a new
spectrally accurate boundary integral method with
a time and space rescaling that enables accurate
long-time simulations to be performed, our pre-
liminary results reveal that the self-similar shapes
are stable to perturbations of the critical flux and
are unstable to low-mode perturbations of the
shape which may either be present initially or may
be produced by nonlinear interactions. However,
when the dominant wavenumber of the self-similar
shape is small, the instability takes a long time to
develop. Thus, this leads to the possibility of
controlling crystal shapes using the critical flux.
When the instability fully develops, the growth

shape will be dominated by the fastest growing
mode as first suggested by Cristini and Lowengrub
[1]. As an alternative means to controlling the
shape, this can be exploited [1,2] to produce
compact growing crystals with desired symmetries
by taking a heat flux such that a particular mode
has the fastest growth rate.

The analysis described in this paper (and above)
is based on the idea that the heat flux can be
controlled at infinity. Clearly, this is an idealiza-
tion. When the domain is finite, we expect that our
analysis holds when the volume fraction of crystals
is low and the crystals are located far from the
domain boundary. When crystal/crystal and crys-
tal/boundary interactions are important, the ana-
lysis must be modified to account for the fact that
the local flux applied to each crystal differs from
the far-field flux. Work needs to be done to
determine whether crystal shapes can be controlled
in a precise manner in this context. Nevertheless,
we anticipate that the Mullins—Sekerka instability
can still be suppressed to obtain compact crystal
shapes by varying the far-field temperature as
described here, even when crystal/crystal and
crystal/boundary interactions are important.
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Appendix A. Quasi-Newton scheme for self-similar
shapes

In this appendix, we present a quasi-Newton
method to solve Eq. (20) to obtain the self-similar
shape of a growing crystal. Rather than using the
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arclength parameterization, we find it more con-
venient to parameterize the interface by the polar
angle o and solve for the Fourier modes in the
polar angle representation. In order to begin our
computation we first specify the radius of interface
to be a combination of cosine Fourier modes:

N-1

o) = Z cos kuo, (A.1)

k=0

where N is the total number of modes and Jy is the
coefficient of the kth mode. Then the interface
positions (X, J) are given as

X(o) =(o)cos o
Y(e) = (esin o (A2)

We note that the arclength variable s in Eq. (20) is
related to o via s, = /%2 + j2.

Let f be a discretization of the left-hand side of
Eq. (20) where &, n are approximated with spectral
accuracy using pseudo-spectral methods and
the integral G[X] is approximated with spectral
accuracy. The quadrature of the integral is
nontrivial because of the logarithmic singu-
larity of the 2D Green’s function. The tangent
angle 0 can be recovered from the curvature by
integrating the relation 0, = s,k See Refs. [26,25]
for details.

The discrete problem consists of finding &’s for
which

f(50,519525 cee SN) = 0! (A'3)

at the interface node points o; = iAo with Ao =
2n/N for i=0,...,N—1. We use the classical
quasi-Newton method, together with a line-search
method [24] to solve Eq. (27). This algorithm is
similar in spirit to that used by Thompson and
Voorhees to determine equilibrium shapes of
particles in elastically stressed coherent solids [27].
The quasi-Newton method uses the iteration
V=8 -J1@), j=0,1,2, .. (A.4)
where J is the Jacobian matrix, J = V;f. However,
it is very difficult to determine J explicitly for
our problem since f is highly nonlinear and
nonlocal and thus depends on the 51,05... in a

very complicated way. Therefore, we use a finite
difference approximation to calculate the matrix J,

J“Nﬁ(go,gl,gz, wry 5] +h, ., By) 74)(;‘(505519523 “s 5/', cs ON)
v h ’

(A.5)

where /1 is small. In practice, we find that the
iteration scheme is robust but takes longer to
converge when the anisotropy, initial shape
perturbation or wavenumber is large. The optimal
choice of /& seems to depend on the initial guess
and typically we take 1078</h<107° where £ is
chosen empirically to achieve the most rapid
convergence and the smallest value of max|f].
The quasi-Newton iteration is performed until
max|f| is less than a prescribed tolerance. Con-
vergence of the iteration to different self-similar
shapes is achieved by varying the initial guess.
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