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Abstract
The problem of phase reconstruction from intensity is considered in the
paraxial geometrical optics regime. The data consist of intensity
measurements on two planes orthogonal to the direction of propagation.
A new variational principle is used to find the ray mapping between the
planes. The mapping is found by minimizing an appropriate function. The
minimization process involves a nonlinear partial differential equation. A
numerical algorithm for solving this equation is described. The phase is then
integrated from the ray mapping. Finally, the method and code are examined
by applying them to simulated data.
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1. Introduction

Phase reconstruction is a central problem in wave propagation
in general and in optics in particular. One of the common
devices for phase measurement is the Hartman–Shack (HS)
sensor. This sensor consists of a screen with a plurality of
lenslets, and a detection screen. Each lenslet approximately
focuses light at a spot on the detection screen. The centroid of
the spot determines the average slope of the wavefront that is
incident upon the lenslet. Originally developed for the purpose
of astronomy optics, HS devices have been used in recent years
in ophthalmology to estimate the deformation of wavefronts
propagating outside the eye from a point source on the retina.
In spite of the general success of HS sensors, they suffer from
several drawbacks. In particular, their resolution is limited,
since the lenslets cannot be made too small as this would result
in undesired diffractive effects.

Since it is relatively easy to measure the wave’s intensity,
it is tempting to seek algorithms for phase reconstruction
from intensity. Almost all intensity sensors are based on the
transport of intensity equation (equation (1) below). This
equation is considered as a two-dimensional partial differential
equation for the phase ψ in terms of the intensity I . One

serious difficulty is that (1) cannot be solved without boundary
conditions, and no simple method for obtaining the needed
conditions was found so far (although reference [1] suggests
a method to obtain boundary data under certain assumptions
on the phase). An alternative method for finding the phase of
a wave from its intensity was proposed in [2]. Rubinstein and
Wolansky developed there a new variational principle, called
the weighted least action principle (WLAP), that generalizes
the Fermat principle of least time. The main result is a cost
function that provides, upon minimization, the ray mapping of
the wave from information on its intensity. Since determining
the phase from the rays is a simple problem, the WLAP forms
an attractive option for phase reconstruction.

To apply the WLAP it is needed to minimize an unusual
functional under certain constraints. The minimization can be
done by the steepest descent method. This leads, however,
to a system of coupled partial differential equations [3, 2].
In addition to the difficult problem of designing a numerical
method for this system of equations, one has to tackle
additional ad hoc difficulties, such as supplying adequate initial
conditions for the steepest descent flow.

Therefore, a main goal of this paper is to examine the
WLAP as a method for phase determination from intensity,
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including the introduction of accurate and robust numerical
methods for implementing it. The WLAP is formulated
for paraxial waves in section 2, where we also derive the
minimization evolution equation. In section 3 we report on
a number of simulations that we carried out to test the method
and the code. In these simulations we addressed issues such
as sampling resolution of the rays and resolution of the finite
element mesh (for solving the nonlinear evolution equation).
Our results are summarized and discussed in section 4. The
numerical algorithm of the minimization problem is described
in an appendix. This part is somewhat technical and may
not appeal at once to all readers from the optics community;
nevertheless, we chose to explain our method in some detail to
assist those readers who wish to develop their own solvers.

2. Formulation

Consider a monochromatic wave in the paraxial geometrical
optics approximation propagating in a uniform medium. Its
phase (or, rather, its eikonal) function ψ(x, z) and intensity
I (x, z) satisfy in the large k limit the following pair of
equations:

∂ I

∂z
+ ∇ · (I∇ψ) = 0, (1)

∂ψ

∂z
+ 1

2
|∇ψ |2 = 0. (2)

Here x ∈ R2, z is the direction of propagation and the
differential operator ∇ is in the two-dimensional plane
orthogonal to z. We assume that the intensity I has been
detected at two screens: z = Z1 denoted by P1, and z = Z2

denoted by P2. The distance between the screens is Z = Z2 −
Z1. The transport equations (1) and the eikonal equation (2)
are considered in the interval z ∈ [Z1, Z2]. The problem is
to reconstruct the phase ψ(x, z) for all z from knowledge of
I (x, z = Z1) := I1(x) and I (x, z = Z2) := I2(x).

Rubinstein and Wolansky showed in [2] that the problem
above has a variational formulation. In their theory, one
computes first the ray mapping Ū(x) between a point x on the
screen P1 and the intersection point between the ray leaving
x and the screen P2. Once the ray mapping Ū is known, the
phase can be read off it. Any ray mapping must satisfy the
standard intensity conservation requirement

I1(x) = I2(Ū (x))|J (Ū )|, (3)

where J (Ū) is the Jacobian of Ū . Since the relation (3)
appears frequently below, we designate a special notation for
it: a mapping U (x) is said to transport I1 into I2 (or to be an
intensity transporting mapping) if U satisfies (3); we write then

U# I1 = I2. (4)

In [2] it was shown that the ray mapping Ū associated with
the optical problem (1), (2), together with the intensity data I1

and I2, satisfies∫ ∣∣Ū (x)− x
∣∣2

I1(x) dx �
∫

|U (x) − x |2 I1(x) dx

∀U# I1 = I2. (5)

Before justifying the statement above, we proceed to
analyse its application. The variational formulation (5)

requires a numerical method for finding the optimal mapping
Ū . An attractive way to optimize (5) is to start with an
admissible mapping U (x, t = 0) = U0(x), i.e. a mapping that
transports I1 into I2, and to evolve it along the steepest descent
of the functional

M(U (x, t); I1, I2) := 1
2

∫
|U (x, t)− x |2 I1(x) dx . (6)

We emphasize that the steepest descent flow must be confined
to the manifold of mappings U that satisfy the constraint (4).
Notice that here t is a parameter for the steepest descent flow,
and is not associated with any physical time. Indeed, a gradient
flow for M was developed in [3]. To find the flow of U (x, t)
one needs at each time step to express U in terms of its
Helmholtz decomposition

U (x, t) = ∇ P(x, t)+ V (x, t), ∇ · V = 0. (7)

Then the evolution equation for U , i.e. the steepest descent
flow for (6) constrained by (4), is

∂U

∂t
+ V

I1
· ∇U = 0. (8)

Although the variational principle (5) was proved in [2] by
two different methods, we shall prove it here again by a third
method. The method we employ here is based on computing
the first variation of the functional M . The advantage of this
approach, and the reason why we bring a third proof for (5), is
that the same computation of the first variation can be used to
derive the flow (8), thus justifying the numerical approach that
we shall use in the simulations in section 3.

Derivation of (5) and (8)

The first variation of M is computed using two key ideas. The
first one is a useful decomposition of intensity transporting
mappings U observed by Brennier [4]. Let Ub be a fixed
mapping satisfying (3), and let S be the set of invertible
mappings from the plane P1 to itself that transports I1 to itself,
i.e. S# I1 = I1 for all S ∈ S . Such mappings are called
I1 preserving. Then any mapping U transporting I1 to I2 can be
written as U = Ub ◦ S−1 for some S ∈ S . This statement has a
simple physical interpretation: instead of looking for different
intensity transporting mappings U , we fix one such mapping
Ub and convert it to any other mapping U by using S to shuffle
appropriately the points in the plane P1.

The second idea, following a general theme due to
Kantorovich, is to embed the functional M within a larger
family of functionals. For this purpose we set

K := 1
2

∫ ∫
|x − y|2λ(x, y) dx dy, (9)

where the density λ(x, y), defined for points x ∈ P1, y ∈
P2, satisfies the conditions

∫
λ(x, y)dx = I2(y), and∫

λ(x, y)dy = I1(x). The functional K reduces to M under
the special choice

λ(x, y) = I1(x)δ(y − U (x)). (10)

We proceed to take the first variation of K . Fix an intensity
transforming mapping Ub. All other intensity transforming U
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are expressed as U = Ub ◦ S−1. For example, the new density
λ becomes λS(x, y) = I1(x)δ(y − Ub(S−1x)). The functional
K now depends on S:

K (S) = 1
2

∫ ∫
|x − y|2 I1(x)δ(y − Ub(S

−1x)) dx dy. (11)

The advantage of the new formulation is that we now take
variations only with respect to S(x), with y kept fixed. It
is convenient to introduce the parameter t for the family of
mapping S to be varied, i.e. we write S = S(x, t). Changing
variables in (11) gives

K (S) = 1
2

∫ ∫
|(S(x, t)− y|2λ(x, y) dx dy. (12)

Therefore,

d

dt
K (S) =

∫ ∫
(x − y) ·w(x, t)λ(x, y) dx dy, (13)

where the velocity field w is defined by w(x, t) = dS(x,t)
dt .

Returning to the original M-formulation we write the first
variation in the form

d

dt
M =

∫
I1(x)(x − U (x, t)) ·w(x, t) dx . (14)

As a first application of the first variation formula (14), we
use it to argue that the optimal mapping Ū is the ray mapping
for the optical problem (1), (2). For this purpose set t = 0
in (14), and look for a condition on U that will equate the
first variation of M to zero. Since S is I1-preserving, the
velocity w(x, t) transports I on the plane P1 according to
∂ I
∂t + ∇ · (Iw) = 0. But I does not depend on t explicitly,
and thus w must be conservative with respect to I1, i.e.

∇ · (I1w) = 0. (15)

Therefore, equating the first variation of M to zero implies that
(x − Ū)must be orthogonal to all divergence-free vector fields
in order for Ū to be a critical point of the functional M . This
means that there exists a function ψ0 such that

Ū(x) − x = Z∇ψ0(x). (16)

Consider now the Fresnel equations (1), (2) with initial
condition on the plane P1 given by the pair (ψ(x) :=
ψ0(x), I (x) = I1(x)). The rays are straight lines, and the
eikonal relation between the phase and the rays implies that a
ray starting at a point x ∈ P1 will intersect the screen P2 at
the point Ū(x). Therefore, Ū (x) is indeed the ray mapping
for these equations between the planes P1 and P2. Notice that
the analysis above shows, in fact, that any critical point of M
provides a ray mapping.

The second application of (14) is to derive a steepest
descent flow for the minimization of M . Here we follow [3]
and introduce the Helmholtz decomposition of U (x, t) − x =
∇ P(x, t) + V (x, t) into (14) (notice that x is evidently a
gradient, so the divergence-free part of U − x is the same as
that of U ). Thanks to property (15) one obtains

d

dt
M = −

∫
I1 (∇ P + V ) ·w dx = −

∫
I1V ·w dx . (17)

Therefore, the velocity field

w(x, t) = V (x, t)

I1(x)
(18)

provides the steepest descent flow for M . Notice that by the
definition of V , we indeed have ∇ · (I1w) = 0. Since S
is transported by w, the standard theory of first order partial
differential equations implies that it satisfies St + w · ∇S = 0.
Recalling the relation U = Ub ◦ S−1, we obtain for U the
transport equation (8).

3. Simulation results

In this section we report on a number of numerical simulations
that we ran to test the algorithm and code. Lengths are
measured everywhere in millimetres.

Test 1

A wave u = exp(ik · 0.01(16x4 + y4)) is given at the aperture
(unit disc at the plane z = 0). The intensity is evaluated at
the plane z = 50 and also at a number of other planes (z =
40, 51, 60). The Rayleigh–Sommerfeld diffraction integral
was used to simulate the wave. We used a relatively low
wavenumber k = 200. The domain D1 in the plane z = 50
is selected to be a disc of radius 2. In the other planes the
mapped domain is assumed to be circular too, with the radius
chosen appropriately so that the captured intensity in the disc
D2 equals

∫
D1

I (x, y, z = 50) dx . In figure 1 we depict the
intensity profile on the planes z = 40 (left) and z = 50 (right).
The theoretical and computed phases are given in figure 2,
and the map of the error in the phase computation is drawn
in figure 3. The initial condition was generated by sampling
the intensity over 4000 points.

A number of different runs are compared in table 1 below.
In run (1a) we used the intensity at planes z = 50, 51 to find
the phase. The FE solver had 3199 nodes. Run (1b) is based on
the same data as run (1a), except that we deliberately shuffled
the initial mapping U (x, 0) by two sampling sectors. Runs
(1c) and (1d) are similar to run (1b), except that the planes at
z = 40, 50 were used in run (1c) and the planes z = 50, 60
were used in run (1d). For each run we give the initial and final
(optimized) weighted global error in the x and y components
of the rays. The weighted errors are denoted by ‖ex‖w and
‖ey‖w , respectively. The weighted norm is defined by

‖ex‖2
w =

∑
i

|ra
x (i)− rx (i)|2 I1(x(i))

/∑
i

I1(x(i)). (19)

Here rx is the actual x component of the direction vector r of a
ray at the point x(i), r a

x is the approximated value of the same
component of that ray (either initial or optimal), I1(x(i)) is the
intensity of the ray through x(i) and the summation is over
all the rays. The use of weighted norms is adequate since our
method is based on intensity-related data; thus rays that carry
more intensity should be given extra weight.
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Figure 1. Intensity at z = 40, 50.

Figure 2. The exact phase (left) and computed phase (right).

Table 1. Initial and final error norms for the simulations in test 1.

Run number Initial ‖ex‖w Initial ‖ey‖w Optimized ‖ex ‖w Optimized ‖ey‖w
(a) 0.014 530 0.013 683 0.013 598 0.011 582
(b) 0.131 118 0.117 722 0.015 453 0.013 135
(c) 0.023 340 0.022 275 0.002 176 0.002 167
(d) 0.031 384 0.027 638 0.001 264 0.002 142

Test 2

In the second test we simulated two waves in the large k limit.
We ran two types of simulations. In both of them we computed
the phase at the plane z = 50 from the simulated intensity
at this plane and in some other plane. The domain D1 was
the unit disc. In one family of tests the intensity at z = 50
was uniform, while in the other family of tests the intensity on
z = 50 was Gaussian. As part of the simulation, the unit circle
on the plane z = 50 was mapped (by the rays) onto the other
relevant plane. This determined the shape of the associated
domain (D2) at that plane. The phase at the plane z = 50 was
(in all cases) elliptical 0.01((x/2)2 + y2). As in the previous
test we sampled the intensities on each domain over 40 sectors
and 100 radial points per sector to generate the initial condition

for the steepest descent flow. In the current set of simulations
we used 1196 FE nodes.

Figure 4 shows the intensity contours at the plane z = 51
(left) and at the plane z = 60 (right) for the case where the
intensity at the plane z = 50 was exactly unity.

The error in the phase reconstruction depends on the
planes used for finding the ray mapping. In the left part
of figure 5 we draw the error for the case where the ray
mapping was found from the intensities at the planes z =
50, 51. Similarly, on the right part of that figure we draw the
corresponding error where the ray mapping was found from the
intensities at the planes z = 50, 60.

A few examples of error norms are given in table 2. In
run (2a) the intensity at the plane z = 50 is uniform, and the

282



Phase reconstruction by the weighted least action principle

Figure 3. The error in the computed phase.

ray mapping is based on the simulated intensity at the planes
z = 50 and 51. Run (2b) is similar, except that the intensity
on the plane z = 51 was replaced by the intensity at the plane
z = 60. Run (2c) is similar to (a) except that the intensity is
Gaussian, and the initial data was deliberately shuffled by two
sectors. Run (2d) is similar to run (2c) except that the second
plane is, as in run (b), at z = 60.

Tables 1–3 provide the absolute errors in the ray direction
before and after optimization. To demonstrate that the
smallness of the error is significant even in the paraxial regime,
we give in table 2a the relative error (er

x , etc) in the ray
direction. The relative error should be computed with care.
Near the aperture’s centre the x and y components of the true
rays are extremely small, so even a small actual error will result
in an enormous relative error. Therefore, the relative error
norms in table 2a (that correspond to run (2d)) were computed
only for rays whose x and y direction components are larger
than 0.005. These rays cover about 90% of the disc’s area.

Test 3

The third test is similar to the second test, but the simulations
are done with diffraction integrals (so they are exact). As
usual we use the plane z = 50 as the central plane where the
computations are done. The domain D1 is chosen on that plane.
Typically it is a circular domain. One purpose of test 3 is to
examine a method for determining the shape of the boundary
of the domain D2. The image of the boundary of the basic
domain D1 under the ray mapping need not be circular when
the phase is general. To find the shape of the boundary of D2,
a circular ring is placed on the plane z = 50. The image of
the ring on the other plane is then determined. In actual optical
measurements the image of the ring is not focused, of course,
but in this report we idealized somewhat the situation and used
a ‘clean’ form of the imaged ring. We used here an elliptical
phase 0.01((x/2)2 + y2) and uniform intensity at the aperture.
The wavenumber is k = 200, and the diffraction calculation
used the Rayleigh–Sommerfeld integral.

In figure 6 we depict on the left the intensity distribution at
the plane z = 50 and on the right its contour lines. An artificial

ring is placed on that plane, and its contour is drawn with a
broken line. Figure 7 is analogous to figure 6, except that the
intensity here is evaluated at the plane z = 60. Again, notice
the broken line, which is the image of the ring that was placed
on the plane z = 50. It provides the shape of the boundary of
D2 that is the ray image of the boundary of the disc D1 on the
plane z = 50. The distribution of the 4000 sampling points is
drawn in figure 8.

A number of numerical error estimates are given in table 3.
In this table we compare the effect of working with different
sampling points and different FE nodes on the accuracy. In
all the runs in this table, the phase was computed from the
simulated intensities on the planes z = 50 and 60. Runs (3a),
(3b) and (3c) used 40 × 100 sampling points. The number of
FE nodes was 498 in run (3a), 1196 in run (3b) and 1997 in run
(3c). Runs (3d), (3e) and (3f) used 80 × 100 sampling points.
The number of FE nodes was 498 in run (3d), 1196 in run (3e)
and 1997 in run (3f).

4. Discussion

A number of conclusions can be drawn from the numerical
simulations reported in section 4. Table 1 shows a significant
improvement in accuracy by increasing the separation distance
Z between the detection planes from unity to ten. This is the
result of the lever principle. The ray direction is determined
by the ratio of the ray deflection between the planes, i.e. by
δ(x) = Ū (x) − x , and the separation distance Z between the
planes. Hence, the error in the ray direction is a consequence
of an error in the ray mapping. Therefore, increasing Z
reduced considerably the direction error. We found that a
further increase in Z does not have a marked effect on the
error. This is probably due to the inaccuracy built into the
calculation in this test by the assumption that the domain D2 is
circular just like D1. In run (b) the initial error was deliberately
made quite large, but the optimization process brought it down
considerably, almost to the level of run (a), where the initial
data was far more accurate. In a further test we averaged the
ray directions of runs (c) and (d). We found no significant
reduction in error through this step.

While in test 1 the simulation was done by exact
diffraction integrals, we used in test 2 an approximate
geometrical optics simulation. Thus, the error is purely due
to the numerics. Indeed, runs (a) and (b) in test 2 are more
accurate than the respective runs (a) and (d) of test 1, even
though test 1 used many more FE nodes. Another advantage in
the simulation of test 2 is that the domain D2 is not assumed
to be circular, but rather is given to the optimization code as
part of the data. The accuracy of runs (a) and (b) in this test is
of O(10−4) radians, which is rather remarkable, but one must
recall that the data here are nearly ideal, which may not be the
case in real experiments. A deliberate shuffling of the initial
condition U (x, 0) in runs (c) and (d) of test 2 gave rise to a
large initial error. Although the error was significantly reduced
by the optimization code, which strengthens our confidence
in it, the optimized mapping in this case is not as good as in
runs (a) and (b), that enjoyed better initial data. One might
wonder about this sensitivity to initial conditions. Presumably,
there is a unique minimizer that, since we are working with a
fixed FE grid, should be recovered from any initial data. We
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Table 2. Initial and final error norms for the simulations in test 2.

Run number Initial ‖ex‖w Initial ‖ey‖w Optimized ‖ex ‖w Optimized ‖ey‖w
(a) 0.382 222 0.388 396 0.003 186 0.002 643
(b) 0.050 043 0.057 219 0.000 618 0.000 737
(c) 0.321 111 0.331 005 0.009 276 0.005 398
(d) 0.045 476 0.046 921 0.005 895 0.001 905

Table 2a. Initial and final relative error norms for the simulations in test 2.

Run number Initial ‖er
x‖w Initial ‖er

y‖w Optimized ‖er
x ‖w Optimized ‖er

y‖w
(d) 2.350 944 4.290 766 0.223 338 0.096 255

Table 3. Initial and final error norms for the simulations in test 3.

Run number Initial ‖ex‖w Initial ‖ey‖w Optimized ‖ex ‖w Optimized ‖ey‖w
(a) 0.011 188 0.014 992 0.008 515 0.010 371
(b) 0.011 007 0.014 799 0.008 899 0.009 575
(c) 0.010 944 0.014 745 0.003 167 0.003 374
(d) 0.005 685 0.007 573 0.004 544 0.005 197
(e) 0.005 598 0.007 468 0.004 721 0.004 791
(f) 0.005 564 0.007 442 0.002 181 0.002 415

Figure 4. The intensity contours on the planes z = 51 (left) and z = 60 (right). The intensity is unity on z = 50.

Figure 5. The error in the phase reconstruction (left—using the intensities at z = 50 and z = 51; right—using the intensities at z = 50 and
60).

have to recall, though, that the optimization problem for the

functional M is not standard. One has to optimize M under

the constraint (4). This means that the steepest descent flow

for M proceeds along a specific manifold of functions. The
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Figure 6. The intensity distribution on the plane z = 50 (left) and the contour map of the same intensity (right). An artificial ring is placed on
the plane z = 50 and its contour is depicted by the broken line.

Figure 7. The intensity distribution on the plane z = 60 (left) and the contour map of the same intensity (right). The ring placed on the plane
z = 50 is imaged on the plane z = 60 and its contour is depicted by the broken line.

manifold is determined by the initial conditions. Incidentally,
the only role played by the intensity I2 is in determining this
manifold. Therefore, different initial conditions set up different
manifolds, and this gives rise to different optimized solutions.

Test 3 has two main purposes. The first is to check in a
controlled way the effect of increasing the number of sampling
points and the number of FE nodes. The second goal is
to simulate the ray mapping of a circular ring on the plane
z = 50 on other planes. Runs (a)–(c) used the same number
of intensity sampling points. Therefore, the initial error is
essentially the same in all of them. Increasing the number of
FE nodes improved the accuracy of the optimized mapping,
but more tests are needed to determine the convergence rate.
Doubling the number of intensity points halved the initial error
in the ray directions. Again, increasing the number of FE nodes
improved the accuracy of the optimized solution. We see in
this table again that better initial data imply in general better
optimized solutions under the same FE resolution. This is an
important conclusion, since increasing the sampling resolution
is a relatively cheap operation, in fact much cheaper than
increasing the number of FE nodes. The ray map of the ring
(broken circle in the right part of figure 6 on the plane z = 50)

is mapped to the shape shown by the broken line in figure 7
on the plane z = 60. In real experiments we cannot expect
such a nice clear image, and part of the work then would be to
determine the shape of the ray-imaged circle for the diffracted
image of the ring.

We summarize now our findings and further thoughts on
the problem.

• The code that is explained in detail in the following
appendix was demonstrated to be effective for the solution
of the weighted least action problem. An important
numerical issue that we realized is that one must perform
the Helmholtz decomposition at each steepest descent step
very accurately. This is essential in order to remain on the
constrained manifold (4). Therefore, any solver should
pay special attention to the Helmholtz decomposition.

• Good initial conditions are important too. Of course, since
the phase is not known a priori, there is no way of being
sure about the starting ray mapping. Nevertheless, one can
assume that in practice the phase typically has no sharp
gradients. Therefore, the main ingredient for good initial
conditions is dense sampling. We used a very simple
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Figure 8. The sampling points consisting of 40 sectors with 100
points per ray.

sampling algorithm that is valid for circular domains. We
also used a variant of it to noncircular domains. An
outstanding problem is to develop a numerical method
to generate appropriate sampling algorithm for general
domains and to cases with highly nonuniform intensity.

• The number of rays is determined by the number of FE
nodes. On the one hand, one would like to obtain the
image of many rays to improve the phase resolution. On
the other hand, increasing the number of FE nodes is
computationally very costly. Therefore, it is useful to look
for ways that increase accuracy or reduce running time.
Here we see another advantage of starting with good initial
data. If the initial mapping U (x, 0) is close to the optimal
solution, the running time would be short. It should be
noted, though, that even with good initial conditions the
current algorithm is too slow for real time applications
such as adaptive optics.

• As was mentioned above the domain D1 is typically
circular. A good estimate of its ray-image D2 is also
needed. If no information beyond the intensities is given,
one must make a guess about the shape of D2, constrained
only by the condition

∫
D1

I1(x) dx = ∫
D2

I2(x) dx . Since
the intensity often decreases towards the boundary, the
weight of the error induced by an incorrect shape of D2

may not be severe. We examined here another option,
namely to ray-image the shape of D1 by placing a ring on
the main plane and observe its image on the other plane.

• A number of researchers attempted to find the phase from
intensity measurements using equation (1) alone. The
equation is often called the transport of intensity equation
(TIE) and the resulting phase reconstruction is called
curvature sensing. Teague [11] seems to be one of the
first people to propose to consider (1) as an equation for
ψ , and not (as one might naturally do) as an equation for
I . Thus, knowing I on two near-by planes enables the
consideration of (1) as an elliptic second order equation
for ψ . One of the difficulties in this approach is that one
needs to supply (1) with boundary conditions [12, 13];
however, it is not clear how to get such conditions.

There are a number of important differences between the
TIE and the WLAP methods. First, note that, in contrast
to the TIE-based method, in the current (WLAP) method the
separation Z between the detection planes need not be small.
One advantage of this feature is that increasing Z decreases the
error in the ray direction (since the ray direction is obtained by
the ray deviation in the detection plane divided by Z ). Another
advantage of using relatively large Z is that the intensity
variations are more appreciable with respect to the system’s
noise.

Another, related, advantage of the WLAP method is that
while the TIE requires the differentiation of the intensity data
(a step known to enhance measurement error) the WLAP
integrates the data. Therefore, the WLAP method has the
potential of reducing measurement errors. We have not yet
explored this issue, though.

Finally, we point out that since the WLAP is based on a
variational principle the solution is obtained by a minimization
process. Such processes are typically quite stable numerically.
On the other hand, the WLAP method, and in particular the
algorithm that we used, are far more complex than the solution
based on the TIE.
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Appendix. The numerical algorithm

In this appendix we describe a numerical algorithm to solve
the optimization problem (5). The method is based on solving
the evolution equation (8) towards a critical point of the energy
function M . The two intensity distributions I1, I2 as described
in the previous section are assumed to be given. The first
step towards finding the ray mapping Ū is to set up initial
conditions U (x, t = 0) for the flow (8). Having done so,
we shall present a finite element (FE) solver for the Helmholtz
decomposition (7), and then evolve U according to (8). We
now explain in detail the implementation of each of the steps.

Intensity distributions and initial conditions

The theory in section 2 was formulated for intensity
distributions provided over the entire plane. In practice the
distributions Ii (x) are given only on some finite domain(s)
in the plane. For simplicity, we assume first that Ii are both
defined over discs. The compatibility condition

∫
D1

I1(x) dx =∫
D2

I2(x) dx = m is also assumed. The restriction to discs is
particularly relevant to many optical applications. Extending
the method described below to other domains can be done in
a number of ways. For example, given a domain D, one can
consider the smallest disc that bounds D, extend the intensity
I , defined in D, to be zero in the part of the disc outside D,
and proceed as before.

To find an initial intensity transporting mapping U (x, 0)
the distributions I1, I2 are discretized. Since the mapping is
based on preserving intensities, one should construct discrete
arrays such that each point (on its respective plane) carries an
equal amount of intensity. Consider for example the plane

286



Phase reconstruction by the weighted least action principle

P1. We first divide the disc into kθ sectors such that the total
intensity in each sector σ j is

∫
σ j

I1(x) dx = m/kθ . The set of
sectors naturally defines a set of radii extending from the origin
to the disc’s boundary. Each radius divided into kr points, such
that the integral of I1 between adjacent points along the radius
is the same. This process defines a set P1 of k = kθ × kr points
(x1

i , y1
i ) in D1. A similar process is applied to the intensity

I2 in the disc D2, resulting in a set P2 of points (x2
j , y2

j ).
It remains to define an association between the two sets of
points defined above. This can be done by defining an ordering
on these sets. For this purpose observe that there is some
arbitrariness in the definition of the sectors. We must decide
on an initial angle with respect to which to measure them.
This degree of freedom can be removed by selecting the angle
θ = 0 as the radius for the first sector. Once the sectors in both
planes P1 and P2 are defined uniquely, we can order the points
in the two sets Pi . The points along the first radius (defined
by θ = 0) are ordered first, and then the other points are
concatenated, radius after radius. Once an ordering is defined,
an association between the points in P1 and P2 is induced by
relating two points with the same position in the ordered sets
to each other. In some of the numerical tests that are described
in the simulation section we constructed initial conditions in
which a permutation was applied to the association above. The
permutation gave rise to an initial condition that consists of an
association between points that are far from each other in their
respective domains. This enables us to test how the algorithm
and code seek the minimum of M while starting from an initial
mapping that is far from the minimum.

A finite element solver was used to solve the sys-
tem (7), (8) on the discrete level. Accordingly, the disk D1 is
covered by a quasi-uniform triangulationTh . The algorithm de-
veloped by Persson and Strang [5] is used to generate the mesh
consisting of unstructured triangular elements. In this algo-
rithm, the triangle vertices are modelled as the nodes of a truss,
and linear force–displacement equations are used to equilibrate
the bars of the truss. The Delaunay algorithm is used to con-
struct the mesh topology by defining the triangle edges. The
domain geometry is defined implicitly using a distance func-
tion. This algorithm is easy to implement; we used the Matlab
code developed in [5]. The nodes and mesh connectivity are
then used by the FE solver to perform the Helmholtz decom-
position (7) and the steepest descent evolution equation (8).

The Helmholtz decomposition

To perform the Helmholtz decomposition (7), where the
normal component of V on the boundary ∂D1 vanishes (i.e.
V · n = 0), a dual mixed method together with the MINI
element basis is used (e.g. [6–8]). The MINI element basis is
the smallest set of basis functions for which numerical stability
can be achieved for the dual mixed method [6–8].

Equation (7) can be rewritten in weak form as follows. Let
W and Q be vector and scalar test functions in H0(div, D1)

and L2(D1) respectively. Here, H0(div, D1) is the space
of square integrable vector functions with square integrable
divergence over the domain D1. The subscript 0 denotes that
the normal component of a function in H0(div, D1) is zero
at the boundary ∂D1. The space L2(D1) denotes the space
of square integrable functions. Then, given U the solutions

P and V of equation (7) can be obtained as the solution pair
(V, P) ∈ H0(div, D1)× L2(D1) to

∫
D1

V · W dx −
∫

D1

P div W dx =
∫

D1

U · W dx,

∀W ∈ H0(div, D1), (20)∫
D1

Q div V dx = 0, ∀Q ∈ L2(D1). (21)

To obtain a unique ‘pressure’ P we set its average to zero.
Equations (20) and (21) are the weak (variational) formulation
of the Helmholtz decomposition (7). To solve this system
numerically, a discrete version of this variational formulation
is developed. Let Th denote the triangulation of the domain
D1. On each triangle K ∈ Th , the discrete test functions
Wh ∈ H0,h(Th) ⊂ H0(div, D1) are characterized in terms of
MINI element basis functions [6–8]:

H0,h(Th) =
{

Wh ∈ H0(div; D1) :

Wh =
∑

i

aiηi(x),∀ K ∈ Th

}
, (22)

where ai are (constant) coefficients and ηi are local vector
valued basis functions in triangle K . For the MINI element
basis functions, the degrees of freedom (nodes) are the
triangle vertices and the triangle centroids. At interior nodes,
there are two degrees of freedom (i.e. two basis functions)
corresponding to the two coordinate directions. At boundary
nodes, there is a single degree of freedom because V has zero
normal component.

The MINI element basis vector functions ηi can be
described in terms of barycentric coordinates as follows. On
any triangle K , denote the barycentric coordinates by λ1,
λ2, λ3. That is, λi (where i = 1, 2, 3) is equal to unity at
vertex i , is equal to zero at all other vertices of the triangle and
is linear in between. For example, on a triangle with vertices
located at x1 = (−1, 0), x2 = (1, 0) and x3 = (0,

√
3), the

barycentric coordinates are

λ1(x) = 1
2

(
1 − x1 − x2/

√
3
)
,

λ2(x) = 1
2(1 + x1 − x2/

√
3),

λ3(x) = x2/
√

3,

(23)

where x = (x1, x2). Now, if the triangle vertex i does
not belong to ∂D1, then a basis function is introduced for
each spatial coordinate. For the MINI element basis, the
basis functions corresponding to this node consist of the
(vector) linear polynomials (λi , 0) and (0, λi ) where λi are
the barycentric coordinates. If a triangle vertex j belongs
to ∂D1, then only one basis function is used because the
normal component of U at vertex j should be equal to zero.
In this case, the MINI element basis function corresponding
to this node is the vector λ j s j where s j is the unit tangent
vector at vertex j . Finally, since the triangle centroids do not
belong to ∂D1, two basis functions are introduced again for
each spatial coordinate. In the MINI element framework, at a
triangle centroid l , these basis functions take the form of the so-
called bubble (cubic polynomial) functions: (λ1λ2λ3, 0) and

287



C Lee et al

(0, λ1λ2λ3) for the x- and y-coordinates respectively where λi

are the barycentric coordinates for the triangle with centroid l .
The discrete scalar test functions Qh ∈ L2

h(Th) are mean
zero, piecewise linear continuous functions, i.e.

L2
h(Th) =

{
Qh ∈ L2(D1) ∩ C0(D1) :

Qh =
3∑

i=1

aiλi (x), ∀ K ∈ Th

}
,

(24)

where again the λi are the barycentric coordinates discussed
above. With these choices, the discrete form of the
system (20), (21) becomes the following.

Find (Vh , Ph) ∈ H0,h(Th)× L2
h(Th) such that∫

D1

Vh · Wh dx −
∫

D1

Ph div Wh dx

=
∫

D1

Uh · Wh dx, ∀ Wh ∈ H0,h(Th), (25)

∫
D1

Qh div Vh dx = 0, ∀ Qh ∈ L2
h(Th), (26)

where Uh is the projection of U onto H0,h(Th). Standard
FE arguments (e.g. [9, 7]) imply that equations (25), (26) are
equivalent to a linear system of the form

AVh + BT Ph = F,

BVh = G,
(27)

for appropriately constructed matrices A, B and vectors F,G .
We use the conjugate gradient method to solve this linear
system.

It can be shown rigorously (e.g. see section 14 in [8]) that
Vh and Ph are first order accurate approximations for V and P
in the H0(div, D1) (i.e.

∫
D1

(|V |2 + (div V )2
)

dx) and L2 (i.e.∫
D1

P2 dx) norms respectively. In practice, however, we find
that the algorithm is second order accurate for both V and P in
the L2 norm; in fact, Ph is found to be a second order accurate
approximation in the maximum norm. Finally, the divergence
of Vh in the weak sense (i.e.

∫
D1

Qh div Vh dx) is zero to within
the error tolerance of the conjugate gradient iterative solver.

Evolving the conservation law

A discontinuous Galerkin (DG) method (e.g. see [10]), with
linear basis functions on each triangle K , is used to solve the
evolution equation (8). The triangulation Th is the same as that
for the Helmholtz decomposition.

The evolution algorithm is based on a conservative
discretization of equation (8) in component form. Taking
U = (U1,U2), equation (8) can be rewritten as
∂Ul

∂t
+ ∇ · (I−1

1 V Ul) = Ul∇ · (I−1
1 V ),

for l = 1, 2. (28)

The DG method is derived as follows. On each triangle K ∈
Th , multiply equation (28) by a linear (P1) test function ζ and
integrate over K . This gives∫

K

∂Ul

∂t
ζ dx +

∫
∂K

I−1
1 V · nÛlζ ds −

∫
K

I−1
1 Ul V · ∇ζ dx

=
∫

K
ζUl∇ · (I−1

1 V ) dx, for l = 1, 2, (29)

where Ûl is the numerical flux on the edge ∂K . For stability,
the upwind flux is used:

Ûi =
{

U−
l if V · n � 0,

U+
i if V · n < 0,

where U−
l denotes the value taken inside K , and U+

l taken
from the neighbouring triangle. On each triangle K , the
function Ul is assumed to be a linear function of the form
Ul = ∑3

i=1 ul,i (t)λi (x)where the λi (described in the previous
section) are the basis functions for each node i = 1, 2, 3
and ul,i (t) are time-dependent coefficients. The Ul are not
assumed to be continuous at nodes or across triangle edges.
With these assumptions, equation (29) reduces to a first order
ordinary differential equation in time for the ul,i (t). We show
below how such potentially discontinuous solutions are made
compatible with the Helmholtz decomposition solver.

A second order accurate Runge–Kutta scheme is used
to discretize equation (29) in time. Let ul,i denote a time-
dependent coefficient of Ul with un

l,i ≈ ul,i (tn). Then, for given

un
l,i , the value at the next time step un+1

l,i is obtained by

u∗
l,i = un

l,i +	t
∂ul,i

∂t
(tn, un) (30)

u∗∗
l,i = u∗

l,i +	t
∂ul,i

∂t
(tn +	t, u∗) (31)

un+1
l,i = (un

l,i + u∗∗
l,i )/2. (32)

It can be shown that this algorithm is second order accurate in
the L2 and maximum norms. A detailed description and error
analysis of the DG method can be found in [10].

Coupling the Helmholtz decomposition and evolution
algorithms

First, the initial condition U 0
h is obtained by projecting

U (x, t = 0) onto the finite element space H0,h(Th). That
is, U 0

h = ∑
i aiηi (x) where the coefficients ai are found by

integrating U (x, t = 0) against ηi and using that
∫


ηiη j dx =

0 for i �= j . Note that U 0
h is a continuous function. Second,

the discrete Helmholtz decomposition system (25), (26) is
solved to obtain V 0

h at triangle vertices and centroids. Third,
the evolution equation is solved using U 0

h and V 0
h obtained

from the discrete Helmholtz decomposition solver. Note that
this requires a second discrete Helmholtz decomposition to
determine V ∗

h , from the intermediate step U ∗
h , that is needed

to evaluate ∂ul,i

∂t (0 +	t, u∗).
Because U ∗

h is discontinuous, U ∗
h is projected into

the space of vector-valued continuous piecewise linear
functions (e.g. L2

h × L2
h), where

L2
h(Th) =

{
Qh ∈ L2(D1) ∩ C0(D1) :

Qh =
3∑

i=1

aiλi(x),∀K ∈ Th

}
, (33)

in order to perform the second discrete Helmholtz decomposi-
tion to obtain V ∗

h . The projected U ∗
h is now a continuous L2
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function. The updated function after the full time step, U 1
h , is

also analogously projected. The process is then repeated un-
til the L2 norm of V n

h falls below a specified tolerance level,
‖V n

h ‖L2 < tol, where tol is typically set to 10−8.

References

[1] Gureyev T E and Wikins S W 1998 On x-ray phase imaging
with a point source J. Opt. Soc. Am. A 15 579–85

[2] Rubinstein J and Wolansky G 2004 A variational principle in
optics J. Opt. Soc. Am. A 21 2164–72

[3] Angenent S, Haker S and Tannenbaum A 2003 Minimizing
flows for the Monge–Kantorovich problem SIAM J. Math.
Anal. 35 61–97

[4] Brenier Y 1991 Polar factorization and monotone
rearrangement of vector-valued functions Commun. Pure
Appl. Math. 64 375–417

[5] Persson P O and Strang G 2004 A simple mesh generator in
Matlab SIAM Rev. 46 329–45

[6] Arnold D N, Brezzi F and Fortin M 1984 A stable
finite-element method for the Stokes equations Calcolo 21
337

[7] Fortin M and Brezzi F 1991 Mixed and Hybrid Finite Elements
(New York: Springer)

[8] Roberts J E and Thomas J M 1991 Mixed and hybrid methods
Handbook of Numerical Analysis vol 2 Finite Element
Method (Part 1) ed P G Ciarlet and J L Lions (Amsterdam:
Elsevier Science)

[9] Atkinson K and Han W 2001 Theoretical Numerical Analysis
(New York: Springer)

[10] Cockburn B and Shu C W 2001 Runge–Kutta discontinuous
Galerkin methods for convection-dominated problems J. Sci.
Comput. 16 173–261

[11] Teague M R 1983 Deterministic phase retrieval: a Green’s
function solution J. Opt. Soc. Am. 73 1434–41

[12] Roddier F 1998 Curvature sensing and copensation: a new
concept in adaptive optics Appl. Opt. 27 1223–5

[13] Gureyev T E and Nugent K A 1995 Phase retrieval with the
transport of intensity equation II: Orthogonal series solution
for nonuniform illumination J. Opt. Soc. Am. A 13 1670–82

289

http://dx.doi.org/10.1364/JOSAA.21.002164
http://dx.doi.org/10.1137/S0036141002410927
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.1023/A:1012873910884

	1. Introduction
	2. Formulation
	3. Simulation results
	4. Discussion
	Acknowledgments
	Appendix. The numerical algorithm
	References

