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ABSTRACT.
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In this paper we explore the use of the Leray α-regularization applied to Burger’s equa-

tion. In the regularization, an additional variable is introduced which is a smoothed ver-
sion of the original variable and a vector system for the original and smoothed variable is
solved simultaneously. We employ a hybrid algorithm combining a centered finite differ-
ence scheme for Burger’s equation and a spectral method for the regularization. A para-
meter θ is introduced in order to conserve particular quantities associated with the solution
of the regularized problem. For several values of θ, we compare the exact solutions to
those of the regularized problem and investigate the dependence of the solutions on the
regularization parameter α and on the mesh size. In particular, it is shown that under appro-
priate conditions and particular values of θ, the numerical Leray α-regularization scheme
produces an approximate solution that appears to converge to the unique discontinuous (en-
tropy) solution as the mesh size h → 0 provided that the regularization parameter α and h
are related to each other in a precise way. Interestingly, our results suggest that it is only
the smoothed variable which converges to the entropy solution.

Key Terms: Burgers Equation, α-Regularization, Leray-α, Entropy Condition, Numerical Partial Differ-

ential Equations, Finite Difference Schemes.
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1. INTRODUCTION AND BACKGROUND

The numerical solution of conservation laws is critical to understanding nonlinear phenomena in mathe-

matical physics. The prime difficulty in computing conservation laws is that discontinuities develop in the

solution. This in many cases necessitates the use of a particular regularization scheme in order to obtain a

unique physical solution. In this paper we explore new techniques for solving such equations by focusing on

a specific model problem- Burgers equation. Burgers equation is one of the simplest and most well studied

nonlinear hyperbolic partial differential equations as it serves as a model for more general conservation laws

governing the evolution of mass, momentum and energy. Examples range from shock waves in supersonic

wind tunnels to traffic flow (Knobel, 2000). Burgers equation is a special case of a general conservation law:

(1) ut + f(u)x = 0,

where u(x, t) is the amount of a conserved quantity such as density, momentum or internal energy and f(u)

describes the flux of the conserved quantity, in the case of Burgers equation, f(u) = 1
2u2. The inviscid form

of Burgers equation that is to be considered here is given by:

(2) ut + uux = 0 x ∈ �, t > 0,

together with periodic (period T = 1) initial conditions:

(3) u(x, 0) = ϕ(x) = ϕ(x + T ) x ∈ �.

Assuming that no discontinuities develop in time, the solution u(x, t) can be obtained by the method of

characteristics in the same way as for the linear advection equation ut + cux = 0, except here the charac-

teristic speed is no longer constant(Knobel 135). The solution u(x, t) is constant along the characteristic

curves which, for Burger’s equation, are given by:

(4) x(t) = ϕ(xo)t + x0.

The solution u(x, t) is then given by:

(5) u(x, t) = ϕ(xo),
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where xo is a zero of the function

(6) 0 = G(xo) = x − ϕ(xo)t − x0,

(e.g. see Strauss 361). If dϕ(xo)
dxo

≥ 0, then this equation is uniquely solvable for all t. In this case, the

solution is an expansion fan or is a constant in the case of equality. The characteristics do not intersect, so

unless initial conditions are discontinuous, the solution u(x, t) will remain smooth for all times. However if

dϕ(xo)
dxo

< 0 for some xo in the initial periodic profile then equation (6) may not be uniquely solvable for xo.

As a consequence some of the characteristics intersect resulting in discontinuities and non-differentiability

of the solution. However it is still possible to obtain the solution in the weak (or integral) sense (LeVeque

27). Such solutions typically are piecewise smooth. In the case of a single discontinuity, let (xs(t), t) be a

curve in the x− t plane across which u(x, t) is discontinuous. Then the velocity of the curve is given by the

Rankine-Hugoniot condition (Knobel 134):

(7) ẋs(t) =
f(u+) − f(u−)

u+ − u− =
1
2
(u+ + u−).

The discontinuity in the solution is called a shock wave, ẋs(t) is the speed of propagation, u+ =

limx→+xs u(x, t) and u− = limx→−xs u(x, t) are right and left limits that will in general not be equal

across the shock wave creating an infinite spatial gradient of u(x, t). If the shock is not present initially,

the time of formation is calculated as the smallest time when ux(x, t) becomes infinite which is given by

(Knobel 143):

(8) tb = min
xo

−1
d

dxo
ϕ(xo)

.

Lastly, in order to ensure uniqueness of the weak solution, the entropy condition is used as the physical

selection mechanism. That is, the speed of the wave just behind the shock must be higher than the speed just

ahead of it (Strauss 366). The entropy condition guarantees (in analogy with gas dynamics) that the entropy

of material increases as it passes the discontinuity, this can be written as:

(9) u− > ẋs(t) > u+,
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for Burger’s equation. Hence the solution that satisfies the entropy condition is a unique physical solution.

A more convenient method to test if the entropy condition is satisfied is the Oleinik inequality (Knobel 183):

(10)
u(x + a, t) − u(x, t)

a
<

C

t
,

which holds ∀ a, t > 0 and some constant C that depends only on the initial conditions u(x, 0) = ϕ(x).

This condition restricts how large the positive secant slopes of u(x) can become in time, while the negative

slopes remain unrestricted (Knobel 183).

2. LERAY-α REGULARISATION PROBLEM STATEMENT AND CONSERVED QUANTITIES

Although many methods of approximation of solutions to conservation laws exist (Iserles, 1996; LeV-

eque, 1992), the purpose of this research is to test numerically several versions of the Leray-α regularization

scheme. A version of this regularization was originally derived by Leray for the Navier-Stokes equations

governing incompressible fluid flow (Leray, 1936). Here, we introduce another parameter θ, with 0 ≤ θ ≤ 1,

and we consider:

(11) vα
t + θuαvα

x + (1 − θ)uα
xvα = 0

where vα is related to uα by:

(12) vα = H[uα] ≡ uα − α2uα
xx

with initial data:

(13) vα(x, 0) = vα
o (x) = ϕ(x) = ϕ(x + T )

For the case θ = 1, this regularization scheme was previously proposed and studied by H. Bhat (Bhat, 2005)

and E.Tadmor et al. (Tadmor et al., 2006). However in those works, the numerical investigations did not

conclusively demonstrate the convergence properties of the proposed scheme. In this paper, the convergence

of functions uα(x, t) and vα(x, t) to the exact entropy solution u(x, t) of the inviscid Burgers equation (2)

is studied numerically as α → 0. If α = 0 we have vα = uα and the regularization problem becomes

(2). It should be noted that both functions uα(x, t) and vα(x, t) are smooth and do not have discontinuities,

however in the limit as α → 0 there is recent evidence that solutions for θ = 1 converge to possibly

discontinuous entropy solutions of Burgers equation(Tadmor et al.,2006).
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We note that other α-regularization models exist including the Navier-Stokes-α (NS-α), the Magnetohydrodynamic-

α (MHD-α) and the Lagrangian Averaged NS(or MHD)-α (LANS-α, LAMHD-α). Such models modify the

original equations by making nonlinearities milder, which leads to smoother solutions without unnecessary

energy dissipation in the system (Linshiz and Titi, 2006).

If θ = 1 the system (11) − (12) becomes:

(14) vα
t + uαvα

x = 0

vα = uα − α2uα
xx

Define the L1 norm by

(15) ‖v‖L1
≡

∫ T

0
|v| dx.

Then, it can be shown that the maximum of vα(x, t) in (14) is conserved. In fact given smooth enough

functions, it has been proven (Tadmor et al., 2006) that:

(16) ‖vα(., t)‖L1
≤ ‖ϕ(xo)‖L1

≤ Const.

The parameter θ can be chosen such that certain quantities are exactly conserved by the equation (11).

The conserved quantities for θ = 1, 1
3 , 2

3 are stated in the following theorems (2),(3) and (4).

Theorem 1. (θ = 1). Consider (14) and assume that uα and vα are periodic with period T , then:

(17)
∫ T

0
vαdx = constant.

That is, the mass is conserved. Furthermore, maxxv
α(x, t) is conserved in time.

Proof. Integrate (14) by parts and apply boundary conditions:

∫ T

0
vα
t + uαvα

x dx = 0

∂

∂t

∫ T

0
vαdx +

∫ T

0
uαvα

xdx = 0

(18)
∂

∂t

∫ T

0
vαdx −

∫ T

0
uα

xvαdx = 0
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Use (12) to simplify (18):

∂

∂t

∫ T

0
vαdx −

∫ T

0
uα

x(uα − α2uα
xx)dx = 0

∂

∂t

∫ T

0
vαdx −

∫ T

0

1
2
((uα)2)x − α2

2
((uα

x)2)xdx = 0

Applying boundary conditions, the second integral vanishes and we have:

(19)
∂

∂t

∫ T

0
vαdx = 0

that is: ∫ T

0
vαdx = constant

To show that the maximum of vα is conserved in time, let x̃(t) be a point where maximum occurs, then:

vα
t (x̃(t), t) + uα(x̃(t), t)vα

x (x̃(t), t) = 0

Since vα
x (x̃(t), t) = 0 at the point of maximum, we have vα

t + uα · 0 = 0 and vα(x̃(t), t) = const, that

is maxxvα remains constant in time.

�

For θ = 1
3 , the system (11) − (12) becomes:

(20) vα
t +

1
3
uαvα

x +
2
3
vαuα

x = 0

vα = uα − α2uα
xx

Theorem 2. (θ = 1
3 ). Consider (20) and assume that uα and vα are periodic with period T , then:

(21)
∫ T

0
(uα)2 + α2(uα

x)2dx = constant

That is, a modified energy is conserved.

Proof. Multiply (20) by uα and integrate:

∫ T

0
uαvα

t dx +
1
3

∫ T

0
(uα)2vα

xdx +
2
3

∫ T

0
vαuαuα

xdx = 0

∫ T

0
uαvα

t dx +
1
3
(
∫ T

0
(uα)2vα

x + vα((uα)2)xdx) = 0
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∫ T

0
uαvα

t dx +
1
3
(
∫ T

0
((uα)2vα)xdx) = 0

Applying boundary conditions, the last term is zero and we obtain:

(22)
∫ T

0
uαvα

t dx = 0

Plug (12) in to (22) and we have:

∫ T

0
uαvα

t dx =
∫ T

0
uα(uα

t − α2uα
xxt)dx =

1
2

∂

∂t

∫ T

0
(uα)2 + α2(uα

x)2dx = 0

that is:

∫ T

0
(uα)2 + α2(uα

x)2dx = constant

�

For θ = 2
3 , the system (11) − (12) becomes:

(23) vα
t +

2
3
uαvα

x +
1
3
vαuα

x = 0

vα = uα − α2uα
xx

Theorem 3. (θ = 2
3 ). Consider (23) and assume that uα and vα are periodic with period T , then:

(24)
∫ T

0
|vα|2 dx = constant.

That is, the energy is conserved.

Proof. Multiply (23) by vα and integrate:

∫ T

0
vαvα

t dx +
2
3

∫ T

0
vαuαvα

x dx +
1
3

∫ T

0
(vα)2uα

xdx = 0

1
2

∫ T

0
(vα

t )2dx +
1
3

∫ T

0
(uα(vα)2)xdx = 0

Applying boundary conditions, the last term is zero and we obtain:

(25)
1
2

d

dt

∫ T

0
|vα|2 dx = 0
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∫ T

0
|vα|2 dx = constant

�

3. NUMERICAL IMPLEMENTATION

Consider the problem (11) − (13) with periodic (of period T=1) initial conditions vα(x, 0) = vo(x) =

vo(x+T ). Create a fine mesh on the interval [0, 1] such that 0 = x0 < x1(= h) < x2(= 2h) < ... < xN (=

Nh) = 1, where N and h are the number and size of the step in space respectively. Two initial profiles are

considered to test the behavior of numerical solution:

(26) vo(x) = 1 − cos(2πx),

and

(27) vo(x) = cos(2πx).

In the former, the solution remains nonnegative and the shock moves; while in the latter, the solution has

both positive and negative parts and the shock is stationary. The solution is computed up to a time tf . Time

is discretized as 0 = t0 < t1(= Δt) < t2(= 2Δt) < ... < KΔt = tf , where K and Δt are the number

and size of time steps respectively. In particular tf = tb,
3
2tb and 2tb are considered, where tb is the time at

which the discontinuity forms and is given by equation (8). With this discretization define unj = u(xj, tn)

and vn
j = v(xj , tn).

Equations (11) and (12) are solved simultaneously as a coupled system. Starting with initial conditions

vo(x) = ϕ(x), evaluated at the mesh points, the values of u0
j = u(xj , 0), j = 0, ..., N are obtained from

(12) by means of Finite Fourier Transform. Then at the first time step, v1j = v(xj ,Δt) is computed from

equation (11) using the Forward Time Centered Space (FTCS) spatial discretization scheme. However this

method is actually unstable for use at long times and so the further time steps are computed using second

order multistep Leap Frog scheme (Strikwerda, 2004). The solution is computed by going back and forth

between equations (11) and (12) at each time step.

3.0.1. Solution to u − α2uxx = v at each time step. Several methods could be used to compute u(x, tn)

given v(x, tn) for each fixed tn from (12) such as the Thomas algorithm (Strikwerda 88) applied to finite
9



difference methods (Thomas,1995), and the spectral method based on the Finite/Fast Fourier Transform

(Strikwerda 46). Here we use a spectral method where the Complex Split Radix Fast Fourier Transform

(FFT) subroutine (Kifowit, 2005) was used to implement the Finite Fourier Transform. This approach gives

a smaller maximum L1 error compared to the Finite Difference algorithm using the Thomas solution method.

The forward Finite Fourier Transform is defined as:

(28) ûk =
N−1∑
j=0

uje
−2ijkπh,

and the backward Finite Fourier Transform is given by:

(29) uj = h

N−1∑
k=0

ûke
2ijkπh.

Given v(x, tn) at the mesh points for a fixed time, the forward transform gives an array v̂k, k = 0, ..., N −1.

Using the derivative formula for the Finite Fourier transform and shifting indices, equation (12) becomes:

N−1∑
k=0

v̂ke
2ij(k−N/2)πh =

N−1∑
k=0

ûke
2ij(k−N/2)πh +

N−1∑
k=0

4(α(k − N/2)π)2ûke
2ij(k−N/2)πh.

Matching coefficients, this gives ûk in terms of known quantities (Thomas 101):

(30) ûk =
v̂k

1 + 4α2π2(k − N/2)2
, k = 0, ..., N − 1.

Then using backward transform (29), u(x, tn) is obtained for that time step tn.

Difficulties with this method might arise due to the occurrence of aliasing instabilities over long time for

large N (Boyd, 2001). In this case some smoothing of the high modes of the Fourier spectrum is required.

Aliasing instability here is controlled by using 25th order Fourier filtering to damp the highest modes (Hou

et al., 1994):

(31) Π [v̂k] = e−10(|k|/N)25 v̂k.

The overall accuracy of the method is determined by the filter and is of order O((1/N)25) (Hou et

al.,1994). To reduce the noise introduced by taking derivatives, Krasny filtering was also used, where the

Fourier modes of magnitude less than the tolerance level ε = 10E−12 were set to zero (Krasny, 1986). The
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combination of both methods, when applied to v̂k before evaluating ûk from (30), significantly improves

the accuracy of the method.

3.0.2. First Time Step FTCS (Forward Time Centered Space) Scheme. In this scheme forward and center

difference formulas are used to discretise time and space derivatives respectively (Strikwerda 17):

(32)
d

dt
vn
j =

vn+1
j − vn

j

Δt
+ O(Δt) ≈ vn+1

j − vn
j

Δt
,

(33)
d

dx
un

j =
un

j+1 − un
j−1

2h
+ O(h2) ≈ un

j+1 − un
j−1

2h
.

Using (32) and (33), equation (11) becomes:

v1
j − v0

j

Δt
+ θu0

j(
v0
j+1 − v0

j−1

2h
) + (1 − θ)v0

j (
u0

j+1 − u0
j−1

2h
) = O(Δt) + O(h2)

which solving for v1
j gives:

(34) v1
j = v0

j − Δt

2h
(θu0

j(v
0
j+1 − v0

j−1) + (1 − θ)v0
j (u

0
j+1 − u0

j−1)) + (O(Δt) + O(h2)).

Knowing v0
j and u0

j , equation (34) gives v1
j for the next time iteration ∀j = 0, 1, ..., N . This scheme is used

on the first time step only to provide enough information for employing the multistep Leap Frog scheme for

the remaining time steps.

3.0.3. Time Steps for n > 1 Leap Frog CTCS (Centered Time Centered Space) Scheme. In this scheme

center difference formulas are used to discretize both time and space derivatives (Strikwerda 17), i.e.:

(35)
d

dt
vn
j =

vn+1
j − vn−1

j

2Δt
+ O(Δt2) ≈ vn+1

j − vn−1
j

2Δt
.

Using (35) and (33), equation (11) becomes:

vn+1
j − vn−1

j

2Δt
+ θun

j (
vn
j+1 − vn

j−1

2h
) + (1 − θ)vn

j (
un

j+1 − un
j−1

2h
) = O(Δt2) + O(h2)

which solving for vn+1
j gives:

(36) vn+1
j = vn−1

j − Δt

h
(θun

j (vn
j+1 − vn

j−1) + (1 − θ)vn
j (un

j+1 − un
j−1)) + (O(Δt2) + O(h2)).

Therefore, knowing vn
j , un

j and vn−1
j , equation (36) gives vn+1

j for the next time iteration ∀j = 0, 1, ..., N .
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3.0.4. Stability and Convergence. For an explicit numerical scheme one of the necessary stability condi-

tions is Courant-Friedrichs-Lewy condition (Strikwerda 34) stating that the ratioΔt
h should be held constant

and less than one. Physically this means that the solution (e.g. shock wave) can not propagate more than

one grid spacing in a single time step. Here, the following stability relation was used:

(37) Δt =
h

2
.

Since the parameter α is a key convergence parameter, we use the following criteria to determine phys-

ically reasonable choices of α. For example, when θ = 1, Theorem 2 states that the maximum of vα(x, t)

is conserved in time and thus cannot exceed the maximum in the initial data. However, for a fixed number

of partition intervals N considered, there is a particular value of α below which vα(x) becomes oscillatory,

hence violating maximum conservation condition. One of the tasks of this numerical investigation was to

establish a relation between α and the mesh size that preserves stability and consistency with Theorems

1− 4. For the case θ = 1, holding N fixed, α is decreased incrementally while the maximum of the numer-

ical approximation of vα(x, t) lies within a specified tolerance level δ of the maximum of the initial data.

That is, α can only be decreased as long as the following condition holds:

(38) |maxj=1,...,N |v(xj , tn)| − (maxj=1,...,N |ϕ(xj)|)| ≤ δ,

for all discrete times tm ≤ tf .

For the remaining cases θ = 1
3 and θ = 2

3 the maximum of vα(x, t) need not be conserved and the

stopping criteria for decreasing α relies on the results of Theorems 3 and 4. The conserved quantities (21)

and (24) are computed numerically for θ = 1
3 and θ = 2

3 respectively. Using the derivative approximation

(33) they become:

(39) h

⎛
⎝ N∑

j=1

(un
j )2 + α2(

un
j+1 − un

j−1

2h
)2

⎞
⎠ = const

and

(40) h

⎛
⎝ N∑

j=1

∣∣vn
j

∣∣2
⎞
⎠ = const.
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Holding N fixed, α is decreased incrementally while the numerical approximation of the conserved quan-

tity (39) or (40) (depending on θ) lies within a specified tolerance level δ of the initial value ∀tn ≤ tf . That

is, α can only be decreased as long as the numerical equivalents of Theorems 3 and 4 are satisfied.

3.1. Exact Solution. The numerically computed solution is compared to the exact entropy solution ob-

tained by the method of characteristics for two different initial data (26) and (27).

The discontinuity is calculated from (8) to occur at tb = 1
2π for both cases. For t < tb and x ∈ [0, 1]

the continuous solution is found in the same way for both (26) and (27) using equations (4) and (5) and

applying Newton’s iteration method. The initial guess is randomly chosen in the interval [0, 1] and the

iteration is repeated until xo converges to an element of [0, 1]. However after the break time a different

approach must be used because the characteristics intersect (shock formation).

In case of the initial data given in equation (26) the shock forms at (xb, tb) = (2+3π
4π , 1

2π ) and the char-

acteristic that initiates the shock originates from xb
o = 3

4 . Suppose at the break time the speed of the shock,

given by (7), is ẋs(tb) ≈ 1
2(ϕ(xb

o) + ϕ(xb
o)) = 1. At the later times the position of the shock is computed

as:

(41) xs(tb + Δtk) = xb + (Δx)1 + ... + (Δx)k

where

(42) (Δx)k = ẋs(tb + Δt(k − 1))Δt + O(Δt2)

and from Rankine-Hugoniot condition (7):

(43) ẋs(tb + Δt(k − 1)) =
1
2
(u+(tb + Δt(k − 1)) + u−(tb + Δt(k − 1))).

Knowing the position of the shock at each time step allows for the successful choice of the initial guess

in the Newton iteration algorithm when solving equation (4) for xo. Characteristics starting to the right of

xb
o carry the values of u(x, tb + Δtk) only for x to the right of xs(tb + Δtk) and the characteristics to the

left of xb
o carry the values of u(x, tb + Δtk) for x to the left of xs(tb + Δtk).

In the case of the initial data in equation (27) the shock is stationary and is located at x = 1
4 hence we

do not need to use (7) to determine the change in the shock position in time. However, more intervals need
13



to be considered (i.e., [−1/4, 1, 4], [1/4, 3/4], [3/4, 5/4]) for the initial guess generation for the Newton

iteration of equation (4) given (x, t) ∈ [0, 1] × [0, tf ].

Once the exact entropy solution is obtained, the L1 error is calculated at each fixed time as:

(44) E(tn) [uα] = h

N∑
j=1

|uα(xj , tn) − ui,j | ,

where ui,j is the exact entropy solution computed as described above. The global error is computed as a

maximum L1 error over all times up to tf :

(45) E [tf ] = maxn=1,...,K |E(tn)|

4. RESULTS AND DISCUSSION

4.1. θ=1. For the initial data (26) the solution is nonnegative and the nonzero parts of the solution move

to the right in time at different speeds, however for the initial data (27) the position of the shock is fixed

at x = 1
4 . Figures 1 and 2 show the exact and numerical solution curves superimposed for vα(x, t) and

uα(x, t) for both initial conditions. Observe that up to time t = 3/2tb, vα is an excellent approximation

of the exact solution. The function uα also approximates the exact solution but is smoothed over a larger

region and deviates more near the discontinuity. At larger times, for example t = 2tb, it is apparent that vα

does not decay while both the exact solution and uα do decay. This will be important later when we check

the Oleinik entropy inequality.
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FIGURE 1. Solution curves computed up to t = 2tb for the initial data (26). Red solid
curves represent the exact solution for t = (1/2)tb, tb, (3/2)tb and 2tb. Blue dotted curves
represent the corresponding numerical solution:[A]-Vα(x),[B]-Uα(x).N = 16384, α =
0.0327.
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FIGURE 2. Solution curves computed up to t = 2tb for the initial data (27). Red solid
curves represent the exact solution for t = (1/2)tb, tb, (3/2)tb and 2tb. Blue dotted curves
represent the corresponding numerical solution:[A]-Vα(x),[B]-Uα(x).N = 16384, α =
0.0216.

The tolerance level δ = 10E − 5 is used with equation (38) to generate a relationship between α and

N = 1
h computed up to twice the break time. This relationship is shown on Figure 3 in log-log scale for

both initial conditions (26) and (27). The physically meaningful α lie above the curves. For combinations

of α and 1
h below the curves, oscillations will develop in the numerical solution and the maximum of vα

will no longer be conserved.
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FIGURE 3. Relationship between α and N for θ = 1 computed up to t = 2tb (twice the
break time).

The local L1 error (44) as well as the global L1 error (45) were computed. Figure 4 shows the evolution

of L1 error in time for N = 8192 for the case of the initial data in (27). The vertical lines mark the times

tb,32tb and 2tb. Observe that the maximum error occurs just after the break time. Note that the error for vα

is significantly less than the error for uα. However, around time t = 2tb, the error in vα begins to increase

in time due to the fact that vα does not decay.
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tf = 2tb. N = 8192, α = 0.0243,Vo(x) = Cos(2πx).

In Figures 5A and 5B the global error up to t = 3
2tb and t = 2tb, as well as the local error at t = tb, is

shown as a function of α for both initial conditions (26) and (27). In all cases the rate of convergence in α

is approximately 1 or better for the error in uα and vα. The reference lines indicating convergence rates of

p = 1 (dashed) and p = 1/2 (dash-dot) are also shown in Figures 5A and 5B.
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FIGURE 5. [A]: Relationship between global (max) or local L1 error and α for θ = 1 and
initial condition (26). [B]:Relationship between global (max) or local L1 error and α for
θ = 1 and initial condition (27). (The reference slope lines are indicated by p = 1 and
p = 1/2.)

Equation (10) is utilized to check if numerical solution satisfies the entropy condition. The equivalent

representation of Oleinik inequality that is easier to check numerically is:
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FIGURE 6. [A]:Oleinik Inequality (46) plotted for θ = 1 and initial condition vo =
Cos(2πx),[B]:Zoom in on the area where vα starts violating the entropy condition.
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FIGURE 7. [A]:Oleinik Inequality (46) plotted for θ = 1 and initial condition vo = 1 −
Cos(2πx),[B]:Zoom in on the area where vα starts violating the entropy condition.

(46) max
xi

vα(xi+1, t) − vα(xi, t)
h

<
C

t
, i = 0, ..., N − 1.

Figures 6 and 7 show that the positive slopes are bounded for both types of initial conditions (26) and (27)

for uα(x, t). Therefore it appears that the numerical solution uα(x, t) does satisfy entropy condition, thus

suggesting convergence to the unique physical solution. Interestingly, from Figures 6 and 7 it appears that

vα does not satisfy the Oleinik inequality. Note that as the mesh is refined, the rapid growth in vαx occurs

earlier in time suggesting that vα violates Oleinik inequality in the limit h → 0. The general question

of convergence of discrete solutions to the continuous entropy solution strongly depends on the choice of

numerical scheme. We conjecture that the only appropriate numerical schemes for which vα converges to

the entropy solution are of upwind-type which will yield convergence to the entropy solution as h → 0 even

if α = 0.
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As an additional check of accuracy, (17) was computed numerically at each time step. The difference

between (17) at time zero and (17) at any other time step did not exceed 1E − 8, hence implying that the

numerical scheme also conserves this quantity.

4.2. θ = 2
3 . We next consider the case in which θ = 2

3 . Here, the stopping criterion:

(47)

∣∣∣∣∣h
N−1∑
i=0

(vα(xi, tj))2 − h
N−1∑
i=0

(vα(xi, 0))2
∣∣∣∣∣ ≤ δ

is used to determine the range of physically relevant α. Figure 9 shows the numerical solution curves for uα

and vα computed using θ = 2
3 and α as labeled. Observe that vα has large overshoots near the discontinuity

and the function uα provides a better approximation of the exact physically meaningful solution.
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FIGURE 8. (θ = 2
3 )Solution curves computed up to t = 3

2tb for the initial data (26). Red
solid curves represent the exact solution for t = (1/2)tb, tb, (3/2)tb. Blue dotted curves
represent the corresponding numerical solution:[A]-Vα(x),[B]-Uα(x).N = 16384,α =
0.0297.
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FIGURE 9. (θ = 2
3 )Solution curves computed up to t = 3

2tb for the initial data (27). Red
solid curves represent the exact solution for t = (1/2)tb, tb, (3/2)tb. Blue dotted curves
represent the corresponding numerical solution:[A]-Vα(x),[B]-Uα(x).N = 16384,α =
0.0281.

The numerical investigation shows that for a given N , the parameter α can not be decreased indefinitely

without violating Theorem 3. The relationship between α and N is established as described previously
18



using (47) with the tolerance level δ = 10E − 7. The plot of this relationship is presented in Figure 10.

Analogously to the case of θ = 1, the physically meaningful α lie above the curves. For the combinations

of α and N below the curves, the energy (40) is not conserved in time to the tolerance level specified above,

thus violating Theorem 4 and therefore not providing a valid solution to the modeled problem.
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FIGURE 10. Relationship between α and N for θ = 2
3 computed up to 3

2 break time.
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FIGURE 11. [A]: Relationship between global (max) or local L1 error and α for θ = 2
3 and

initial condition vo(x) = 1 − Cos(2πx). [B]:Relationship between global (max) or local
L1 error and α for θ = 2

3 and initial condition vo = Cos(2πx). (The reference slope lines
are indicated by p = 1 and p = 1/2.)

Figures 11A and 11B show the relationships between the global error up to t = 3
2tb as well as the local

error at tb as a function of α for both initial conditions (26) and (27) respectively. Both initial conditions

demonstrate the same convergence behavior in α. For small α (large N ) the order of convergence in α is

about 1.2 for local error at t = tb for both vα and uα. The same is true for global error for uα. However,
19
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FIGURE 12. Oleinik Inequality (46) plotted for θ = 2
3 and initial conditions (26)-[A] and

(27)-[B].

the global error for vα does not seem to settle to a linear profile in log-log scale for small α and instead the

order of convergence decreases, implying that vα does not converge to the exact solution as fast as uα or

perhaps does not converge at all.

To check if the numerically computed solutions satisfy entropy condition, the Oleinik inequality is plotted

in Figure 12 for both initial conditions. As in the θ = 1 case, the positive slopes of uα for θ = 2
3 seem to be

bounded for both initial conditions, thus implying that the solution appears to satisfy the entropy condition

and is physically meaningful. However for vα the positive slopes become unbounded for larger t causing

vα to violate the entropy condition. Further, as in the θ = 1 case, the rapid growth of vαx occurs at earlier

times when the mesh is refined.

Both error and entropy investigation imply that it is uα that appears to converge to the unique entropy

solution and not vα. As it is clearly visible from the plots of the numerical solution for both initial data the

oscillations and sharp positive gradients appear around the shock in the case of vα. This causes the error

to grow and results in the violation of the entropy condition for vα. The function uα on the other hand

is monotone around the region of discontinuity in exact solution and appears to converge steadily without

violating the entropy condition.

4.3. θ = 1
3 . Figures 13 and 14 show the numerical approximations uα and vα computed using θ = 1

3 . It

is clear that the solution is well approximated only for regions that are far away from the position of the

discontinuity in the exact solution. Oscillations and overshoots develop in both vα and uα in this case, and

the growth of positive slopes is visible even from the solution curves for as early as t = tb.

The tolerance level δ = 10E − 7 is used with equation (39) to generate a relationship between α and

N = 1
h computed up to t = 3

2tb. This relationship is shown in Figure 15 in log-log scale for both initial
20
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FIGURE 13. (θ = 1
3 ) Solution curves computed up to t = 3

2tb for the initial data (26). Red
solid curves represent the exact solution for t = (1/2)tb, tb, (3/2)tb. Blue dotted curves
represent the corresponding numerical solution:[A]-Vα(x),[B]-Uα(x).N = 16384,α =
0.0175.
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FIGURE 14. (θ = 1
3 ) Solution curves computed up to t = 3

2tb for the initial data (27). Red
solid curves represent the exact solution for t = (1/2)tb, tb, (3/2)tb. Blue dotted curves
represent the corresponding numerical solution:[A]-Vα(x),[B]-Uα(x).N = 16384,α =
0.0226.

103 104
10−2

10−1

100

Log (N)

Lo
g 

(α
)

V
o
=Cos(2 π x)

V
o
=1−Cos(2 π x)

FIGURE 15. Relationship between α and N for θ = 1
3 computed up to 3

2 break time.

conditions (26) and (27). As in the previous cases, the physically meaningful α lie above the curves. For

the combinations of α and N below the curves, the modified energy (39) is not conserved in time to the
21
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FIGURE 16. [A]: Relationship between global (max) or local L1 error and α for θ = 1
3 and

initial condition vo(x) = 1 − Cos(2πx). [B]:Relationship between global (max) or local
L1 error and α for θ = 1

3 and initial condition vo = Cos(2πx). (The reference slope lines
are indicated by p = 1 and p = 1/2.)
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FIGURE 17. Oleinik Inequality (46) plotted for θ = 1
3 and initial conditions (26)-[A] and

(27)-[B].

tolerance level specified above, thus violating Theorem 3 and therefore not providing an accurate solution

to the modeled problem.

Figures 16A and 16B show the relationships between the global and local errors up to t = 3
2tb as a

function of α for both initial conditions (26) and (27) respectively. The order of convergence in α for large

N of the local L1 error at break time is about 1.2 for uα and 1 for vα for initial conditions (26). For the

other initial condition (27) the order is about 1.3 for uα and 1.2 for vα. However, the global error, does not

appear to settle to a linear loglog profile consistently for both initial data for both uα and vα. Thus at the

later times after the shock forms in the exact solution, neither vα nor uα converges at a constant rate to the

exact solution. In fact, the convergence rate in α decreases and the solution apparently diverges.
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To check if the numerically computed solutions satisfy the entropy condition, the Oleinik inequality is

plotted in Figure 17 for both initial data. Unlike the previous cases of θ = 1 and θ = 2
3 , the positive slopes

of uα for θ = 1
3 also become unbounded, for at least one of the initial conditions (26). This implies that

neither uα nor vα satisfy the entropy condition and both numerical solutions are not physically meaningful

in the limit h → 0.

5. CONCLUSION

We have solved Burgers Equation using the Leray-α regularization numerically using a hybrid algorithm

combining finite difference scheme for the conservation law and the spectral method for the regularization.

We examined the results for two types of periodic initial data. For both types of initial data considered,

shocks form. In one case the shock moves while in the other the shock is stationary. For both initial data

and for θ = 1 and 2
3 , we find convergence of the regularized solution uα to the unique entropy solution

of the Burger’s Equation. However, vα was apparently in violation of the entropy condition in all the

cases considered. Hence, vα seemingly does not represent a physically meaningful solution to Burger’s

equation in the limit h → 0. For θ = 1
3 it appears that for the given numerical scheme used, neither uα

nor vα converge to the unique entropy solution. Further study of this regularization scheme could be done

employing different numerical approaches to determine whether there are schemes for which vα converges to

the entropy solution. We conjecture that such schemes are of upwind type and would thus give convergence

to the entropy solution even if α = 0. Centered difference schemes of the type used here, likely do not have

vα converge to the entropy solution.
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