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An adaptive mesh algorithm is presented, and applied to finite-element
simulations of drop breakup and coalescence in viscous flow. In this algo-
rithm, which has applications beyond the context, a three-dimensional mul-
tiphase domain enclosing interfaces is discretized by an unstructured mesh
of tetrahedra constructed from the interfaces and other domain boundaries.
All boundaries are discretized by triangulated surface meshes, where the
triangular elements coincide with faces of the tetrahedra.

After each time step of simulation, the boundary mesh is reconstructed
first, using an energy-minimization remeshing algorithm for triangulated
surfaces based on loral restructuring operations, such as edge swapping,
addition/subtraction of elements, and dynamical spring-like relaxation of
node positions to an equilibrium configuration. The volume mesh is then
generated from the boundary using an advancing-front/local-reconnection
technique based on a node density function and Delaunay tetrahedra.

The resulting adaptive discretization maintains resolution of local length
scales to a user-prescribed accuracy. Application of the algorithm is illus-
trated with finite-element simulations of deformable drops in Stokes flow.
Steady drop shapes, the evolution of slender fluid filaments to breakup,
and hydrodynamic interactions with boundaries and multiple drops are
accurately described.

1. INTRODUCTION

The complex evolution of 3-dimensional geometries is encountered in a wide va-
riety of physical and biological systems and is of critical importance in many in-
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dustrial problems. An important example is the morphology development of mul-
tiphase fluids in which strong flow in various geometries causes the interfaces to
deform significantly. Finite-element methods (FEM) provide a natural choice to
describe evolution of such systems using numerical simulations. They allow the
solution of problems on irregularly shaped domains and can include such complex
physical phenomena as inertia, thermal effects, species transport, surfactant effects
and non-Newtonian behavior. Boundary-element methods have also been devel-
oped, although they are limited to a more restricted class of physical systems.

Application of FEM to problems on complex domains has led to the development
of several powerful 3-dimensional mesh generation algorithms [1, 2, 3, 4]. Similar
techniques have been applied to problems involving mesh distortion [5, 6]. However,
little has been done for problems with very large interface deformations where the
problem dynamics are dominated by the shape of the interface, e.g. large defor-
mations involving capillarity. The main difficulty in performing such simulations
is in accurately resolving very dissimilar length scales within the same domain at
tolerable computational cost. Most moving boundary problems using FEM have
employed mesh tracking schemes which require the finest mesh resolution to be
maintained during the entire deformation and are therefore restricted to problems
involving modest shape changes [7, 8, 9].

This difficulty has partially been overcome by an adaptive surface remeshing
algorithm applied within the context of boundary integral simulations of multiphase
Newtonian Stokes flow [10, 11] . For this type of problem, the boundary integral
method requires only surface meshes to be discretized. Here, we combine the surface
remeshing algorithm of Cristini [11] with efficient and robust 3-dimensional meshing
provided by the commercial software package, Hypermesh, to produce an adaptive,
3-dimensional FEM. The ability of our algorithm to accurately describe significant
drop deformations is demonstrated by simulations of deformable drop systems of
Newtonian fluids in various flow scenarios. Advantage is taken of the mathematical
form of the Newtonian Stokes equations to test the accuracy of the adaptive FEM
algorithm without additional complicating effects arising from convective terms in
the governing transport equations. The additional numerical framework needed to
deal with such terms is reserved for the next chapter in which 3D drop deformations
in viscoelastic fluids is addressed.

We begin by presenting the adaptive surface and volume remeshing algorithms in
Section 2. The equations governing Newtonian drop deformations are summarized
in Section 3 followed by a section describing the finite element method (FEM) used
to approximate a solution to the governing equations. Results for which adaptive
remeshing is performed after every time step are presented in Section 5 followed by
our conclusions in the last section.

2. ADAPTIVE REMESHING ALGORITHM

Before describing the physical problem of Newtonian Stokes flow and the FEM
used to approximate a solution, the adaptive remeshing algorithm is presented.
In short, drop free surfaces are reconstructed after each time step using a mesh
of triangles which maintains a specified resolution of surface curvature. This is
accomplished using a surface remeshing algorithm developed by Cristini [11] for
use in boundary integral simulations of Newtonian drop dynamics. The discretized



drop free surfaces are passed along with a triangulated surface mesh defining the
outer domain boundaries, i.e. box, sphere, cylinder, extruder die, etc., to a com-
mercial mesh generator which constructs an unstructured mesh of linear (4-node)
tetrahedra. The triangulated drop free surfaces and outer boundary correspond to
faces of adjacent tetrahedra. A brief description of the surface and domain meshing
algorithms follows.

2.1. Surface remeshing

The algorithm used for adaptive reconstruction of triangulated drop surfaces
meshes is described in detail in [11]. We provide a brief description of the details
here.

The resolution of curvature of drop surfaces is kept uniform over the triangulated
surface by adding elements in regions of high curvature and removing elements
in lesser curved regions. A prescribed level of accuracy is maintained during a
simulation by adaptively remeshing after each time step and utilizing a node density
function

p:CO <K‘>27 (]‘)

where p is the surface node density on the drop surface(s), x is a smooth measure
of the local curvature of the surface, and Cjy is a constant that determines the res-
olution. Correspondingly, the instantaneous number of nodes, Ng, that discretizes
the drop free surface is a function of the drop shape,

Ng = Cy / <I"{,>2 ds. (2)
JS

In practice, the constant, Cy is set by specifying the number of nodes, Ny used to
discretize the initial shape (always spherical in this work) of a single drop. The
required density (1) of nodes is maintained during a simulation through a sequence
of local restructuring operations summarized next.

The surface mesh is modeled as a dynamic system of damped massless springs
connecting the nodes: each spring has a tension I — [y, where [ is the instantaneous
edge length and Iy ~ p~1/2 is the equilibrium length (to be approached iteratively).
Equilibration velocities of the nodes are determined as the resultant of local spring
tensions projected onto the surface. The system of springs has minimum-energy
equilibrium states corresponding to zero equilibration velocities of all nodes, i.e.
I =ly. An equilibrium configuration is approached iteratively to within a specified
tolerance by evolving the node positions with the equilibration velocities. Between
equilibration steps, optimal node connectivity is maintained by local reconnections
which adhere to a Delaunay criterion [12].

The triangulated surface(s) defining the outer fluid domain boundary are not
remeshed but instead maintain the same discretization throughout the entire tran-
sient simulation.

2.2. Three-dimensional mesh generation
Since 3-dimensional unstructured mesh generation is a challenge worthy of a
thesis in and of itself [5], the benefit of many man-years in this field is realized in



this work by resorting to a commercial mesh generation package, Hypermesh. A
3-dimensional mesh of unstructured tetrahedra is generated from the triangulated
surfaces of the bounding region and the drop free surfaces. Node and connectivity
information defining the surface meshes is passed to Hypermesh via an import
translator created from C libraries supplied with the licensed software distribution.
The algorithm used by Hypermesh is essentially a 3-dimensional analogue of the
2-dimensional surface meshing algorithm described in the previous subsection [13].
Nodes are initially placed in the domains (drops and outer fluid) using an advancing-
front algorithm governed by a simple functional dependence, e.g. linear, exponential
or Gaussian, to transition between surface meshes of differing resolution. New nodes
are then inserted into the domain, and new elements are created by subdividing
existing elements using the new nodes. Mesh quality is subsequently improved by
local reconnection based on combined Delaunay and min-max criteria implemented
iteratively. Node positions and element connectivities of both surface and domain
meshes are exported using an output template into a form used by the FEM solver.

Because of proprietary issues related to the commercial software, the remeshing
performed after each time step could not be done in core memory. The importing
of surface meshes and exporting of full tetrahedra meshes had to be done using
files. Nevertheless, the total time required for remeshing never exceeded more than
5% of the total computation time.

3. PROBLEM STATEMENT

The adaptive remeshing scheme defined above is applied to drop deformations
in Newtonian systems. Specifically, nonbuoyant immiscible fluid drops of volume
§7TR03 and viscosity i are considered to lie within a fluid of viscosity p. The drop
surfaces are surfactant-free, and no temperature gradients are present so that the
interfacial tension, o, is constant.

Flow conditions are assumed for which the Reynolds number based on the drop
size is low, and thus the Stokes equations describe fluid motion, i.e.

V-T=0 (3)
V-v=0 (4)

All fluid phases are assumed to obey Newton’s constitutive equation so that the
total fluid stress is,

T=-—pl+ X\ (Vv+Vv') (5)

where p is the isotropic pressure, and I is the identity tensor. The above equations
have been made dimensionless using characteristic time 75, = 7', length Ry and
stress py with 4 being the characteristic rate of straining of the imposed flow.
The coefficient ); is equal to 1.0 within the outer fluid and to the viscosity ratio
A = [i/p within the drop phases. It follows [14] that the relevant parameters for
drop deformation are the capillary number,

Ca=1,/7s, (6)

which is the ratio of capillary relaxation time 7, = puRg/o to flow time defined
above, the viscosity ratio A, and the geometric relationship of the drops to the outer



domain boundaries, i.e. geometric parameters reflecting hydrodynamic interactions
with the bounding walls. Stationary deformed drop configurations exist in the flow
below a critical O(1) capillary number [14]. Above the critical capillary number,
drops continuously elongate until breakup occurs.

The drops are subjected to flows described by

v =D x (7)

imposed at the outer boundary of the suspending fluid with D denoting the dimen-
sionless velocity gradient and x denoting position. Particular types of flows which
are relevant to previous studies of drop deformations and which are used in this
work include uniaxial extensional flow with Dy; = 1.0, Doy = D33 = —0.5 and all
other D;; = 0; and simple shear with D;» = 1.0 and all other D;; = 0.

At the drop surfaces, both dynamic and kinematic boundary conditions apply
and are given respectively as,

n-T]p —kn=0 (8)
n-(xr—v)=0 9)

where n is the unit normal vector directed outward from drop surface I', [-]r denotes
the jump of the quantity between the brackets over the interface I' in the direction
n, and xr denotes the velocity of nodes located on the drop surface(s).

Initial conditions are provided by specifying the initial drop shapes to be spherical
and discretized by Ny nodes each and the velocity fields to be zero within all fluid
domains. At time, ¢ = 0, the forcing flow of eq. (7) is imposed.

4. FINITE ELEMENT METHOD

The finite element method used in this work is derived from Zhou & Derby
[15, 16]. A detailed description of their method applied to single-phase Newtonian
particle sintering can be found in [15]. While differing by the inclusion of addi-
tional fluid phases, no assumptions of problem symmetry and the way in which
mesh displacements are treated, this work is primarily distinguished from theirs by
decoupling the solution of the equations governing fluid flow from the mesh move-
ment. This accommodates the adaptive remeshing features described in Section 2
and allows for additional numerical techniques to be discussed in detail below.

4.1. Numerical Formulation

The FEM recasts the ‘strong’ form of momentum and mass conservation given by
egs. (3) and (4), respectively, into a ‘weak’ variational form amenable to discretiza-
tion over irregular domains. In particular, a Galerkin formulation is obtained by
weighting and integrating over the problem domain the strong form of the equations
using test (weight) functions selected from a function space also used as a basis for
approximating the problem unknowns (velocity v and pressure p in this work). The
function space defines a basis for 3-dimensional linear tetrahedra [17]. Following
the derivation of Hughes [18], a pressure-stabilized form can be obtained which
allows the same basis to be used for velocities and pressure. Without resorting to
a stabilized formulation, which in essence is a consistent penalty method, a mixed



basis with velocities approximated by higher order polynomials than used to ap-
proximate the pressure would be required in order to satisfy the ‘LBB’ or ‘inf-sup’
constraint [19]. Violation of this constraint leads to an over-specified problem which
manifests spurious pressure modes (non- convergent node-to-node oscillations). The
final steps involved in recasting the governing equations include integrating the mo-
mentum equation by parts, applying the divergence theorem, and substituting into
the resulting surface integral the ‘natural’ boundary condition of eq. (8) [20, 17].
The resulting form of the recast momentum and continuity equations are given,
respectively, as follows:

Rn(x) = /Q (—pI+X (Vv+ V') Vo(x,x') dQ

+ Cat /qﬁ(x,x')nn dI' =0, (10)
Jr

R.(x) = /Q o(x,x")\V-vdQ + a; h? [Vd)()gx’) -Vp dQ; = 0. (11)

In the above equations, x' is the integration variable, v and p are fluid velocity
and pressure, ¢ is a linear tetrahedral basis function, and () represents the volume
domains. Field variables consist of three velocity components of v and a scalar pres-
sure field, p, which are discretized using the same continuous linear basis functions
¢. As an example, pressure at a given location is

p(x) = ZP(XJ‘) o(x,%;), (12)

where the summation is over all nodes of the mesh, and the basis function ¢ is linear
within the elements that share node 7, and zero elsewhere. The domain integrals in
equations (10)—(11) are evaluated over each element by Gaussian quadrature using
four Gaussian integration points. This is done at the element level by mapping ele-
ments in the domain into a standard element and employing isoparametric mapping
[17]. The latter implies that spatial positions within an element are interpolated
in the same manner as the velocity and pressure degrees of freedom. The nodal
values of v and p are the problem degrees of freedom which must be obtained at
each time step.

For the Newtonian Stokes problem of eqs. (10) (11) the discretization of field
variables using the linear tetrahedral basis leads to a system of linear residual
equations R(u) = 0 for all problem degrees of freedom u at nodes in the problem
domain. To establish the framework needed for straightforward implementation
of nonlinear physics such as shear thinning fluids or additional coupled transport
(heat and/or mass) phenomena, the equation system was treated using a non-linear
solution procedure. Newton-Raphson iterations were performed by solving at each
iteration the following linear system of equations,

J(uF)o* ! = —R(uF) (13)

where the Jacobian J = 2B and residual are evaluated using values u* of vari-

du P
(5'+

ables at the current iterate k, and updates are obtained from the solution as



ubt! = uk 4 §¥*1 The linear system of equations is also solved iteratively using a
Generalized Minimum Residual (GMRES) technique combined with diagonal pre-
conditioning [21, 22]. Specifically, a variation of “Type 3” diagonal preconditioning
described in [22] is used and involves solving the following modified linear system,

(JD”/Q) (DW&) - R. (14)

The matrix D has entries correspnding to D:i/Q = +/J;; + € with € a small parameter
taken to be 1078 in this work. This solution methodology has been used with great
success by Zhou & Derby for the nonlinear Newtonian Stokes problem involving

coupled mesh motion.

4.2. Dynamic Boundary Condition

The boundary integral accounting for capillarity in eq. (10) must be handled
carefully. The dimensionless mean surface curvature k involves second-order spatial
derivatives which are identically zero when performed on the linear basis used to
describe position, i.e. isoparametric mapping. Two ways of dealing with this issue
are proposed.

The first way of dealing with second derivatives associated with surface curvature
is to avoid them altogether by integrating the surface integral by parts [23, 24]. This
has the effect of transferring a derivative operation from position to the weighting
function and yields the following replacement,

Ca™' /ngﬁ(x,x')/fn dl' = Ca™! /r (I —nn) - V¢(x,x') dT (15)

This technique can be applied at the element level using Gaussian quadrature and
was used by Zhou & Derby in conjunction with implicit time-integration and New-
ton’s method to solve the flow equations fully coupled to mesh motion.

An alternative approach is to depart from isoparametric mappings for position.
Instead, surface features such as curvature and surface normal vector can be ob-
tained from an analytic representation of the surface in a region local to the point
of interest and used directly in the surface integral. A local representation of the
surface by a least squares fit to a paraboloid was used successfully by Zinchenko et
al. [25] in boundary integral simulations and has been adopted in this work. The
fitting procedure is node-based so that a node-based numerical evaluation of the
surface integral is preferred over the element-based Gaussian quadrature used to
evaluate the weak form of the surface integral. As described in [25]

3

/(;S(x,x')r;n dl' =~ ZniniAFi (16)
r i
i 1

Al = 5;“ (17)

where the first summation is over all nodes, i, on the drop surfaces, and the second
summation is over all drop surface elements ie having node i as a vertex. The basis
functions ¢(x,x') are unity at nodes. Because the fitting procedure is iterative
and based on neighboring nodes encompassing several triangular surface elements,



this approach would be extremely difficult, if not impossible, to implement in an
implicit time-integration scheme involving Newton-like methods. However, it can be
readily implemented in the explicit, decoupled framework of this work. In contrast
to under-predicting capillary effects using the weak form of the surface integral,
this technique is seen to over-predict capillarity as described in greater detail in the
results section.

4.3. Time Integration
The benefit of adaptivity comes at the expense of resorting to an explicit time
integration scheme in which solution of the momentum and mass balance equations
is decoupled from movement of the mesh. To develop this approach, we define a
vector y to represent degrees of freedom of both the Stokes problem as well as
displacements d of nodes in the mesh, i.e. y = [v,p, d]T. The equations of Section
4.1 can then be expressed compactly as,

My = F(y) (18)

where M is the mass matrix containing the coefficients of time derivatives, y, of
the degrees of freedom, and F consists of all terms not containing explicit time
derivatives. Noting the absence of explicit time derivatives in the Stokes equations
of egs. (10) (11), eq. (18) has the following structure:

00 0 v R,
00 0 pl_| R (19)
00 Myg| | d Fq(v)

where R,,, and R, are given by eqs. (10) and (11), respectively, and My, and Fy
are left unspecified until the next section. The decoupling of mesh movement from
solution of the field variables (v,p) which makes adaptive remeshing possible is
indicated by the partitioning in eq. (19). The decoupled problem can be rewritten

] []= o

with definitions of y; and F; inferred from eq. (19).

as

Equation 20 can be viewed as two distinct steps for the overall problem. The
first step defined by F; = 0 involves solving for Stokes flow on a fixed mesh and
is followed by the second step, Myyd = Fg,, which consists of an update of the
mesh based on the previously computed velocity. A time stepping algorithm is
only required for the second step of the overall problem.

The simplest means of stepping the solution for nodal displacements in time
would be to use the explicit Euler scheme which would take the following form:

dpsn; —d
Maq (%) =Fy(vy). (21)

However, this method is the least accurate, the most restrictive on time step size
for stability and has been found to perform poorly for this class of problems solved



using the boundary integral method [10, 11]. Several choices exist to improve
both accuracy and stability of explicit time stepping. The methods are generally
classified as multi-step, which require solutions at two or more previous time steps,
and single-step predictor-corrector methods which require information for only the
current time step interval (explicit Euler being the simplest single-step method).
Due to economy and to the success experienced in boundary integral simulations,
a second-order accurate single-step method, second-order Runge-Kutta (RK2), is
used in this work. Updates to node positions are then computed as follows:

d —-d
Mgyq <%> =F4 (Vizar), (22)

where the only difference from eq. (21) is in the velocity used to determine F.
Whereas explicit Euler uses the velocity v; at the beginning of the time step, RK2
uses a prediction for velocity v,y a;/» at the midpoint of the time step At. The
method achieves second order temporal accuracy at the expense of a two-stage
process involving a predictor for variables at At/2 followed by a corrector update
of variables to At. The complete algorithm including remeshing is summarized in
Table 1.

The time step At indicated in the algorithm is varied based on the smallest length
scale in the mesh at the current time. This implies a convective stability constraint
based solely on physics dominated by competition between viscous and capillary
forces and is in contrast to the unconditionally stable implicit time integration
scheme employed in prior drop deformation studies of Zhou & Derby. The next
section provides specific details for mesh evolution. remeshing, respectively.

4.4. Mesh evolution
For the Newtonian Stokes problem of this work, no explicit time derivatives
appear in the governing equations, cf egs. (3) and (4). Instead, all time derivatives
arise from the kinematic boundary condition of eq. (9) which serves to move nodes
on the drop surface(s) in a physically consistent manner. Accordingly, the explicit
update step for these nodes with positions xr is accomplished using,

dditr =nn - v(xr). (23)
The velocity field, v, used to move the drop surface nodes is found by solving
the reformulated (weak form) momentum and mass equations on a fixed mesh
represented by nodes at x(t) for the predictor step and x(¢+ At/2) for the corrector
step. Whereas x(t) is obtained directly from a 3D remeshing step (see Section 2.2),
values of x(¢ + At/2) not located on the drop surface must be determined by some
consistent procedure.

In implicit time integration schemes with mesh displacements coupled to solution
of the velocity and pressure fields, nodal displacements are taken care of automati-
cally [26, 27, 28, 15, 16]. However, decoupling the mesh movement via explicit time
integration places the burden of devising a consistent scheme on the modeler. A
consistent scheme is one that moves nodes not on a kinematic boundary in such a
way that element distortions are minimized, element volumes are prevented from
collapsing to zero or changing sign and distortions of the bounding outer surface



TABLE 1

Second-order Runge-Kutta time integration algorithm for Newtonian

Stokes flows

Given: Qo,
For each time step At until t > tmaz -
PREDICTOR
Find Vit = (V,p)t N
Fi(y1.,di) =0
. diyat/2
Find Qf, — Qf,+Af,/2"
My, (w) =F,(v¢)

At/2

CORRECTOR
Find y1.t4at/2 = (V,P)t+at)2 -
F, (YI,t+At/27df,+Af,/2) =0
. diy At
Find Qt — Qt+At:
d —d
Maq (%) =Fq (VH-At/Q)
Update time: t =t + At
Remesh:

old new
Q' = QO




mesh are either prevented or controlled. The latter condition is needed to allow
correct implementation of the imposed flow via eq. (7). One possibility for a consis-
tent explicit scheme is to adapt an implicit scheme such as the pseudo-solid mesh
treatment used by Zhou & Derby [15]. The primary drawback to such an approach
is the additional computational effort needed to solve the (decoupled) mesh dis-
placement equations each time the mesh is displaced (twice per time step using
RK2). We have chosen to employ a much cheaper but more ad hoc scheme based
on spines and algebraic weighting of nodal displacements.

The scheme we use in this study for single drop systems can be summarized as
follows:

e For a node not on a drop (kinematic) surface, determine whether it lies inside
or outside a drop phase.

e For nodes in the outer fluid phase:

— Find which drop surface element is intersected by the position vector con-
necting the center of the drop to the node.

— Interpolate a normal velocity on the drop surface at the point of intersection
using the three normal velocities at the triangle vertices.

— Determine a relative displacement velocity by dividing the distance from the
point of intersection to the node by the distance from the point of intersection to
the point at which the position vector intersects the outer boundary surface and
multiplying this ratio by the interpolated normal velocity at the point of intersection
on the drop surface.

e For nodes inside a drop phase:

— Find the nearest drop surface element to the node.

— Find the location within the surface element which is intersected by the
position vector connecting the center of the drop to the node.

— Interpolate a normal velocity on the drop surface at the point of intersection
using the three normal velocities at the triangle vertices.

— Determine a relative displacement velocity by dividing the distance from
the drop center to the node by the distance from the drop center to the point of
intersection and multiplying this ratio by the interpolated normal velocity at the
point of intersection on the drop surface.

Expressions in the notation of Section 4.3 are as follows:

Mgy = 1 (24)

nn-v , xX€S
Fd = 0 , X € Souter (26)
Vel , X € S: Souter

with v, the relative displacement velocity found using the interpolation scheme
just described.



For multiple drop simulations, we again take advantage of the absence of time
derivatives in the Newtonian Stokes equations and simply move all nodes with the
velocity field, thereby moving the mesh in a purely Lagrangian way, i.e. F; = v, Vx.
Resulting mesh distortions are larger than for the ad hoc scheme but are prevented
from becoming excessive by remeshing after every time step. A purely Lagrangian
movement of the mesh could also be used with single drops, but the ad hoc method
produces less element distortion and holds some potential for permitting multiple
mesh tracking steps to be taken between remeshing.

Both schemes just described provide nodal velocities. Actual displacements are
obtained by multiplying the nodal velocities by an appropriate time step. In our
implementation, a variable time step At = €lnin is used and set by requiring

AX < lmin ) (27)

where [,i, is the shortest node-to-node distance over the mesh. The requirement
is met by choosing € = 0.5Ca for Ca < O(1) and e = 0.5 for Ca > O(1).

5. RESULTS OF SIMULATIONS

Finite element simulations were performed on single CPU-nodes of an IBM-SP
at the Minnesota Supercomputer Institute. A CPU-node consists of four 222 MHz
Power3 processors sharing 4 Gb memory. The FEM was implemented in parallel
on all four processors using Open-MP. The level of mesh refinement varied during
the course of the simulation, becoming greater during later stages as maximum
curvature increased. A typical simulation required on the order of 1000 time steps
with the last steps requiring about 30 CPU minutes each to complete. Total time
required was about 48 CPU hours.

5.1. Subcritical axisymmetric deformation

In this section, we explore the converge characteristics of the adaptive FEM by
simulating single drop deformation in a start-up uniaxial extensional flow imposed
using eq. (7). This allows comparison of 3D results to highly converged 2D axisym-
metric results obtained with the method described by Hooper et al. [28]. Mesh
refinement studies are performed by combining initial surface meshes of prescribed
resolution for both the drop surface and the outer spherical domain boundary. An
example of three such combinations and the corresponding 3-dimensional tetrahe-
dral mesh corresponding to each is given in table 2. The table reports the number
of surface nodes Ny ,uter initially used to discretize the outer domain surface, the
initial surface nodes Ny 4r0p 0n the drop surface, and the coresponding total number
of nodes Ny 3p initially in the complete 3-dimensional computational domain. The
surface mesh pairs are also shown in Figure 1. The spherical outer boundary shape
with location at 10Ry conforms to that used in the 2D axisymmetric simulations.

As a first test for convergence, the outer spherical mesh of Mesh 2 is used with
four different initial drop surface discretizations comprising Ny 4,0p = 200,400, 600
and 800. Transient drop evolution is shown in figure 2 as a plot of drop length
in the direction of extension normalized by initial length 2Ry versus time made

1

dimensionless using flow time, 4~ '. Line curves are the actual simulation results,
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FIG. 1. Initial surface meshes used to construct 3-dimensional unstructured tetrahedral

meshes used in convergence tests for uniaxial extensional flows.



TABLE 2

3D meshes used to test convergence in uniaxial extensional flow

Mesh NO,outer NO,drop N0,3D

| Mesh1 | 59 | 200 | 3439 |
| Mesh 2 | 507 | 400 | 6802 |
| Mesh 3 | 2007 | 800 | 11,263 ||

and symbols are values at times corresponding to the unequally spaced time steps of
the 2D FEM result. For the 3D adaptive FEM results, values of drop length at these
times were found by first fitting each curve to a cubic spline followed by interpolation
of the spline data. These points are needed for the convergence analysis described
later. Flow conditions were chosen to be fairly severe in order to test the robustness
of the 3D adaptive method. We select A = 0.1 and Ca = 0.17 which corresponds
to a subcritical flow for which a stable drop shape is achieved. As the steady state
is approached, the viscous stress from the outer fluid must be balanced by those
inside the drop along with capillarity. With the drop being an order of magnitude
less viscous, larger drop surface curvature is required to establish this balance, and
the drop ends exhibit more pronounced curvature as a result. The inset of figure 2
shows a portion of the surface mesh for the final time step simulated using the finest
drop surface mesh having Ny grop = 800. The maximum mean surface curvature
is 3.23 and is well-resolved by the adaptive meshing algorithm which has increased
the number of surface nodes from Ny = 800 used to discretize the initially spherical
drop surface to Ng = 1231. We tested both methods of section 4.2 to account
for capillarity. The weak form implementation tended to underpredict capillary
effects as evidenced by the inability to provide a stable shape for any of the mesh
refinements in table 2. The curves in figure 2 are results obtained using the local
paraboloid fit to determine surface normal vectors and curvature used in eq. (10).
These clearly indicate an over-prediction of capillarity with less mesh resolution.
The points represented by symbols in figure 2 are now used to ascertain an
approximate order of spatial convergence for the 3D adaptive FEM. A convergence
of O(N, ') might be expected based on surface curvature being accurate to O(Az?)

since Az ~ N, ' with Az being the minimum surface triangle edge length. Using

the values in figure 2 at time ¢ = 3.25 the error defined as £ = (ﬁ) — (ﬁ

/2D 0/3D
is plotted as a function of Ngl in figure 3. An extrapolation to infinite mesh
refinement Ny — oo shows the 3D FEM prediction differs from the accurate 2D
FEM result by 0.6%. Performing the extrapolation for each 2D FEM time step,
represented by symbols in figure 2, leads to the comparison shown in figure 4.

An empirical order of converge was determined by minimizing the error E. The



FIG. 2. Drop length /2R as a function of time ¢ during evolution in uniaxial extensional
flow; Ca=0.17, A = 0.1. Converged 2D axisymmetric finite element results (solid curve); Adaptive
3D finite element results obtained using the outer domain surface mesh for Mesh 2 in Table 2 with
varying levels of drop surface mesh refinement: Ng g,,p, = 200 (medium dashed curve with x),
No,drop = 400 (dash-dotted curve with *), No gyop = 600 (small dotted curve with open squares),
No.drop = 800 (small dotted curve with filled squares). Symbols are at time steps of 2D FEM
simulation and are interpolated from cubic splines for 3D FEM simulations.
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resulting order of convergence of O(Ny ') = O(Az>#) is also shown in figure 4.
The error for both orders of convergence are depicted in figure 5.

Whereas the previous convergence test refined only the drop surface mesh while
keeping the outer domain surface mesh constant, a subsequent convergence test is
now performed in which both the drop and outer domain surface meshes are refined
simultaneously. Hence, the meshes in table 1 are used exactly. Figure 6 shows
accurate 2D FEM results and 3D FEM results for each of the three mesh refinement
levels for uniaxial extensional flow with Ca = 0.10 and lambda = 1.0. This flow is
subcritical with the drop attaining a stable shape but is less severe than previously
considered in that the extent of drop deformation is less. As before, in figure 6 line
curves represent actual results, whereas symbols reflect interpolations from cubic
spline fits for time steps corresponding to the 2D FEM result. Extrapolations to
infinite 3D mesh refinement are again performed assuming the error £ depends on
N(fl and N(fl"r’ with the latter dependence determined empirically. Extrapolated
3D FEM results are shown along with 2D FEM results in figure 7, and errors at
each 2D FEM time step for both scalings are shown in figure 8. The empirically
determined dependence suggests an order of spatial convergence of the 3D adaptive
FEM of O(Az3).

The order of spatial convergence found here and for the flow scenario considered
previously should be considered approximate estimates since many aspects of the
adaptive method prevent a clear scaling of the error. For example, use of linear
tetrahedra to solve the fluid flow equations with an equal-order interpolation of
all field variables would be expected to produce spatial convergence of ~ O(Ax)
with the length scale now being the minimum within the 3D domain. However,
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FIG. 4. Drop length [/2Rg as a function of time 4¢ during evolution in uniaxial extensional
flow; Ca=0.17, A = 0.1. Converged 2D axisymmetric finite element results (solid curve with +);
Adaptive 3D finite element results extrapolated to No — oo using F ~ N(;l scaling (medium

dashed curve with x), Adaptive 3D finite element results extrapolated to Ng — oc using E ~
N(;l'4 scaling (small dashed curve with *).
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FIG. 6. Drop length [/2Rg as a function of time 4t during evolution in uniaxial extensional
flow; Ca=0.10, A = 1.0. Converged 2D axisymmetric finite element results (solid curve with
+); Adaptive 3D finite element results obtained using the meshes in Table 2: Mesh 1 (medium
dashed curve with x), Mesh 2 (dash-dotted curve with *), Mesh 3 (medium dotted curve with
open squares). Symbols are at time steps of 2D FEM simulation and are interpolated from cubic
splines for 3D FEM simulations.
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FIG. 7. Drop length [/2Rg as a function of time 4¢ during evolution in uniaxial extensional
flow; Ca=0.10, A = 1.0. Converged 2D axisymmetric finite element results (solid curve with +);
Adaptive 3D finite element results extrapolated to No — oo using F ~ N(;l scaling (medium
dashed curve with x), Adaptive 3D finite element results extrapolated to Ng — oo using E ~
N(;l'5 scaling (small dashed curve with *).
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these errors may fortuitously offset (be of opposite sign to) those from the O(Ax?)
resolution of the drop surface curvature and thereby produce a method with ap-
parently higher order spatial convergence. Accurate identification of the order of
convergence of each part of the adaptive 3D FEM and of the method as a whole
would be much more involved than the analysis presented in this section. It is not
clear whether the return on such significant effort would be of much benefit.

5.2. Subcritical 3D deformation

We next apply the 3D FEM to a fully 3-dimensional transient flow, drop defor-
mation in start-up simple shearing. We choose subcritical flow conditions corre-
sponding to experimental results obtained independently by Guido (private com-
munication), i.e. A = 1.0 and Ca = 0.38. The outer domain boundary is now
constructed as a cubic box having edges of length 20Ry in all three dimensions
with the center of mass of the drop located at the center of the box. The drop
center defines the coordinate origin for application of simple shear using eq. (7).
This prevents translation of the drop center by imposing a shear flow by equal and
opposite translations of the upper and lower faces of the bounding box. Fully de-
veloped shear flow is similarly imposed at the box faces corresponding to the inlet
and outlet flow planes. At the remaining two box sides, which have normals in
the direction of flow vorticity, the normal velocity is set to zero and a stress-free
condition, n - T = 0, is imposed naturally along the planes. This represents a
periodic condition in the vorticity coordinate direction. All specified velocities are
imposed as essential boundary conditions by direct modification of the discretized
system of equations. At the drop surface, capillarity was treated using the weak
form, and normal vectors needed to move nodes were obtained using the paraboloid
fit. Domain mesh movement of was performed using the ad hoc procedure based
on spines.

The evolution of the dimensionless drop length in the flow direction is shown
in figure 9 as a function of dimensionless time. The numerical results are seen to
agree with the experimental data to within the accuracy of the experiment (~ 10%).
Additional agreement is shown in the inset which depicts a cross-section of the mesh
in the flow plane (having normal vector parallel to flow vorticity) through the center
of the drop shown at steady state conditions. The dark curve defines the boundary
of the drop determined from the experiment. The use of adaptivity is seen in the
higher element density near the drop tips needed to resolve these regions of higher
curvature.

5.3. Drop breakup

We now test the ability of the adaptive FEM to handle a more severe 3D simu-
lation of supercritical deformation approaching drop breakup in simple shear flow.
Here, A = 1.0 and Ca = 0.44, and the same initial mesh is used as for the preceding
subcritical simple shear simulation. Capillary effects are implemented using the
weak form implementation. In figure 10 the drop surface mesh is shown at various
times. The efficiency of the transient simulation afforded by adaptivity is evidenced
by fewer elements being required early in the simulation with more being added
only as needed based on the evolving drop shape. The evolution of dimensionless
drop length is compared to converged boundary integral results in figure 12. Good



2R

5 T T T T T T T
3 e ———— E— —
PR — TN~ T T SN
SRR TS AR NS
\. ‘1"174‘\\ WSO <y
45 NI INSETAN ]
KBNSl RS2
2 “[,// AYe N 'Sg!‘p,vﬂ
;‘»/,4‘ 3
TN\
4 | _
1
35 0 _
CNXT N
= ARSI
ST e DN WA ]
D 9 o Ve QU S B AN Z A\
ANy SUNES T S AR
2 KNP RN /|
s | 2 YN i
- AN TN
AN Ay SO\ VAN 7
2/ N2 K
S EIN I
-3 -2 -1 0 1 2 3
2+ _
15 F b
1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35
yt
FIG. 9. Dimensionless drop length in the flow direction as a function of dimensionless time,

v = 4t, for simple shear with Ca = 0.38, A = 1.0 and a cubic outer boundary with faces 10Rg
from the drop center. FEM simulation (solid curve) corresponds to Ng = 110 and is compared to
experimental data (open symbols) with the same parameter values obtained by S. Guido (personal
communication). Inset: cut through computational mesh showing stationary drop configuration
from FEM simulation and from experiment (solid contour).
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agreement is maintained to a drop strain, Ry,../Ro, of about 2.5. Faster drop
deformation is predicted by the FEM beyond this point likely as a result of the
finite outer domain (located 10 initial drop radii away) and the imposition of fully
developed shear flow at the inlet and outlet domain boundaries. The boundary
integral formulation implies an outer domain of infinite extent.

In spite of the discrepancy at larger drop deformation, the qualitative features of
the approach to breakup are accurately described [29, 10]. The drop elongates and
rotates becoming dumbbell in shape and characterized by two symmetric bulbous
ends separated by a neck. The bulbs assume a roughly stable size and shape deter-
mined by the value of C'a and translate approximately parallel to the flow. Corre-
spondingly the neck shrinks, and two bridges of fluid eventually form that connect
the slender neck to the bulbs. The bridges are unstable and would ultimately pinch
off in finite time [29]. The approach to pinch-off is evident in figure 11 which shows
the mesh cross-section as before for the final time step simulated. The blow-up in
the neck region depicts the high concentration of elements required to maintain a
specified resolution of curvature. The spatial variation in discretization reinforces
how dissimilar length scales are well-resolved by adaptivity and that computational
efficiency is realized by adding elements only when and where needed.

5.4. Drop collisions

As a final demonstration of the adaptive 3D FEM, we consider a two-drop system
subjected to the same simple shear flow as in the previous two scenarios. Here,
A = 1.0, Ca = 0.33 and the initially spherical drops with unit radius are initially
positioned with their centers of mass separated by 6.0 drop radii horizontally and
1.0 drop radius vertically. In contrast to the flows previously considered, the shear
flow translates the drops toward each other, forcing them to interact as shown in
figure 13 for an adaptive FEM simulation. The drops are prevented from touching
(coalescing) due to deformation of the surfaces and the resulting lubrication force
that accompanies the squeezing flow developed between the drops. The nonlinearity
associated with surface deformation leads to an irreversible interaction in which
the final vertical offset of the drops is greater than the initial offset, a phenomenon
known as hydrodynamic diffusion.

Figure 14 shows the relative trajectory of the interacting drops as a plot of
vertical offset versus horizontal offset of the centers of mass. Two curves for FEM
simulations with different refinements of the drop surfaces (but the same refinement
of the outer box surface) are shown along with a boundary integral result from
the method of Cristini [11] and an extrapolation of the FEM results to infinite
refinement as performed in section 5.1. While qualitative agreement is observed,
the FEM curves show a consistent shift indicating less vertical offset. At the point
of maximum vertical offset, the extrapolated FEM and boundary integral results
differ by &~ 1%. A gradual decrease in vertical offset is evident from the outset of
the FEM simulations. This vertical migration precedes and is opposite in direction
to hydrodynamic interactions of the drops. The same reasoning for the deviation
of FEM results from boundary integral simulations in section 5.3 applies here as
well, and we believe the present discrepancy to also be due to the presence of
the bounding walls used in the FEM simulations. To test this, we performed a
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FIG. 12. Dimensionless drop length in the flow direction as a function of dimensionless

time for simple shear with Ca = 0.44 and A = 1.0. FEM with Ny = 110 (solid curve) is compared
to boundary integral results (open symbols) using the method of Cristini et al. [11]

subsequent FEM simulation using the same outer bounding box (and discretization)
as before but with the drop radius reduced by a factor of 10. By appropriate
rescaling of the initial vertical and horizontal offsets and capillary number, this has
the effect of moving the bounding walls an order of magnitude farther away. The
initial surface of the drop was discretized with the same number of nodes Ny = 59
as the less accurate FEM result of figure 14. The resulting curve is shown in figure
15 along with the boundary integral simulation and the previous FEM simulation
with walls 10Ry away. The FEM curve for outer boundaries 100R, away shows
neither the initial vertical migration nor the consistent vertical shift once the flow
is dominated by the interaction of the drops. In fact, the curve follows the much
more accurate boundary integral result until numerical inaccuracy associated with
under-resolving the flow field between the drops manifests. To see this, figure 17
shows a cut through the 3D mesh near the drops corresponding to figure 13d. At
the smallest gap, the two drops are separated by a single layer of tetrahedra. The
FEM curve terminates at a point where the 3D meshing algorithm failed to create
a mesh.

Additional insight into the performance of the FEM is gleaned by considering
the temporal evolution of the gap between the two drops as shown in figure 16
for the finer resolution FEM (Ny = 162) and boundary integral results of figure
14. The semi-log plot enhances the behavior near the closest approach and reveals
additional compression arising from the outer boundary in the FEM as already
discussed. The noise in the FEM curve for small gap results from discrete changes
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FIG. 14. Vertical offset Ay,, versus horizontal offset Ax,, of drop centers of mass for two

equal sized drops with A = 1.0 and Ca = 0.33 subject to simple shear. FEM curves correspond
to Nog = 59 (large dashed curve), Ng = 162 (small dashed curve) and extrapolation to Ng — oo
(+) all with outer domain boundary at 10Ro. Boundary integral result from method of Cristini
[11] with Ng = 162 is included (solid curve) for comparison.
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FIG. 15. Vertical offset Ay, versus horizontal offset Az, of drop centers of mass for same

conditions as figure 14. FEM curves correspond to No = 59 and outer boundary at 10Rg (dashed
curve) and 100Ro (+). Boundary integral result from figure 14 is also shown (solid curve).
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FIG. 16. Shortest distance between drop surfaces lgqp versus time made dimensionless

using capillary time, t, = ﬁt for same conditions as figures 14 and 15. Results are for FEM

with Ng = 162 and outer boundary at 10Ro (dashed curve) and boundary integral result of figure
14 (solid curve).

in the location of closest approach and is a reflection of the surface discretization.
The difference between the curves at the closest approach is 2.8% relative to the
initial drop radius.

As a final result comparing FEM and boundary integral simulations which further
demonstrates the wall effect and provides a more severe test of the FEM to resolve
flow in the gap region, figure 19 shows FEM results for the same conditions as
figure 16 but with the initial vertical offset halved, Ay,,0 = 0.5. Also shown are
two boundary integral simulation results with Ay,,o = 0.50 and Ay,,,0 = 0.42. The
latter initial vertical offset was chosen to match the minimum value encountered
during the FEM simulation due to the vertical migration induced by the walls.
The figure shows that very good agreement between FEM and boundary integral
simulations is achieved when the vertical offset of the drop centers is the same going
into the regime dominated by the squeezing flow in the gap.

6. CONCLUSIONS

We have demonstrated a novel FEM utilizing an adaptive 3D remeshing capa-
bility applied to drop deformations in fully 3D Newtonian systems. Convergence
characteristics and accuracy were addressed by quantitative comparison to estab-
lished axisymmetric FEM and boundary integral numerical results and to indepen-
dent experimental results. Agreement was good in general with discrepancies being
consistent with differences in the way outer boundaries are treated by the FEM
and boundary integral method. The results of this chapter indicate this FEM to
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be capable of describing very large deformations such as would be encountered in
realistic polymer processing scenarios. Numerical refinements remain which would
further improve the accuracy of the method. Among these are a more robust sur-
face mesh density function which more aggressively refines the surface in the gap
region for multiple drop interactions. This would result in more than a single layer
of 3D tetrahedra being generated in this region and thereby better resolve the local
flow field.

In its present form, the FEM developed here is capable of simulating generalized-
Newtonian fluid behavior, wall effects and coupled transport phenomena involving
diffusion alone. Extension of the method to include convective transport would
enable 3D adaptive simulations which include such phenomena as inertia, fluid
viscoelasticity, and convection-diffusion of heat and species. Issues relevant to such
an endeavor are the subject of the next chapter.
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7. APPENDIX: DERIVATIONS/IMPLEMENTATION

Here we present more details for the FEM formulation of this chapter and its
implementation. First, the Galerkin form of the governing equations is developed.
Building on this, the pressure-stabilized Petrov-Galerkin form is then presented.

7.1. Galerkin (v, p)-FEM formulation
Momentum and mass conservation of eqs. (3) and (4) are cast in a variational
formulation over drop domains €; and outer fluid domain Q5 as follows:

w- [-V -T(v,p)] dQ+/ gV -vdQ =0 (28)

Qr Qp

where w and ¢ are weighting (test) functions, and subscript k denotes the drop
(k = 1) or outer fluid (k = 2) phase domain. Integration by parts can be applied
to the first integral to obtain:

/VW:T(V,p)dQ*/ V-[w-T(v,p)]dQ-{—/ gV -vdQ=0. (29)

Now the divergence theorm is applied to convert the second domain integral to a
corresponding surface integral,

Vw : T(v,p)dQ —/

g

n-[w-T(v,p)]dQ—l—/ gV -vdQ2 =0 (30)

Qp Qp

where n is the unit normal to the surface of domain Q; directed outward from the
domain. Writing an expression of the form of eq. (30) for each phase and summing
them, keeping in mind n; = —ny at I' € 7 N2, leads to the following,

/QVW:T(v,p)dﬂ—l—/rw-[n-T(v,p)]rdF—l—/QqV-de:0. (31)



Here, symmetry of the total stress tensor T has been exploited, and the resulting
integrand for the surface integral corresponds to a jump in stress across the inter-
face. This term allows a natural implementation of dynamic boundary conditions
such as eq. (8).

For an equal-order interpolation formulation, the same finite-dimensional basis
¢'(x) is used for g and each vector component of w allowing eq. (31) to be discretized
using

w = Zafﬁqﬁiek (32)
> b’ (33)

<
I

where the sums are performed over all i nodes in the discreatized domain, ¢’ is a
spatially dependent basis function defined at node i, and ai and b’ are arbitrary
constants with k ranging from 1 to the number of spatial dimensions. Writing
eq. (31) for each i, collecting terms for all a} and b’ and setting their coefficients
to zero leads to the following system of residual equations for each component of
momentum R, and for continuity R,

Rin = /QVd)’ -T(v,p) - €,dQ + /r @' [n-T(v,p);-endl =0 (34)

Rl = /qsiv-de:o. (35)
Q

Appropriate to the Galerkin methodology, the problem degrees of freedom con-
sisting of three components of velocity v and the pressure p are interpolated using
nodal values for each and the same functional basis used for the test functions:

v, (t,x) = va(t,xj) (%, x;) (36)
vy(t,x) = Zvy(t,xj) (%, x;) (37)

v, (t,x) = sz(t,xj) (%, x;) (38)

pi(t,x) = Zpl(t,xj-) o(x, ;) (39)
pa(t,x) = Zm(t,xj-) o(x, x;) (40)

where the summation is over all nodes of the mesh having positions x;, and the
coefficients of the summations comprise the time-dependent problem degrees of
freedom. The two pressure fields p; and ps permit a discontinuous pressure at
the drop interfaces. Accordingly, pressure p; is nonzero within drop phases and at
drop boundary nodes, and ps is nonzero within the outer fluid phase and at drop
boundary nodes. This means of allowing discontinuous pressure across the drop
interface(s) preserves bookkeeping based on element-level computations needed for



@ (0,0,1)

(0, 0, 0) (0, 1, 0)

®

O,

(1,0,0)

FIG. 20. Schematic of standard element and associated basis functions for linear tetrahedra.
Within the standard element, four linear basis functions are defined as follows: ¢! =1—n—( —¢,
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efficient parallelization at the expense of introducing unused pressure degrees of
freedom. The unused pressures decrease for problems involving greater amounts of
interfacial nodes. Hence, this approach is least efficient for single drop simulations
but quickly improves as the number of drops in multi-drop simulations increases.

The basis functions used both as weighting (test) functions and as interpolating
functions for the dependent variables consist of piecewise linear polynomials over a
tetrahedron. Such a polynomial can be constructed for each node in the domain, but
computations are greatly facilitated by mapping to a standard tetrahedral element
shown in Figure 20.

The integrals of eqs. (34) and (35) are performed numerically on the standard
element using 4-point Gauusian quadrature approprate to linear tetrahedra [17] .
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7.2. Pressure-Stabilized Petrov Galerkin (v,p)-FEM formulation

For equal-order interpolation of velocity v and pressure p degrees of freedom,
spurious pressure modes marked by node-to-node oscillations are known to occur
[19]. This stems from violation of the well-known LBB or ‘inf-sup’ condition and
is typically overcome in one of two ways. A mixed formulation can be employed in
which the functional basis for velocities is of higher order than that for pressure.
This was the approach taken in Chapters 2 and 3 of this thesis. The other popular
alternative is to apply a stabilized FEM formulation. This is attractive for 3-
dimensional problems involving complex domain shapes due to the relative ease
of constructing unstructured tetrahedral meshes. This section presents a pressure-
stabilized Petrov-Galerkin (PSPG) FEM formulation which has enjoyed success in
similar 3D moving boundary problems involving Newtonain Stokes flow [15, 16].

The PSPG FEM begins by augmenting the variational formulation of eq. (28) as
follows:

/Qw-[—V-T(v,p)]dﬂwL/QqV-de

+ ZTPSPG/ [~V -T(w,q)] - [~V -T(v,p)]dQ = 0 (41)
K Qe

where the summation is performed over all K elements in the mesh, Tpspg is an
element-based stabilization parameter, and T(-, ) is the Newtonian Stokes operator
given by [30, 31],

T(v,p) = —pI+X; (Vv +Vv') . (42)

The linear tetrahedral basis used in this work leads to second and higher spatial
derivatives being identically zero so that the following simplifications apply,

V-T(v,p) = Vp

The first two terms of eq. (41) are treated as in the Galerkin FEM formulation.
The additional term is a consistent least squares contribution applied at the element
level. As recommended in [18] and applied in [15, 16], sy pe = 0.25h% with hx
half the side length of an equilateral tetrahedron having the same volume as element
K. Substituting eqs. (32) and (33) into eq. (41) and applying the manipulations of
Section 7.1 leads to the expressions of eqs. (10) and (11).
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