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eived 2001An adaptive mesh algorithm is presented, and applied to �nite-elementsimulations of drop breakup and 
oales
en
e in vis
ous 
ow. In this algo-rithm, whi
h has appli
ations beyond the 
ontext, a three-dimensional mul-tiphase domain en
losing interfa
es is dis
retized by an unstru
tured meshof tetrahedra 
onstru
ted from the interfa
es and other domain boundaries.All boundaries are dis
retized by triangulated surfa
e meshes, where thetriangular elements 
oin
ide with fa
es of the tetrahedra.After ea
h time step of simulation, the boundary mesh is re
onstru
ted�rst, using an energy-minimization remeshing algorithm for triangulatedsurfa
es based on loral restru
turing operations, su
h as edge swapping,addition/subtra
tion of elements, and dynami
al spring-like relaxation ofnode positions to an equilibrium 
on�guration. The volume mesh is thengenerated from the boundary using an advan
ing-front/lo
al-re
onne
tionte
hnique based on a node density fun
tion and Delaunay tetrahedra.The resulting adaptive dis
retization maintains resolution of lo
al lengths
ales to a user-pres
ribed a

ura
y. Appli
ation of the algorithm is illus-trated with �nite-element simulations of deformable drops in Stokes 
ow.Steady drop shapes, the evolution of slender 
uid �laments to breakup,and hydrodynami
 intera
tions with boundaries and multiple drops area

urately des
ribed. 1. INTRODUCTIONThe 
omplex evolution of 3-dimensional geometries is en
ountered in a wide va-riety of physi
al and biologi
al systems and is of 
riti
al importan
e in many in-1Also at the S
hool of Mathemati
s2S
hool of Mathemati
s, University of Minnesota, 206 Chur
h Street, Minneapolis, MN 554551



2 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYdustrial problems. An important example is the morphology development of mul-tiphase 
uids in whi
h strong 
ow in various geometries 
auses the interfa
es todeform signi�
antly. Finite-element methods (FEM) provide a natural 
hoi
e todes
ribe evolution of su
h systems using numeri
al simulations. They allow thesolution of problems on irregularly shaped domains and 
an in
lude su
h 
omplexphysi
al phenomena as inertia, thermal e�e
ts, spe
ies transport, surfa
tant e�e
tsand non-Newtonian behavior. Boundary-element methods have also been devel-oped, although they are limited to a more restri
ted 
lass of physi
al systems.Appli
ation of FEM to problems on 
omplex domains has led to the developmentof several powerful 3-dimensional mesh generation algorithms [1, 2, 3, 4℄. Similarte
hniques have been applied to problems involving mesh distortion [5, 6℄. However,little has been done for problems with very large interfa
e deformations where theproblem dynami
s are dominated by the shape of the interfa
e, e.g. large defor-mations involving 
apillarity. The main diÆ
ulty in performing su
h simulationsis in a

urately resolving very dissimilar length s
ales within the same domain attolerable 
omputational 
ost. Most moving boundary problems using FEM haveemployed mesh tra
king s
hemes whi
h require the �nest mesh resolution to bemaintained during the entire deformation and are therefore restri
ted to problemsinvolving modest shape 
hanges [7, 8, 9℄.This diÆ
ulty has partially been over
ome by an adaptive surfa
e remeshingalgorithm applied within the 
ontext of boundary integral simulations of multiphaseNewtonian Stokes 
ow [10, 11℄ . For this type of problem, the boundary integralmethod requires only surfa
e meshes to be dis
retized. Here, we 
ombine the surfa
eremeshing algorithm of Cristini [11℄ with eÆ
ient and robust 3-dimensional meshingprovided by the 
ommer
ial software pa
kage, Hypermesh, to produ
e an adaptive,3-dimensional FEM. The ability of our algorithm to a

urately des
ribe signi�
antdrop deformations is demonstrated by simulations of deformable drop systems ofNewtonian 
uids in various 
ow s
enarios. Advantage is taken of the mathemati
alform of the Newtonian Stokes equations to test the a

ura
y of the adaptive FEMalgorithm without additional 
ompli
ating e�e
ts arising from 
onve
tive terms inthe governing transport equations. The additional numeri
al framework needed todeal with su
h terms is reserved for the next 
hapter in whi
h 3D drop deformationsin vis
oelasti
 
uids is addressed.We begin by presenting the adaptive surfa
e and volume remeshing algorithms inSe
tion 2. The equations governing Newtonian drop deformations are summarizedin Se
tion 3 followed by a se
tion des
ribing the �nite element method (FEM) usedto approximate a solution to the governing equations. Results for whi
h adaptiveremeshing is performed after every time step are presented in Se
tion 5 followed byour 
on
lusions in the last se
tion.2. ADAPTIVE REMESHING ALGORITHMBefore des
ribing the physi
al problem of Newtonian Stokes 
ow and the FEMused to approximate a solution, the adaptive remeshing algorithm is presented.In short, drop free surfa
es are re
onstru
ted after ea
h time step using a meshof triangles whi
h maintains a spe
i�ed resolution of surfa
e 
urvature. This isa

omplished using a surfa
e remeshing algorithm developed by Cristini [11℄ foruse in boundary integral simulations of Newtonian drop dynami
s. The dis
retized



ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 3drop free surfa
es are passed along with a triangulated surfa
e mesh de�ning theouter domain boundaries, i.e. box, sphere, 
ylinder, extruder die, et
., to a 
om-mer
ial mesh generator whi
h 
onstru
ts an unstru
tured mesh of linear (4-node)tetrahedra. The triangulated drop free surfa
es and outer boundary 
orrespond tofa
es of adja
ent tetrahedra. A brief des
ription of the surfa
e and domain meshingalgorithms follows. 2.1. Surfa
e remeshingThe algorithm used for adaptive re
onstru
tion of triangulated drop surfa
esmeshes is des
ribed in detail in [11℄. We provide a brief des
ription of the detailshere.The resolution of 
urvature of drop surfa
es is kept uniform over the triangulatedsurfa
e by adding elements in regions of high 
urvature and removing elementsin lesser 
urved regions. A pres
ribed level of a

ura
y is maintained during asimulation by adaptively remeshing after ea
h time step and utilizing a node densityfun
tion � = C0 <�>2 ; (1)where � is the surfa
e node density on the drop surfa
e(s), � is a smooth measureof the lo
al 
urvature of the surfa
e, and C0 is a 
onstant that determines the res-olution. Correspondingly, the instantaneous number of nodes, NS , that dis
retizesthe drop free surfa
e is a fun
tion of the drop shape,NS = C0 ZS <�>2 dS: (2)In pra
ti
e, the 
onstant, C0 is set by spe
ifying the number of nodes, N0 used todis
retize the initial shape (always spheri
al in this work) of a single drop. Therequired density (1) of nodes is maintained during a simulation through a sequen
eof lo
al restru
turing operations summarized next.The surfa
e mesh is modeled as a dynami
 system of damped massless springs
onne
ting the nodes: ea
h spring has a tension l� l0, where l is the instantaneousedge length and l0 � ��1=2 is the equilibrium length (to be approa
hed iteratively).Equilibration velo
ities of the nodes are determined as the resultant of lo
al springtensions proje
ted onto the surfa
e. The system of springs has minimum-energyequilibrium states 
orresponding to zero equilibration velo
ities of all nodes, i.e.l = l0. An equilibrium 
on�guration is approa
hed iteratively to within a spe
i�edtoleran
e by evolving the node positions with the equilibration velo
ities. Betweenequilibration steps, optimal node 
onne
tivity is maintained by lo
al re
onne
tionswhi
h adhere to a Delaunay 
riterion [12℄.The triangulated surfa
e(s) de�ning the outer 
uid domain boundary are notremeshed but instead maintain the same dis
retization throughout the entire tran-sient simulation. 2.2. Three-dimensional mesh generationSin
e 3-dimensional unstru
tured mesh generation is a 
hallenge worthy of athesis in and of itself [5℄, the bene�t of many man-years in this �eld is realized in



4 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYthis work by resorting to a 
ommer
ial mesh generation pa
kage, Hypermesh. A3-dimensional mesh of unstru
tured tetrahedra is generated from the triangulatedsurfa
es of the bounding region and the drop free surfa
es. Node and 
onne
tivityinformation de�ning the surfa
e meshes is passed to Hypermesh via an importtranslator 
reated from C libraries supplied with the li
ensed software distribution.The algorithm used by Hypermesh is essentially a 3-dimensional analogue of the2-dimensional surfa
e meshing algorithm des
ribed in the previous subse
tion [13℄.Nodes are initially pla
ed in the domains (drops and outer 
uid) using an advan
ing-front algorithm governed by a simple fun
tional dependen
e, e.g. linear, exponentialor Gaussian, to transition between surfa
e meshes of di�ering resolution. New nodesare then inserted into the domain, and new elements are 
reated by subdividingexisting elements using the new nodes. Mesh quality is subsequently improved bylo
al re
onne
tion based on 
ombined Delaunay and min-max 
riteria implementediteratively. Node positions and element 
onne
tivities of both surfa
e and domainmeshes are exported using an output template into a form used by the FEM solver.Be
ause of proprietary issues related to the 
ommer
ial software, the remeshingperformed after ea
h time step 
ould not be done in 
ore memory. The importingof surfa
e meshes and exporting of full tetrahedra meshes had to be done using�les. Nevertheless, the total time required for remeshing never ex
eeded more than5% of the total 
omputation time.3. PROBLEM STATEMENTThe adaptive remeshing s
heme de�ned above is applied to drop deformationsin Newtonian systems. Spe
i�
ally, nonbuoyant immis
ible 
uid drops of volume43�R03 and vis
osity �̂ are 
onsidered to lie within a 
uid of vis
osity �. The dropsurfa
es are surfa
tant-free, and no temperature gradients are present so that theinterfa
ial tension, �, is 
onstant.Flow 
onditions are assumed for whi
h the Reynolds number based on the dropsize is low, and thus the Stokes equations des
ribe 
uid motion, i.e.r �T = 0 (3)r � v = 0 (4)All 
uid phases are assumed to obey Newton's 
onstitutive equation so that thetotal 
uid stress is, T = �pI+ �i �rv +rvT � (5)where p is the isotropi
 pressure, and I is the identity tensor. The above equationshave been made dimensionless using 
hara
teristi
 time � _
 = _
�1, length R0 andstress � _
 with _
 being the 
hara
teristi
 rate of straining of the imposed 
ow.The 
oeÆ
ient �i is equal to 1:0 within the outer 
uid and to the vis
osity ratio� = �̂=� within the drop phases. It follows [14℄ that the relevant parameters fordrop deformation are the 
apillary number,Ca = ��=� _
 ; (6)whi
h is the ratio of 
apillary relaxation time �� = �R0=� to 
ow time de�nedabove, the vis
osity ratio �, and the geometri
 relationship of the drops to the outer



ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 5domain boundaries, i.e. geometri
 parameters re
e
ting hydrodynami
 intera
tionswith the bounding walls. Stationary deformed drop 
on�gurations exist in the 
owbelow a 
riti
al O(1) 
apillary number [14℄. Above the 
riti
al 
apillary number,drops 
ontinuously elongate until breakup o

urs.The drops are subje
ted to 
ows des
ribed byv1 = D � x (7)imposed at the outer boundary of the suspending 
uid with D denoting the dimen-sionless velo
ity gradient and x denoting position. Parti
ular types of 
ows whi
hare relevant to previous studies of drop deformations and whi
h are used in thiswork in
lude uniaxial extensional 
ow with D11 = 1:0, D22 = D33 = �0:5 and allother Dij = 0; and simple shear with D12 = 1:0 and all other Dij = 0.At the drop surfa
es, both dynami
 and kinemati
 boundary 
onditions applyand are given respe
tively as, [n �T℄� � �n = 0 (8)n � ( _x� � v) = 0 (9)where n is the unit normal ve
tor dire
ted outward from drop surfa
e �, [�℄� denotesthe jump of the quantity between the bra
kets over the interfa
e � in the dire
tionn, and _x� denotes the velo
ity of nodes lo
ated on the drop surfa
e(s).Initial 
onditions are provided by spe
ifying the initial drop shapes to be spheri
aland dis
retized by N0 nodes ea
h and the velo
ity �elds to be zero within all 
uiddomains. At time, t = 0, the for
ing 
ow of eq. (7) is imposed.4. FINITE ELEMENT METHODThe �nite element method used in this work is derived from Zhou & Derby[15, 16℄. A detailed des
ription of their method applied to single-phase Newtonianparti
le sintering 
an be found in [15℄. While di�ering by the in
lusion of addi-tional 
uid phases, no assumptions of problem symmetry and the way in whi
hmesh displa
ements are treated, this work is primarily distinguished from theirs byde
oupling the solution of the equations governing 
uid 
ow from the mesh move-ment. This a

ommodates the adaptive remeshing features des
ribed in Se
tion 2and allows for additional numeri
al te
hniques to be dis
ussed in detail below.4.1. Numeri
al FormulationThe FEM re
asts the `strong' form of momentum and mass 
onservation given byeqs. (3) and (4), respe
tively, into a `weak' variational form amenable to dis
retiza-tion over irregular domains. In parti
ular, a Galerkin formulation is obtained byweighting and integrating over the problem domain the strong form of the equationsusing test (weight) fun
tions sele
ted from a fun
tion spa
e also used as a basis forapproximating the problem unknowns (velo
ity v and pressure p in this work). Thefun
tion spa
e de�nes a basis for 3-dimensional linear tetrahedra [17℄. Followingthe derivation of Hughes [18℄, a pressure-stabilized form 
an be obtained whi
hallows the same basis to be used for velo
ities and pressure. Without resorting toa stabilized formulation, whi
h in essen
e is a 
onsistent penalty method, a mixed



6 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYbasis with velo
ities approximated by higher order polynomials than used to ap-proximate the pressure would be required in order to satisfy the `LBB' or `inf-sup'
onstraint [19℄. Violation of this 
onstraint leads to an over-spe
i�ed problem whi
hmanifests spurious pressure modes (non- 
onvergent node-to-node os
illations). The�nal steps involved in re
asting the governing equations in
lude integrating the mo-mentum equation by parts, applying the divergen
e theorem, and substituting intothe resulting surfa
e integral the `natural' boundary 
ondition of eq. (8) [20, 17℄.The resulting form of the re
ast momentum and 
ontinuity equations are given,respe
tively, as follows:Rm(x) = Z
 ��p I+ �i �rv +rvT �� � r�(x;x0) d
+ Ca�1 Z� �(x;x0)�n d� = 0; (10)R
(x) = Z
 �(x;x0)r � v d
 + �Xj h2j Zj r�(x;x0) � rp d
j = 0: (11)In the above equations, x0 is the integration variable, v and p are 
uid velo
ityand pressure, � is a linear tetrahedral basis fun
tion, and 
 represents the volumedomains. Field variables 
onsist of three velo
ity 
omponents of v and a s
alar pres-sure �eld, p, whi
h are dis
retized using the same 
ontinuous linear basis fun
tions�. As an example, pressure at a given lo
ation isp(x) =Xj p(xj) �(x;xj); (12)where the summation is over all nodes of the mesh, and the basis fun
tion � is linearwithin the elements that share node j, and zero elsewhere. The domain integrals inequations (10){(11) are evaluated over ea
h element by Gaussian quadrature usingfour Gaussian integration points. This is done at the element level by mapping ele-ments in the domain into a standard element and employing isoparametri
 mapping[17℄. The latter implies that spatial positions within an element are interpolatedin the same manner as the velo
ity and pressure degrees of freedom. The nodalvalues of v and p are the problem degrees of freedom whi
h must be obtained atea
h time step.For the Newtonian Stokes problem of eqs. (10){(11) the dis
retization of �eldvariables using the linear tetrahedral basis leads to a system of linear residualequations R(u) = 0 for all problem degrees of freedom u at nodes in the problemdomain. To establish the framework needed for straightforward implementationof nonlinear physi
s su
h as shear thinning 
uids or additional 
oupled transport(heat and/or mass) phenomena, the equation system was treated using a non-linearsolution pro
edure. Newton-Raphson iterations were performed by solving at ea
hiteration the following linear system of equations,J(uk)Æk+1 = �R(uk) (13)where the Ja
obian J = �R�u and residual are evaluated using values uk of vari-ables at the 
urrent iterate k, and updates are obtained from the solution Æk+1 as



ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 7uk+1 = uk + Æk+1. The linear system of equations is also solved iteratively using aGeneralized Minimum Residual (GMRES) te
hnique 
ombined with diagonal pre-
onditioning [21, 22℄. Spe
i�
ally, a variation of \Type 3" diagonal pre
onditioningdes
ribed in [22℄ is used and involves solving the following modi�ed linear system,�JD�1=2��D1=2Æ� = �R : (14)The matrixD has entries 
orrespnding toD1=2ii = pJii + � with � a small parametertaken to be 10�6 in this work. This solution methodology has been used with greatsu

ess by Zhou & Derby for the nonlinear Newtonian Stokes problem involving
oupled mesh motion.4.2. Dynami
 Boundary ConditionThe boundary integral a

ounting for 
apillarity in eq. (10) must be handled
arefully. The dimensionless mean surfa
e 
urvature � involves se
ond-order spatialderivatives whi
h are identi
ally zero when performed on the linear basis used todes
ribe position, i.e. isoparametri
 mapping. Two ways of dealing with this issueare proposed.The �rst way of dealing with se
ond derivatives asso
iated with surfa
e 
urvatureis to avoid them altogether by integrating the surfa
e integral by parts [23, 24℄. Thishas the e�e
t of transferring a derivative operation from position to the weightingfun
tion and yields the following repla
ement,Ca�1 Z� �(x;x0)�n d� = Ca�1 Z� (I� nn) � r�(x;x0) d� (15)This te
hnique 
an be applied at the element level using Gaussian quadrature andwas used by Zhou & Derby in 
onjun
tion with impli
it time-integration and New-ton's method to solve the 
ow equations fully 
oupled to mesh motion.An alternative approa
h is to depart from isoparametri
 mappings for position.Instead, surfa
e features su
h as 
urvature and surfa
e normal ve
tor 
an be ob-tained from an analyti
 representation of the surfa
e in a region lo
al to the pointof interest and used dire
tly in the surfa
e integral. A lo
al representation of thesurfa
e by a least squares �t to a paraboloid was used su

essfully by Zin
henko etal. [25℄ in boundary integral simulations and has been adopted in this work. The�tting pro
edure is node-based so that a node-based numeri
al evaluation of thesurfa
e integral is preferred over the element-based Gaussian quadrature used toevaluate the weak form of the surfa
e integral. As des
ribed in [25℄,Z� �(x;x0)�n d� � Xi �ini��i (16)��i = 13Xie �� (17)where the �rst summation is over all nodes, i, on the drop surfa
es, and the se
ondsummation is over all drop surfa
e elements ie having node i as a vertex. The basisfun
tions �(x;x0) are unity at nodes. Be
ause the �tting pro
edure is iterativeand based on neighboring nodes en
ompassing several triangular surfa
e elements,



8 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYthis approa
h would be extremely diÆ
ult, if not impossible, to implement in animpli
it time-integration s
heme involving Newton-like methods. However, it 
an bereadily implemented in the expli
it, de
oupled framework of this work. In 
ontrastto under-predi
ting 
apillary e�e
ts using the weak form of the surfa
e integral,this te
hnique is seen to over-predi
t 
apillarity as des
ribed in greater detail in theresults se
tion. 4.3. Time IntegrationThe bene�t of adaptivity 
omes at the expense of resorting to an expli
it timeintegration s
heme in whi
h solution of the momentum and mass balan
e equationsis de
oupled from movement of the mesh. To develop this approa
h, we de�ne ave
tor y to represent degrees of freedom of both the Stokes problem as well asdispla
ements d of nodes in the mesh, i.e. y � [v; p;d℄T . The equations of Se
tion4.1 
an then be expressed 
ompa
tly as,M _y = F(y) (18)where M is the mass matrix 
ontaining the 
oeÆ
ients of time derivatives, _y, ofthe degrees of freedom, and F 
onsists of all terms not 
ontaining expli
it timederivatives. Noting the absen
e of expli
it time derivatives in the Stokes equationsof eqs. (10){(11), eq. (18) has the following stru
ture:2664 0 0 00 0 0. . . . . . . . .0 0 Mdd 37752664 _v_p_d 3775 = 2664 RmR
. . . . .Fd(v) 3775 (19)where Rm and R
 are given by eqs. (10) and (11), respe
tively, and Mdd and Fdare left unspe
i�ed until the next se
tion. The de
oupling of mesh movement fromsolution of the �eld variables (v; p) whi
h makes adaptive remeshing possible isindi
ated by the partitioning in eq. (19). The de
oupled problem 
an be rewrittenas � 0Mdd � � _y1_d � = � F1Fd � (20)with de�nitions of y1 and F1 inferred from eq. (19).Equation 20 
an be viewed as two distin
t steps for the overall problem. The�rst step de�ned by F1 = 0 involves solving for Stokes 
ow on a �xed mesh andis followed by the se
ond step, Mdd _d = Fd, whi
h 
onsists of an update of themesh based on the previously 
omputed velo
ity. A time stepping algorithm isonly required for the se
ond step of the overall problem.The simplest means of stepping the solution for nodal displa
ements in timewould be to use the expli
it Euler s
heme whi
h would take the following form:Mdd�dt+�t � dt�t � = Fd (vt) : (21)However, this method is the least a

urate, the most restri
tive on time step sizefor stability and has been found to perform poorly for this 
lass of problems solved



ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 9using the boundary integral method [10, 11℄. Several 
hoi
es exist to improveboth a

ura
y and stability of expli
it time stepping. The methods are generally
lassi�ed as multi-step, whi
h require solutions at two or more previous time steps,and single-step predi
tor-
orre
tor methods whi
h require information for only the
urrent time step interval (expli
it Euler being the simplest single-step method).Due to e
onomy and to the su

ess experien
ed in boundary integral simulations,a se
ond-order a

urate single-step method, se
ond-order Runge-Kutta (RK2), isused in this work. Updates to node positions are then 
omputed as follows:Mdd�dt+�t � dt�t � = Fd �vt+�t=2� ; (22)where the only di�eren
e from eq. (21) is in the velo
ity used to determine Fd.Whereas expli
it Euler uses the velo
ity vt at the beginning of the time step, RK2uses a predi
tion for velo
ity vt+�t=2 at the midpoint of the time step �t. Themethod a
hieves se
ond order temporal a

ura
y at the expense of a two-stagepro
ess involving a predi
tor for variables at �t=2 followed by a 
orre
tor updateof variables to �t. The 
omplete algorithm in
luding remeshing is summarized inTable 1.The time step �t indi
ated in the algorithm is varied based on the smallest lengths
ale in the mesh at the 
urrent time. This implies a 
onve
tive stability 
onstraintbased solely on physi
s dominated by 
ompetition between vis
ous and 
apillaryfor
es and is in 
ontrast to the un
onditionally stable impli
it time integrations
heme employed in prior drop deformation studies of Zhou & Derby. The nextse
tion provides spe
i�
 details for mesh evolution. remeshing, respe
tively.4.4. Mesh evolutionFor the Newtonian Stokes problem of this work, no expli
it time derivativesappear in the governing equations, 
f eqs. (3) and (4). Instead, all time derivativesarise from the kinemati
 boundary 
ondition of eq. (9) whi
h serves to move nodeson the drop surfa
e(s) in a physi
ally 
onsistent manner. A

ordingly, the expli
itupdate step for these nodes with positions x� is a

omplished using,dx�dt = nn � v(x�): (23)The velo
ity �eld, v, used to move the drop surfa
e nodes is found by solvingthe reformulated (weak form) momentum and mass equations on a �xed meshrepresented by nodes at x(t) for the predi
tor step and x(t+�t=2) for the 
orre
torstep. Whereas x(t) is obtained dire
tly from a 3D remeshing step (see Se
tion 2.2),values of x(t+�t=2) not lo
ated on the drop surfa
e must be determined by some
onsistent pro
edure.In impli
it time integration s
hemes with mesh displa
ements 
oupled to solutionof the velo
ity and pressure �elds, nodal displa
ements are taken 
are of automati-
ally [26, 27, 28, 15, 16℄. However, de
oupling the mesh movement via expli
it timeintegration pla
es the burden of devising a 
onsistent s
heme on the modeler. A
onsistent s
heme is one that moves nodes not on a kinemati
 boundary in su
h away that element distortions are minimized, element volumes are prevented from
ollapsing to zero or 
hanging sign and distortions of the bounding outer surfa
e
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TABLE 1Se
ond-order Runge-Kutta time integration algorithm for NewtonianStokes 
owsGiven: 
0,For ea
h time step �t until t � tmax:Predi
torFind y1;t = (v; p)t :F1 (y1;t;dt) = 0Find 
t dt+�t=2�! 
t+�t=2:Mdd �dt+�t=2�dt�t=2 � = Fd (vt)Corre
torFind y1;t+�t=2 = (v; p)t+�t=2 :F1 �y1;t+�t=2;dt+�t=2� = 0Find 
t dt+�t�! 
t+�t:Mdd �dt+�t�dt�t � = Fd �vt+�t=2�Update time: t = t+�tRemesh: 
oldt 7! 
newt
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ontrolled. The latter 
ondition is needed to allow
orre
t implementation of the imposed 
ow via eq. (7). One possibility for a 
onsis-tent expli
it s
heme is to adapt an impli
it s
heme su
h as the pseudo-solid meshtreatment used by Zhou & Derby [15℄. The primary drawba
k to su
h an approa
his the additional 
omputational e�ort needed to solve the (de
oupled) mesh dis-pla
ement equations ea
h time the mesh is displa
ed (twi
e per time step usingRK2). We have 
hosen to employ a mu
h 
heaper but more ad ho
 s
heme basedon spines and algebrai
 weighting of nodal displa
ements.The s
heme we use in this study for single drop systems 
an be summarized asfollows:� For a node not on a drop (kinemati
) surfa
e, determine whether it lies insideor outside a drop phase.� For nodes in the outer 
uid phase:{ Find whi
h drop surfa
e element is interse
ted by the position ve
tor 
on-ne
ting the 
enter of the drop to the node.{ Interpolate a normal velo
ity on the drop surfa
e at the point of interse
tionusing the three normal velo
ities at the triangle verti
es.{ Determine a relative displa
ement velo
ity by dividing the distan
e from thepoint of interse
tion to the node by the distan
e from the point of interse
tion tothe point at whi
h the position ve
tor interse
ts the outer boundary surfa
e andmultiplying this ratio by the interpolated normal velo
ity at the point of interse
tionon the drop surfa
e.� For nodes inside a drop phase:{ Find the nearest drop surfa
e element to the node.{ Find the lo
ation within the surfa
e element whi
h is interse
ted by theposition ve
tor 
onne
ting the 
enter of the drop to the node.{ Interpolate a normal velo
ity on the drop surfa
e at the point of interse
tionusing the three normal velo
ities at the triangle verti
es.{ Determine a relative displa
ement velo
ity by dividing the distan
e fromthe drop 
enter to the node by the distan
e from the drop 
enter to the point ofinterse
tion and multiplying this ratio by the interpolated normal velo
ity at thepoint of interse
tion on the drop surfa
e.Expressions in the notation of Se
tion 4.3 are as follows:Mdd = I (24)(25)Fd = 8<: nn � v ; x 2 S0 ; x 2 Soutervrel ; x 62 S; Souter (26)with vrel the relative displa
ement velo
ity found using the interpolation s
hemejust des
ribed.



12 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYFor multiple drop simulations, we again take advantage of the absen
e of timederivatives in the Newtonian Stokes equations and simply move all nodes with thevelo
ity �eld, thereby moving the mesh in a purely Lagrangian way, i.e. Fd = v;8x.Resulting mesh distortions are larger than for the ad ho
 s
heme but are preventedfrom be
oming ex
essive by remeshing after every time step. A purely Lagrangianmovement of the mesh 
ould also be used with single drops, but the ad ho
 methodprodu
es less element distortion and holds some potential for permitting multiplemesh tra
king steps to be taken between remeshing.Both s
hemes just des
ribed provide nodal velo
ities. A
tual displa
ements areobtained by multiplying the nodal velo
ities by an appropriate time step. In ourimplementation, a variable time step �t = �lmin is used and set by requiring�x < lmin ; (27)where lmin is the shortest node-to-node distan
e over the mesh. The requirementis met by 
hoosing � = 0:5Ca for Ca � O(1) and � = 0:5 for Ca� O(1).5. RESULTS OF SIMULATIONSFinite element simulations were performed on single CPU-nodes of an IBM-SPat the Minnesota Super
omputer Institute. A CPU-node 
onsists of four 222 MHzPower3 pro
essors sharing 4 Gb memory. The FEM was implemented in parallelon all four pro
essors using Open-MP. The level of mesh re�nement varied duringthe 
ourse of the simulation, be
oming greater during later stages as maximum
urvature in
reased. A typi
al simulation required on the order of 1000 time stepswith the last steps requiring about 30 CPU minutes ea
h to 
omplete. Total timerequired was about 48 CPU hours.5.1. Sub
riti
al axisymmetri
 deformationIn this se
tion, we explore the 
onverge 
hara
teristi
s of the adaptive FEM bysimulating single drop deformation in a start-up uniaxial extensional 
ow imposedusing eq. (7). This allows 
omparison of 3D results to highly 
onverged 2D axisym-metri
 results obtained with the method des
ribed by Hooper et al. [28℄. Meshre�nement studies are performed by 
ombining initial surfa
e meshes of pres
ribedresolution for both the drop surfa
e and the outer spheri
al domain boundary. Anexample of three su
h 
ombinations and the 
orresponding 3-dimensional tetrahe-dral mesh 
orresponding to ea
h is given in table 2. The table reports the numberof surfa
e nodes N0;outer initially used to dis
retize the outer domain surfa
e, theinitial surfa
e nodes N0;drop on the drop surfa
e, and the 
oresponding total numberof nodes N0;3D initially in the 
omplete 3-dimensional 
omputational domain. Thesurfa
e mesh pairs are also shown in Figure 1. The spheri
al outer boundary shapewith lo
ation at 10R0 
onforms to that used in the 2D axisymmetri
 simulations.As a �rst test for 
onvergen
e, the outer spheri
al mesh of Mesh 2 is used withfour di�erent initial drop surfa
e dis
retizations 
omprising N0;drop = 200; 400; 600and 800. Transient drop evolution is shown in �gure 2 as a plot of drop lengthin the dire
tion of extension normalized by initial length 2R0 versus time madedimensionless using 
ow time, _
�1. Line 
urves are the a
tual simulation results,
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Mesh 1

Mesh 2

Mesh 3FIG. 1. Initial surfa
e meshes used to 
onstru
t 3-dimensional unstru
tured tetrahedralmeshes used in 
onvergen
e tests for uniaxial extensional 
ows.



14 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYTABLE 23D meshes used to test 
onvergen
e in uniaxial extensional 
owMesh N0;outer N0;drop N0;3DMesh 1 59 200 3439Mesh 2 507 400 6802Mesh 3 2007 800 11,263and symbols are values at times 
orresponding to the unequally spa
ed time steps ofthe 2D FEM result. For the 3D adaptive FEM results, values of drop length at thesetimes were found by �rst �tting ea
h 
urve to a 
ubi
 spline followed by interpolationof the spline data. These points are needed for the 
onvergen
e analysis des
ribedlater. Flow 
onditions were 
hosen to be fairly severe in order to test the robustnessof the 3D adaptive method. We sele
t � = 0:1 and Ca = 0:17 whi
h 
orrespondsto a sub
riti
al 
ow for whi
h a stable drop shape is a
hieved. As the steady stateis approa
hed, the vis
ous stress from the outer 
uid must be balan
ed by thoseinside the drop along with 
apillarity. With the drop being an order of magnitudeless vis
ous, larger drop surfa
e 
urvature is required to establish this balan
e, andthe drop ends exhibit more pronoun
ed 
urvature as a result. The inset of �gure 2shows a portion of the surfa
e mesh for the �nal time step simulated using the �nestdrop surfa
e mesh having N0;drop = 800. The maximum mean surfa
e 
urvatureis 3:23 and is well-resolved by the adaptive meshing algorithm whi
h has in
reasedthe number of surfa
e nodes from N0 = 800 used to dis
retize the initially spheri
aldrop surfa
e to NS = 1231. We tested both methods of se
tion 4.2 to a

ountfor 
apillarity. The weak form implementation tended to underpredi
t 
apillarye�e
ts as eviden
ed by the inability to provide a stable shape for any of the meshre�nements in table 2. The 
urves in �gure 2 are results obtained using the lo
alparaboloid �t to determine surfa
e normal ve
tors and 
urvature used in eq. (10).These 
learly indi
ate an over-predi
tion of 
apillarity with less mesh resolution.The points represented by symbols in �gure 2 are now used to as
ertain anapproximate order of spatial 
onvergen
e for the 3D adaptive FEM. A 
onvergen
eof O(N�10 ) might be expe
ted based on surfa
e 
urvature being a

urate to O(�x2)sin
e �x � N�1o with �x being the minimum surfa
e triangle edge length. Usingthe values in �gure 2 at time t = 3:25 the error de�ned as E � � l2R0 �2D�� l2R0 �3Dis plotted as a fun
tion of N�10 in �gure 3. An extrapolation to in�nite meshre�nement N0 ! 1 shows the 3D FEM predi
tion di�ers from the a

urate 2DFEM result by 0:6%. Performing the extrapolation for ea
h 2D FEM time step,represented by symbols in �gure 2, leads to the 
omparison shown in �gure 4.An empiri
al order of 
onverge was determined by minimizing the error E. The
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 �nite element results (solid 
urve); Adaptive3D �nite element results obtained using the outer domain surfa
e mesh for Mesh 2 in Table 2 withvarying levels of drop surfa
e mesh re�nement: N0;drop = 200 (medium dashed 
urve with x),N0;drop = 400 (dash-dotted 
urve with *), N0;drop = 600 (small dotted 
urve with open squares),N0;drop = 800 (small dotted 
urve with �lled squares). Symbols are at time steps of 2D FEMsimulation and are interpolated from 
ubi
 splines for 3D FEM simulations.
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FIG. 3. Error de�ned as E � � l2R0 �2D � � l2R0 �3D plotted against N�10 for time t = 3:25using data of �gure 2. Symbol x at N�10 = 0 
orresponds to 2D FEM result.resulting order of 
onvergen
e of O(N�1:40 ) � O(�x2:8) is also shown in �gure 4.The error for both orders of 
onvergen
e are depi
ted in �gure 5.Whereas the previous 
onvergen
e test re�ned only the drop surfa
e mesh whilekeeping the outer domain surfa
e mesh 
onstant, a subsequent 
onvergen
e test isnow performed in whi
h both the drop and outer domain surfa
e meshes are re�nedsimultaneously. Hen
e, the meshes in table 1 are used exa
tly. Figure 6 showsa

urate 2D FEM results and 3D FEM results for ea
h of the three mesh re�nementlevels for uniaxial extensional 
ow with Ca = 0:10 and lambda = 1:0. This 
ow issub
riti
al with the drop attaining a stable shape but is less severe than previously
onsidered in that the extent of drop deformation is less. As before, in �gure 6 line
urves represent a
tual results, whereas symbols re
e
t interpolations from 
ubi
spline �ts for time steps 
orresponding to the 2D FEM result. Extrapolations toin�nite 3D mesh re�nement are again performed assuming the error E depends onN�10 and N�1:50 with the latter dependen
e determined empiri
ally. Extrapolated3D FEM results are shown along with 2D FEM results in �gure 7, and errors atea
h 2D FEM time step for both s
alings are shown in �gure 8. The empiri
allydetermined dependen
e suggests an order of spatial 
onvergen
e of the 3D adaptiveFEM of O(�x3).The order of spatial 
onvergen
e found here and for the 
ow s
enario 
onsideredpreviously should be 
onsidered approximate estimates sin
e many aspe
ts of theadaptive method prevent a 
lear s
aling of the error. For example, use of lineartetrahedra to solve the 
uid 
ow equations with an equal-order interpolation ofall �eld variables would be expe
ted to produ
e spatial 
onvergen
e of � O(�x)with the length s
ale now being the minimum within the 3D domain. However,
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22 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYthese errors may fortuitously o�set (be of opposite sign to) those from the O(�x2)resolution of the drop surfa
e 
urvature and thereby produ
e a method with ap-parently higher order spatial 
onvergen
e. A

urate identi�
ation of the order of
onvergen
e of ea
h part of the adaptive 3D FEM and of the method as a wholewould be mu
h more involved than the analysis presented in this se
tion. It is not
lear whether the return on su
h signi�
ant e�ort would be of mu
h bene�t.5.2. Sub
riti
al 3D deformationWe next apply the 3D FEM to a fully 3-dimensional transient 
ow, drop defor-mation in start-up simple shearing. We 
hoose sub
riti
al 
ow 
onditions 
orre-sponding to experimental results obtained independently by Guido (private 
om-muni
ation), i.e. � = 1:0 and Ca = 0:38. The outer domain boundary is now
onstru
ted as a 
ubi
 box having edges of length 20R0 in all three dimensionswith the 
enter of mass of the drop lo
ated at the 
enter of the box. The drop
enter de�nes the 
oordinate origin for appli
ation of simple shear using eq. (7).This prevents translation of the drop 
enter by imposing a shear 
ow by equal andopposite translations of the upper and lower fa
es of the bounding box. Fully de-veloped shear 
ow is similarly imposed at the box fa
es 
orresponding to the inletand outlet 
ow planes. At the remaining two box sides, whi
h have normals inthe dire
tion of 
ow vorti
ity, the normal velo
ity is set to zero and a stress-free
ondition, n � T = 0, is imposed naturally along the planes. This represents aperiodi
 
ondition in the vorti
ity 
oordinate dire
tion. All spe
i�ed velo
ities areimposed as essential boundary 
onditions by dire
t modi�
ation of the dis
retizedsystem of equations. At the drop surfa
e, 
apillarity was treated using the weakform, and normal ve
tors needed to move nodes were obtained using the paraboloid�t. Domain mesh movement of was performed using the ad ho
 pro
edure basedon spines.The evolution of the dimensionless drop length in the 
ow dire
tion is shownin �gure 9 as a fun
tion of dimensionless time. The numeri
al results are seen toagree with the experimental data to within the a

ura
y of the experiment (� 10%).Additional agreement is shown in the inset whi
h depi
ts a 
ross-se
tion of the meshin the 
ow plane (having normal ve
tor parallel to 
ow vorti
ity) through the 
enterof the drop shown at steady state 
onditions. The dark 
urve de�nes the boundaryof the drop determined from the experiment. The use of adaptivity is seen in thehigher element density near the drop tips needed to resolve these regions of higher
urvature. 5.3. Drop breakupWe now test the ability of the adaptive FEM to handle a more severe 3D simu-lation of super
riti
al deformation approa
hing drop breakup in simple shear 
ow.Here, � = 1:0 and Ca = 0:44, and the same initial mesh is used as for the pre
edingsub
riti
al simple shear simulation. Capillary e�e
ts are implemented using theweak form implementation. In �gure 10 the drop surfa
e mesh is shown at varioustimes. The eÆ
ien
y of the transient simulation a�orded by adaptivity is eviden
edby fewer elements being required early in the simulation with more being addedonly as needed based on the evolving drop shape. The evolution of dimensionlessdrop length is 
ompared to 
onverged boundary integral results in �gure 12. Good
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FIG. 9. Dimensionless drop length in the 
ow dire
tion as a fun
tion of dimensionless time,
 = _
t, for simple shear with Ca = 0:38, � = 1:0 and a 
ubi
 outer boundary with fa
es 10R0from the drop 
enter. FEM simulation (solid 
urve) 
orresponds to N0 = 110 and is 
ompared toexperimental data (open symbols) with the same parameter values obtained by S. Guido (personal
ommuni
ation). Inset: 
ut through 
omputational mesh showing stationary drop 
on�gurationfrom FEM simulation and from experiment (solid 
ontour).



24 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYagreement is maintained to a drop strain, Rmax=R0, of about 2.5. Faster dropdeformation is predi
ted by the FEM beyond this point likely as a result of the�nite outer domain (lo
ated 10 initial drop radii away) and the imposition of fullydeveloped shear 
ow at the inlet and outlet domain boundaries. The boundaryintegral formulation implies an outer domain of in�nite extent.In spite of the dis
repan
y at larger drop deformation, the qualitative features ofthe approa
h to breakup are a

urately des
ribed [29, 10℄. The drop elongates androtates be
oming dumbbell in shape and 
hara
terized by two symmetri
 bulbousends separated by a ne
k. The bulbs assume a roughly stable size and shape deter-mined by the value of Ca and translate approximately parallel to the 
ow. Corre-spondingly the ne
k shrinks, and two bridges of 
uid eventually form that 
onne
tthe slender ne
k to the bulbs. The bridges are unstable and would ultimately pin
ho� in �nite time [29℄. The approa
h to pin
h-o� is evident in �gure 11 whi
h showsthe mesh 
ross-se
tion as before for the �nal time step simulated. The blow-up inthe ne
k region depi
ts the high 
on
entration of elements required to maintain aspe
i�ed resolution of 
urvature. The spatial variation in dis
retization reinfor
eshow dissimilar length s
ales are well-resolved by adaptivity and that 
omputationaleÆ
ien
y is realized by adding elements only when and where needed.5.4. Drop 
ollisionsAs a �nal demonstration of the adaptive 3D FEM, we 
onsider a two-drop systemsubje
ted to the same simple shear 
ow as in the previous two s
enarios. Here,� = 1:0, Ca = 0:33 and the initially spheri
al drops with unit radius are initiallypositioned with their 
enters of mass separated by 6:0 drop radii horizontally and1:0 drop radius verti
ally. In 
ontrast to the 
ows previously 
onsidered, the shear
ow translates the drops toward ea
h other, for
ing them to intera
t as shown in�gure 13 for an adaptive FEM simulation. The drops are prevented from tou
hing(
oales
ing) due to deformation of the surfa
es and the resulting lubri
ation for
ethat a

ompanies the squeezing 
ow developed between the drops. The nonlinearityasso
iated with surfa
e deformation leads to an irreversible intera
tion in whi
hthe �nal verti
al o�set of the drops is greater than the initial o�set, a phenomenonknown as hydrodynami
 di�usion.Figure 14 shows the relative traje
tory of the intera
ting drops as a plot ofverti
al o�set versus horizontal o�set of the 
enters of mass. Two 
urves for FEMsimulations with di�erent re�nements of the drop surfa
es (but the same re�nementof the outer box surfa
e) are shown along with a boundary integral result fromthe method of Cristini [11℄ and an extrapolation of the FEM results to in�nitere�nement as performed in se
tion 5.1. While qualitative agreement is observed,the FEM 
urves show a 
onsistent shift indi
ating less verti
al o�set. At the pointof maximum verti
al o�set, the extrapolated FEM and boundary integral resultsdi�er by � 1%. A gradual de
rease in verti
al o�set is evident from the outset ofthe FEM simulations. This verti
al migration pre
edes and is opposite in dire
tionto hydrodynami
 intera
tions of the drops. The same reasoning for the deviationof FEM results from boundary integral simulations in se
tion 5.3 applies here aswell, and we believe the present dis
repan
y to also be due to the presen
e ofthe bounding walls used in the FEM simulations. To test this, we performed a
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FIG. 10. Drop evolution and onset of breakup in shear 
ow for Ca = 0:44 and � = 1:0.Only the surfa
e triangulation is shown. Mesh resolution 
orresponds to N0 = 110. Dimensionlesstimes _
t from top to bottom are 3.6, 14.7, 25.1, 35.4, 43.8 and 48.1.
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tFIG. 12. Dimensionless drop length in the 
ow dire
tion as a fun
tion of dimensionlesstime for simple shear with Ca = 0:44 and � = 1:0. FEM with N0 = 110 (solid 
urve) is 
omparedto boundary integral results (open symbols) using the method of Cristini et al. [11℄subsequent FEM simulation using the same outer bounding box (and dis
retization)as before but with the drop radius redu
ed by a fa
tor of 10. By appropriateres
aling of the initial verti
al and horizontal o�sets and 
apillary number, this hasthe e�e
t of moving the bounding walls an order of magnitude farther away. Theinitial surfa
e of the drop was dis
retized with the same number of nodes N0 = 59as the less a

urate FEM result of �gure 14. The resulting 
urve is shown in �gure15 along with the boundary integral simulation and the previous FEM simulationwith walls 10R0 away. The FEM 
urve for outer boundaries 100R0 away showsneither the initial verti
al migration nor the 
onsistent verti
al shift on
e the 
owis dominated by the intera
tion of the drops. In fa
t, the 
urve follows the mu
hmore a

urate boundary integral result until numeri
al ina

ura
y asso
iated withunder-resolving the 
ow �eld between the drops manifests. To see this, �gure 17shows a 
ut through the 3D mesh near the drops 
orresponding to �gure 13d. Atthe smallest gap, the two drops are separated by a single layer of tetrahedra. TheFEM 
urve terminates at a point where the 3D meshing algorithm failed to 
reatea mesh.Additional insight into the performan
e of the FEM is gleaned by 
onsideringthe temporal evolution of the gap between the two drops as shown in �gure 16for the �ner resolution FEM (N0 = 162) and boundary integral results of �gure14. The semi-log plot enhan
es the behavior near the 
losest approa
h and revealsadditional 
ompression arising from the outer boundary in the FEM as alreadydis
ussed. The noise in the FEM 
urve for small gap results from dis
rete 
hanges
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e fFIG. 13. Drop shape evolution for two equal-sized drops having 
enters of mass initiallyo�set �ym0 = 0:5 verti
ally and �xm0 = 6:0 horizontally. Flow 
orresponds to simple shear withCa = 0:44 and � = 1:0. Only the surfa
e triangulation is shown. Mesh resolution for ea
h drop
orresponds to N0 = 162. Dimensionless times _
t are as follows: a) 4:92, b) 8:89, 
) 10:8, d) 11:7,e) 12:3, f) 13:4.
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FIG. 14. Verti
al o�set �ym versus horizontal o�set �xm of drop 
enters of mass for twoequal sized drops with � = 1:0 and Ca = 0:33 subje
t to simple shear. FEM 
urves 
orrespondto N0 = 59 (large dashed 
urve), N0 = 162 (small dashed 
urve) and extrapolation to N0 ! 1(+) all with outer domain boundary at 10R0. Boundary integral result from method of Cristini[11℄ with N0 = 162 is in
luded (solid 
urve) for 
omparison.
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FIG. 15. Verti
al o�set �ym versus horizontal o�set �xm of drop 
enters of mass for same
onditions as �gure 14. FEM 
urves 
orrespond to N0 = 59 and outer boundary at 10R0 (dashed
urve) and 100R0 (+). Boundary integral result from �gure 14 is also shown (solid 
urve).
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FIG. 16. Shortest distan
e between drop surfa
es lgap versus time made dimensionlessusing 
apillary time, t� = ��R0 t for same 
onditions as �gures 14 and 15. Results are for FEMwith N0 = 162 and outer boundary at 10R0 (dashed 
urve) and boundary integral result of �gure14 (solid 
urve).in the lo
ation of 
losest approa
h and is a re
e
tion of the surfa
e dis
retization.The di�eren
e between the 
urves at the 
losest approa
h is 2:8% relative to theinitial drop radius.As a �nal result 
omparing FEM and boundary integral simulations whi
h furtherdemonstrates the wall e�e
t and provides a more severe test of the FEM to resolve
ow in the gap region, �gure 19 shows FEM results for the same 
onditions as�gure 16 but with the initial verti
al o�set halved, �ym0 = 0:5. Also shown aretwo boundary integral simulation results with �ym0 = 0:50 and �ym0 � 0:42. Thelatter initial verti
al o�set was 
hosen to mat
h the minimum value en
ounteredduring the FEM simulation due to the verti
al migration indu
ed by the walls.The �gure shows that very good agreement between FEM and boundary integralsimulations is a
hieved when the verti
al o�set of the drop 
enters is the same goinginto the regime dominated by the squeezing 
ow in the gap.6. CONCLUSIONSWe have demonstrated a novel FEM utilizing an adaptive 3D remeshing 
apa-bility applied to drop deformations in fully 3D Newtonian systems. Convergen
e
hara
teristi
s and a

ura
y were addressed by quantitative 
omparison to estab-lished axisymmetri
 FEM and boundary integral numeri
al results and to indepen-dent experimental results. Agreement was good in general with dis
repan
ies being
onsistent with di�eren
es in the way outer boundaries are treated by the FEMand boundary integral method. The results of this 
hapter indi
ate this FEM to
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FIG. 17. Cross-se
tion of 
omputational mesh for the simulation of �gure 13 
orrespondingto time _
t = 6:41.
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FIG. 18. Verti
al o�set �ym versus horizontal o�set �xm of drop 
enters of mass forCa=0.33 and � = 1:0. FEM 
urve 
orrespond to N0 = 162 and outer boundary at 10R0.
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tFIG. 19. Shortest distan
e between drop surfa
es lgap versus time made dimensionless using
apillary time, t� = ��R0 t for �xm0 = 6:0 and �ym0 = 0:5. Results are for FEM with N0 = 162and outer boundary at 10R0 (solid 
urve), boundary integral result with same initial verti
al andhorizontal o�sets (dashed 
urve) and boundary integral result with same initial horizontal o�setand initial verti
al o�set equal to minimum en
ountered during FEM simulation (plus symbols).
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apable of des
ribing very large deformations su
h as would be en
ountered inrealisti
 polymer pro
essing s
enarios. Numeri
al re�nements remain whi
h wouldfurther improve the a

ura
y of the method. Among these are a more robust sur-fa
e mesh density fun
tion whi
h more aggressively re�nes the surfa
e in the gapregion for multiple drop intera
tions. This would result in more than a single layerof 3D tetrahedra being generated in this region and thereby better resolve the lo
al
ow �eld.In its present form, the FEM developed here is 
apable of simulating generalized-Newtonian 
uid behavior, wall e�e
ts and 
oupled transport phenomena involvingdi�usion alone. Extension of the method to in
lude 
onve
tive transport wouldenable 3D adaptive simulations whi
h in
lude su
h phenomena as inertia, 
uidvis
oelasti
ity, and 
onve
tion-di�usion of heat and spe
ies. Issues relevant to su
han endeavor are the subje
t of the next 
hapter.ACKNOWLEDGMENTThe authors thank Dr. Stefano Guido of the Universita' degli Studi di Napoli "Federi
o II" forproviding the experimental data reported in �gure 9.7. APPENDIX: DERIVATIONS/IMPLEMENTATIONHere we present more details for the FEM formulation of this 
hapter and itsimplementation. First, the Galerkin form of the governing equations is developed.Building on this, the pressure-stabilized Petrov-Galerkin form is then presented.7.1. Galerkin (v; p)-FEM formulationMomentum and mass 
onservation of eqs. (3) and (4) are 
ast in a variationalformulation over drop domains 
1 and outer 
uid domain 
2 as follows:Z
k w � [�r �T(v; p)℄ d
 + Z
k qr � vd
 = 0 (28)where w and q are weighting (test) fun
tions, and subs
ript k denotes the drop(k = 1) or outer 
uid (k = 2) phase domain. Integration by parts 
an be appliedto the �rst integral to obtain:Z
k rw : T(v; p)d
 � Z
k r � [w �T(v; p)℄ d
 + Z
k qr � vd
 = 0 : (29)Now the divergen
e theorm is applied to 
onvert the se
ond domain integral to a
orresponding surfa
e integral,Z
k rw : T(v; p)d
 � Z�k n � [w �T(v; p)℄ d
 + Z
k qr � vd
 = 0 (30)where n is the unit normal to the surfa
e of domain 
k dire
ted outward from thedomain. Writing an expression of the form of eq. (30) for ea
h phase and summingthem, keeping in mind n1 = �n2 at � 2 
1 \ 
2 leads to the following,Z
rw : T(v; p)d
 + Z�w � [n �T(v; p)℄� d� + Z
 qr � vd
 = 0 : (31)



36 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYHere, symmetry of the total stress tensor T has been exploited, and the resultingintegrand for the surfa
e integral 
orresponds to a jump in stress a
ross the inter-fa
e. This term allows a natural implementation of dynami
 boundary 
onditionssu
h as eq. (8).For an equal-order interpolation formulation, the same �nite-dimensional basis�i(x) is used for q and ea
h ve
tor 
omponent ofw allowing eq. (31) to be dis
retizedusing w = Xi aik�iek (32)q = Xi bi�i (33)where the sums are performed over all i nodes in the dis
reatized domain, �i is aspatially dependent basis fun
tion de�ned at node i, and aik and bi are arbitrary
onstants with k ranging from 1 to the number of spatial dimensions. Writingeq. (31) for ea
h i, 
olle
ting terms for all aik and bi and setting their 
oeÆ
ientsto zero leads to the following system of residual equations for ea
h 
omponent ofmomentum Rm and for 
ontinuity R
,Rim = Z
r�i �T(v; p) � emd
 + Z� �i [n �T(v; p)℄� � emd� = 0 (34)Ri
 = Z
 �ir � vd
 = 0 : (35)Appropriate to the Galerkin methodology, the problem degrees of freedom 
on-sisting of three 
omponents of velo
ity v and the pressure p are interpolated usingnodal values for ea
h and the same fun
tional basis used for the test fun
tions:vx(t;x) =Xj vx(t;xj) �(x;xj) (36)vy(t;x) =Xj vy(t;xj) �(x;xj) (37)vz(t;x) =Xj vz(t;xj) �(x;xj) (38)p1(t;x) =Xj p1(t;xj) �(x;xj) (39)p2(t;x) =Xj p2(t;xj) �(x;xj) (40)where the summation is over all nodes of the mesh having positions xj , and the
oeÆ
ients of the summations 
omprise the time-dependent problem degrees offreedom. The two pressure �elds p1 and p2 permit a dis
ontinuous pressure atthe drop interfa
es. A

ordingly, pressure p1 is nonzero within drop phases and atdrop boundary nodes, and p2 is nonzero within the outer 
uid phase and at dropboundary nodes. This means of allowing dis
ontinuous pressure a
ross the dropinterfa
e(s) preserves bookkeeping based on element-level 
omputations needed for
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hemati
 of standard element and asso
iated basis fun
tions for linear tetrahedra.Within the standard element, four linear basis fun
tions are de�ned as follows: �1 = 1��� �� �,�2 = �, �3 = � and �4 = �.eÆ
ient parallelization at the expense of introdu
ing unused pressure degrees offreedom. The unused pressures de
rease for problems involving greater amounts ofinterfa
ial nodes. Hen
e, this approa
h is least eÆ
ient for single drop simulationsbut qui
kly improves as the number of drops in multi-drop simulations in
reases.The basis fun
tions used both as weighting (test) fun
tions and as interpolatingfun
tions for the dependent variables 
onsist of pie
ewise linear polynomials over atetrahedron. Su
h a polynomial 
an be 
onstru
ted for ea
h node in the domain, but
omputations are greatly fa
ilitated by mapping to a standard tetrahedral elementshown in Figure 20.The integrals of eqs. (34) and (35) are performed numeri
ally on the standardelement using 4-point Gauusian quadrature approprate to linear tetrahedra [17℄ .



38 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBY7.2. Pressure-Stabilized Petrov Galerkin (v; p)-FEM formulationFor equal-order interpolation of velo
ity v and pressure p degrees of freedom,spurious pressure modes marked by node-to-node os
illations are known to o

ur[19℄. This stems from violation of the well-known LBB or `inf-sup' 
ondition andis typi
ally over
ome in one of two ways. A mixed formulation 
an be employed inwhi
h the fun
tional basis for velo
ities is of higher order than that for pressure.This was the approa
h taken in Chapters 2 and 3 of this thesis. The other popularalternative is to apply a stabilized FEM formulation. This is attra
tive for 3-dimensional problems involving 
omplex domain shapes due to the relative easeof 
onstru
ting unstru
tured tetrahedral meshes. This se
tion presents a pressure-stabilized Petrov-Galerkin (PSPG) FEM formulation whi
h has enjoyed su

ess insimilar 3D moving boundary problems involving Newtonain Stokes 
ow [15, 16℄.The PSPG FEM begins by augmenting the variational formulation of eq. (28) asfollows: Z
w � [�r �T(v; p)℄ d
 + Z
 qr � vd
+XK �PSPG Z
K [�r �T(w; q)℄ � [�r �T(v; p)℄ d
 = 0 (41)where the summation is performed over all K elements in the mesh, �PSPG is anelement-based stabilization parameter, and T(�; �) is the Newtonian Stokes operatorgiven by [30, 31℄, T(v; p) = �pI+ �i �rv +rvT � : (42)The linear tetrahedral basis used in this work leads to se
ond and higher spatialderivatives being identi
ally zero so that the following simpli�
ations apply,r �T(w; q) = rqr �T(v; p) = rpThe �rst two terms of eq. (41) are treated as in the Galerkin FEM formulation.The additional term is a 
onsistent least squares 
ontribution applied at the elementlevel. As re
ommended in [18℄ and applied in [15, 16℄, �SUPG = 0:25h2K with hKhalf the side length of an equilateral tetrahedron having the same volume as elementK. Substituting eqs. (32) and (33) into eq. (41) and applying the manipulations ofSe
tion 7.1 leads to the expressions of eqs. (10) and (11).REFERENCES1. P. L. George. Automati
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