
An Adaptive Tetrahedral Meshfor Multiphase Domains with Evolving InterfaesFinite-Element Simulations of Deformable DropsR. Hooper, V. Cristini1, J. Lowengrub2, C. W. Maosko and J. J. DerbyDepartment of Chemial Engineering and Materials Siene, University of Minnesota, 421Washington Avenue S.E., Minneapolis, MN 55455E-mail: hooper�s.umn.edu; ristini�ems.umn.edu; lowengrb�math.umn.edu; maosko�umn.edu; derby�umn.eduReeived 2001An adaptive mesh algorithm is presented, and applied to �nite-elementsimulations of drop breakup and oalesene in visous ow. In this algo-rithm, whih has appliations beyond the ontext, a three-dimensional mul-tiphase domain enlosing interfaes is disretized by an unstrutured meshof tetrahedra onstruted from the interfaes and other domain boundaries.All boundaries are disretized by triangulated surfae meshes, where thetriangular elements oinide with faes of the tetrahedra.After eah time step of simulation, the boundary mesh is reonstruted�rst, using an energy-minimization remeshing algorithm for triangulatedsurfaes based on loral restruturing operations, suh as edge swapping,addition/subtration of elements, and dynamial spring-like relaxation ofnode positions to an equilibrium on�guration. The volume mesh is thengenerated from the boundary using an advaning-front/loal-reonnetiontehnique based on a node density funtion and Delaunay tetrahedra.The resulting adaptive disretization maintains resolution of loal lengthsales to a user-presribed auray. Appliation of the algorithm is illus-trated with �nite-element simulations of deformable drops in Stokes ow.Steady drop shapes, the evolution of slender uid �laments to breakup,and hydrodynami interations with boundaries and multiple drops areaurately desribed. 1. INTRODUCTIONThe omplex evolution of 3-dimensional geometries is enountered in a wide va-riety of physial and biologial systems and is of ritial importane in many in-1Also at the Shool of Mathematis2Shool of Mathematis, University of Minnesota, 206 Churh Street, Minneapolis, MN 554551



2 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYdustrial problems. An important example is the morphology development of mul-tiphase uids in whih strong ow in various geometries auses the interfaes todeform signi�antly. Finite-element methods (FEM) provide a natural hoie todesribe evolution of suh systems using numerial simulations. They allow thesolution of problems on irregularly shaped domains and an inlude suh omplexphysial phenomena as inertia, thermal e�ets, speies transport, surfatant e�etsand non-Newtonian behavior. Boundary-element methods have also been devel-oped, although they are limited to a more restrited lass of physial systems.Appliation of FEM to problems on omplex domains has led to the developmentof several powerful 3-dimensional mesh generation algorithms [1, 2, 3, 4℄. Similartehniques have been applied to problems involving mesh distortion [5, 6℄. However,little has been done for problems with very large interfae deformations where theproblem dynamis are dominated by the shape of the interfae, e.g. large defor-mations involving apillarity. The main diÆulty in performing suh simulationsis in aurately resolving very dissimilar length sales within the same domain attolerable omputational ost. Most moving boundary problems using FEM haveemployed mesh traking shemes whih require the �nest mesh resolution to bemaintained during the entire deformation and are therefore restrited to problemsinvolving modest shape hanges [7, 8, 9℄.This diÆulty has partially been overome by an adaptive surfae remeshingalgorithm applied within the ontext of boundary integral simulations of multiphaseNewtonian Stokes ow [10, 11℄ . For this type of problem, the boundary integralmethod requires only surfae meshes to be disretized. Here, we ombine the surfaeremeshing algorithm of Cristini [11℄ with eÆient and robust 3-dimensional meshingprovided by the ommerial software pakage, Hypermesh, to produe an adaptive,3-dimensional FEM. The ability of our algorithm to aurately desribe signi�antdrop deformations is demonstrated by simulations of deformable drop systems ofNewtonian uids in various ow senarios. Advantage is taken of the mathematialform of the Newtonian Stokes equations to test the auray of the adaptive FEMalgorithm without additional ompliating e�ets arising from onvetive terms inthe governing transport equations. The additional numerial framework needed todeal with suh terms is reserved for the next hapter in whih 3D drop deformationsin visoelasti uids is addressed.We begin by presenting the adaptive surfae and volume remeshing algorithms inSetion 2. The equations governing Newtonian drop deformations are summarizedin Setion 3 followed by a setion desribing the �nite element method (FEM) usedto approximate a solution to the governing equations. Results for whih adaptiveremeshing is performed after every time step are presented in Setion 5 followed byour onlusions in the last setion.2. ADAPTIVE REMESHING ALGORITHMBefore desribing the physial problem of Newtonian Stokes ow and the FEMused to approximate a solution, the adaptive remeshing algorithm is presented.In short, drop free surfaes are reonstruted after eah time step using a meshof triangles whih maintains a spei�ed resolution of surfae urvature. This isaomplished using a surfae remeshing algorithm developed by Cristini [11℄ foruse in boundary integral simulations of Newtonian drop dynamis. The disretized



ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 3drop free surfaes are passed along with a triangulated surfae mesh de�ning theouter domain boundaries, i.e. box, sphere, ylinder, extruder die, et., to a om-merial mesh generator whih onstruts an unstrutured mesh of linear (4-node)tetrahedra. The triangulated drop free surfaes and outer boundary orrespond tofaes of adjaent tetrahedra. A brief desription of the surfae and domain meshingalgorithms follows. 2.1. Surfae remeshingThe algorithm used for adaptive reonstrution of triangulated drop surfaesmeshes is desribed in detail in [11℄. We provide a brief desription of the detailshere.The resolution of urvature of drop surfaes is kept uniform over the triangulatedsurfae by adding elements in regions of high urvature and removing elementsin lesser urved regions. A presribed level of auray is maintained during asimulation by adaptively remeshing after eah time step and utilizing a node densityfuntion � = C0 <�>2 ; (1)where � is the surfae node density on the drop surfae(s), � is a smooth measureof the loal urvature of the surfae, and C0 is a onstant that determines the res-olution. Correspondingly, the instantaneous number of nodes, NS , that disretizesthe drop free surfae is a funtion of the drop shape,NS = C0 ZS <�>2 dS: (2)In pratie, the onstant, C0 is set by speifying the number of nodes, N0 used todisretize the initial shape (always spherial in this work) of a single drop. Therequired density (1) of nodes is maintained during a simulation through a sequeneof loal restruturing operations summarized next.The surfae mesh is modeled as a dynami system of damped massless springsonneting the nodes: eah spring has a tension l� l0, where l is the instantaneousedge length and l0 � ��1=2 is the equilibrium length (to be approahed iteratively).Equilibration veloities of the nodes are determined as the resultant of loal springtensions projeted onto the surfae. The system of springs has minimum-energyequilibrium states orresponding to zero equilibration veloities of all nodes, i.e.l = l0. An equilibrium on�guration is approahed iteratively to within a spei�edtolerane by evolving the node positions with the equilibration veloities. Betweenequilibration steps, optimal node onnetivity is maintained by loal reonnetionswhih adhere to a Delaunay riterion [12℄.The triangulated surfae(s) de�ning the outer uid domain boundary are notremeshed but instead maintain the same disretization throughout the entire tran-sient simulation. 2.2. Three-dimensional mesh generationSine 3-dimensional unstrutured mesh generation is a hallenge worthy of athesis in and of itself [5℄, the bene�t of many man-years in this �eld is realized in



4 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYthis work by resorting to a ommerial mesh generation pakage, Hypermesh. A3-dimensional mesh of unstrutured tetrahedra is generated from the triangulatedsurfaes of the bounding region and the drop free surfaes. Node and onnetivityinformation de�ning the surfae meshes is passed to Hypermesh via an importtranslator reated from C libraries supplied with the liensed software distribution.The algorithm used by Hypermesh is essentially a 3-dimensional analogue of the2-dimensional surfae meshing algorithm desribed in the previous subsetion [13℄.Nodes are initially plaed in the domains (drops and outer uid) using an advaning-front algorithm governed by a simple funtional dependene, e.g. linear, exponentialor Gaussian, to transition between surfae meshes of di�ering resolution. New nodesare then inserted into the domain, and new elements are reated by subdividingexisting elements using the new nodes. Mesh quality is subsequently improved byloal reonnetion based on ombined Delaunay and min-max riteria implementediteratively. Node positions and element onnetivities of both surfae and domainmeshes are exported using an output template into a form used by the FEM solver.Beause of proprietary issues related to the ommerial software, the remeshingperformed after eah time step ould not be done in ore memory. The importingof surfae meshes and exporting of full tetrahedra meshes had to be done using�les. Nevertheless, the total time required for remeshing never exeeded more than5% of the total omputation time.3. PROBLEM STATEMENTThe adaptive remeshing sheme de�ned above is applied to drop deformationsin Newtonian systems. Spei�ally, nonbuoyant immisible uid drops of volume43�R03 and visosity �̂ are onsidered to lie within a uid of visosity �. The dropsurfaes are surfatant-free, and no temperature gradients are present so that theinterfaial tension, �, is onstant.Flow onditions are assumed for whih the Reynolds number based on the dropsize is low, and thus the Stokes equations desribe uid motion, i.e.r �T = 0 (3)r � v = 0 (4)All uid phases are assumed to obey Newton's onstitutive equation so that thetotal uid stress is, T = �pI+ �i �rv +rvT � (5)where p is the isotropi pressure, and I is the identity tensor. The above equationshave been made dimensionless using harateristi time � _ = _�1, length R0 andstress � _ with _ being the harateristi rate of straining of the imposed ow.The oeÆient �i is equal to 1:0 within the outer uid and to the visosity ratio� = �̂=� within the drop phases. It follows [14℄ that the relevant parameters fordrop deformation are the apillary number,Ca = ��=� _ ; (6)whih is the ratio of apillary relaxation time �� = �R0=� to ow time de�nedabove, the visosity ratio �, and the geometri relationship of the drops to the outer



ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 5domain boundaries, i.e. geometri parameters reeting hydrodynami interationswith the bounding walls. Stationary deformed drop on�gurations exist in the owbelow a ritial O(1) apillary number [14℄. Above the ritial apillary number,drops ontinuously elongate until breakup ours.The drops are subjeted to ows desribed byv1 = D � x (7)imposed at the outer boundary of the suspending uid with D denoting the dimen-sionless veloity gradient and x denoting position. Partiular types of ows whihare relevant to previous studies of drop deformations and whih are used in thiswork inlude uniaxial extensional ow with D11 = 1:0, D22 = D33 = �0:5 and allother Dij = 0; and simple shear with D12 = 1:0 and all other Dij = 0.At the drop surfaes, both dynami and kinemati boundary onditions applyand are given respetively as, [n �T℄� � �n = 0 (8)n � ( _x� � v) = 0 (9)where n is the unit normal vetor direted outward from drop surfae �, [�℄� denotesthe jump of the quantity between the brakets over the interfae � in the diretionn, and _x� denotes the veloity of nodes loated on the drop surfae(s).Initial onditions are provided by speifying the initial drop shapes to be spherialand disretized by N0 nodes eah and the veloity �elds to be zero within all uiddomains. At time, t = 0, the foring ow of eq. (7) is imposed.4. FINITE ELEMENT METHODThe �nite element method used in this work is derived from Zhou & Derby[15, 16℄. A detailed desription of their method applied to single-phase Newtonianpartile sintering an be found in [15℄. While di�ering by the inlusion of addi-tional uid phases, no assumptions of problem symmetry and the way in whihmesh displaements are treated, this work is primarily distinguished from theirs bydeoupling the solution of the equations governing uid ow from the mesh move-ment. This aommodates the adaptive remeshing features desribed in Setion 2and allows for additional numerial tehniques to be disussed in detail below.4.1. Numerial FormulationThe FEM reasts the `strong' form of momentum and mass onservation given byeqs. (3) and (4), respetively, into a `weak' variational form amenable to disretiza-tion over irregular domains. In partiular, a Galerkin formulation is obtained byweighting and integrating over the problem domain the strong form of the equationsusing test (weight) funtions seleted from a funtion spae also used as a basis forapproximating the problem unknowns (veloity v and pressure p in this work). Thefuntion spae de�nes a basis for 3-dimensional linear tetrahedra [17℄. Followingthe derivation of Hughes [18℄, a pressure-stabilized form an be obtained whihallows the same basis to be used for veloities and pressure. Without resorting toa stabilized formulation, whih in essene is a onsistent penalty method, a mixed



6 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYbasis with veloities approximated by higher order polynomials than used to ap-proximate the pressure would be required in order to satisfy the `LBB' or `inf-sup'onstraint [19℄. Violation of this onstraint leads to an over-spei�ed problem whihmanifests spurious pressure modes (non- onvergent node-to-node osillations). The�nal steps involved in reasting the governing equations inlude integrating the mo-mentum equation by parts, applying the divergene theorem, and substituting intothe resulting surfae integral the `natural' boundary ondition of eq. (8) [20, 17℄.The resulting form of the reast momentum and ontinuity equations are given,respetively, as follows:Rm(x) = Z
 ��p I+ �i �rv +rvT �� � r�(x;x0) d
+ Ca�1 Z� �(x;x0)�n d� = 0; (10)R(x) = Z
 �(x;x0)r � v d
 + �Xj h2j Zj r�(x;x0) � rp d
j = 0: (11)In the above equations, x0 is the integration variable, v and p are uid veloityand pressure, � is a linear tetrahedral basis funtion, and 
 represents the volumedomains. Field variables onsist of three veloity omponents of v and a salar pres-sure �eld, p, whih are disretized using the same ontinuous linear basis funtions�. As an example, pressure at a given loation isp(x) =Xj p(xj) �(x;xj); (12)where the summation is over all nodes of the mesh, and the basis funtion � is linearwithin the elements that share node j, and zero elsewhere. The domain integrals inequations (10){(11) are evaluated over eah element by Gaussian quadrature usingfour Gaussian integration points. This is done at the element level by mapping ele-ments in the domain into a standard element and employing isoparametri mapping[17℄. The latter implies that spatial positions within an element are interpolatedin the same manner as the veloity and pressure degrees of freedom. The nodalvalues of v and p are the problem degrees of freedom whih must be obtained ateah time step.For the Newtonian Stokes problem of eqs. (10){(11) the disretization of �eldvariables using the linear tetrahedral basis leads to a system of linear residualequations R(u) = 0 for all problem degrees of freedom u at nodes in the problemdomain. To establish the framework needed for straightforward implementationof nonlinear physis suh as shear thinning uids or additional oupled transport(heat and/or mass) phenomena, the equation system was treated using a non-linearsolution proedure. Newton-Raphson iterations were performed by solving at eahiteration the following linear system of equations,J(uk)Æk+1 = �R(uk) (13)where the Jaobian J = �R�u and residual are evaluated using values uk of vari-ables at the urrent iterate k, and updates are obtained from the solution Æk+1 as



ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 7uk+1 = uk + Æk+1. The linear system of equations is also solved iteratively using aGeneralized Minimum Residual (GMRES) tehnique ombined with diagonal pre-onditioning [21, 22℄. Spei�ally, a variation of \Type 3" diagonal preonditioningdesribed in [22℄ is used and involves solving the following modi�ed linear system,�JD�1=2��D1=2Æ� = �R : (14)The matrixD has entries orrespnding toD1=2ii = pJii + � with � a small parametertaken to be 10�6 in this work. This solution methodology has been used with greatsuess by Zhou & Derby for the nonlinear Newtonian Stokes problem involvingoupled mesh motion.4.2. Dynami Boundary ConditionThe boundary integral aounting for apillarity in eq. (10) must be handledarefully. The dimensionless mean surfae urvature � involves seond-order spatialderivatives whih are identially zero when performed on the linear basis used todesribe position, i.e. isoparametri mapping. Two ways of dealing with this issueare proposed.The �rst way of dealing with seond derivatives assoiated with surfae urvatureis to avoid them altogether by integrating the surfae integral by parts [23, 24℄. Thishas the e�et of transferring a derivative operation from position to the weightingfuntion and yields the following replaement,Ca�1 Z� �(x;x0)�n d� = Ca�1 Z� (I� nn) � r�(x;x0) d� (15)This tehnique an be applied at the element level using Gaussian quadrature andwas used by Zhou & Derby in onjuntion with impliit time-integration and New-ton's method to solve the ow equations fully oupled to mesh motion.An alternative approah is to depart from isoparametri mappings for position.Instead, surfae features suh as urvature and surfae normal vetor an be ob-tained from an analyti representation of the surfae in a region loal to the pointof interest and used diretly in the surfae integral. A loal representation of thesurfae by a least squares �t to a paraboloid was used suessfully by Zinhenko etal. [25℄ in boundary integral simulations and has been adopted in this work. The�tting proedure is node-based so that a node-based numerial evaluation of thesurfae integral is preferred over the element-based Gaussian quadrature used toevaluate the weak form of the surfae integral. As desribed in [25℄,Z� �(x;x0)�n d� � Xi �ini��i (16)��i = 13Xie �� (17)where the �rst summation is over all nodes, i, on the drop surfaes, and the seondsummation is over all drop surfae elements ie having node i as a vertex. The basisfuntions �(x;x0) are unity at nodes. Beause the �tting proedure is iterativeand based on neighboring nodes enompassing several triangular surfae elements,



8 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYthis approah would be extremely diÆult, if not impossible, to implement in animpliit time-integration sheme involving Newton-like methods. However, it an bereadily implemented in the expliit, deoupled framework of this work. In ontrastto under-prediting apillary e�ets using the weak form of the surfae integral,this tehnique is seen to over-predit apillarity as desribed in greater detail in theresults setion. 4.3. Time IntegrationThe bene�t of adaptivity omes at the expense of resorting to an expliit timeintegration sheme in whih solution of the momentum and mass balane equationsis deoupled from movement of the mesh. To develop this approah, we de�ne avetor y to represent degrees of freedom of both the Stokes problem as well asdisplaements d of nodes in the mesh, i.e. y � [v; p;d℄T . The equations of Setion4.1 an then be expressed ompatly as,M _y = F(y) (18)where M is the mass matrix ontaining the oeÆients of time derivatives, _y, ofthe degrees of freedom, and F onsists of all terms not ontaining expliit timederivatives. Noting the absene of expliit time derivatives in the Stokes equationsof eqs. (10){(11), eq. (18) has the following struture:2664 0 0 00 0 0. . . . . . . . .0 0 Mdd 37752664 _v_p_d 3775 = 2664 RmR. . . . .Fd(v) 3775 (19)where Rm and R are given by eqs. (10) and (11), respetively, and Mdd and Fdare left unspei�ed until the next setion. The deoupling of mesh movement fromsolution of the �eld variables (v; p) whih makes adaptive remeshing possible isindiated by the partitioning in eq. (19). The deoupled problem an be rewrittenas � 0Mdd � � _y1_d � = � F1Fd � (20)with de�nitions of y1 and F1 inferred from eq. (19).Equation 20 an be viewed as two distint steps for the overall problem. The�rst step de�ned by F1 = 0 involves solving for Stokes ow on a �xed mesh andis followed by the seond step, Mdd _d = Fd, whih onsists of an update of themesh based on the previously omputed veloity. A time stepping algorithm isonly required for the seond step of the overall problem.The simplest means of stepping the solution for nodal displaements in timewould be to use the expliit Euler sheme whih would take the following form:Mdd�dt+�t � dt�t � = Fd (vt) : (21)However, this method is the least aurate, the most restritive on time step sizefor stability and has been found to perform poorly for this lass of problems solved



ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 9using the boundary integral method [10, 11℄. Several hoies exist to improveboth auray and stability of expliit time stepping. The methods are generallylassi�ed as multi-step, whih require solutions at two or more previous time steps,and single-step preditor-orretor methods whih require information for only theurrent time step interval (expliit Euler being the simplest single-step method).Due to eonomy and to the suess experiened in boundary integral simulations,a seond-order aurate single-step method, seond-order Runge-Kutta (RK2), isused in this work. Updates to node positions are then omputed as follows:Mdd�dt+�t � dt�t � = Fd �vt+�t=2� ; (22)where the only di�erene from eq. (21) is in the veloity used to determine Fd.Whereas expliit Euler uses the veloity vt at the beginning of the time step, RK2uses a predition for veloity vt+�t=2 at the midpoint of the time step �t. Themethod ahieves seond order temporal auray at the expense of a two-stageproess involving a preditor for variables at �t=2 followed by a orretor updateof variables to �t. The omplete algorithm inluding remeshing is summarized inTable 1.The time step �t indiated in the algorithm is varied based on the smallest lengthsale in the mesh at the urrent time. This implies a onvetive stability onstraintbased solely on physis dominated by ompetition between visous and apillaryfores and is in ontrast to the unonditionally stable impliit time integrationsheme employed in prior drop deformation studies of Zhou & Derby. The nextsetion provides spei� details for mesh evolution. remeshing, respetively.4.4. Mesh evolutionFor the Newtonian Stokes problem of this work, no expliit time derivativesappear in the governing equations, f eqs. (3) and (4). Instead, all time derivativesarise from the kinemati boundary ondition of eq. (9) whih serves to move nodeson the drop surfae(s) in a physially onsistent manner. Aordingly, the expliitupdate step for these nodes with positions x� is aomplished using,dx�dt = nn � v(x�): (23)The veloity �eld, v, used to move the drop surfae nodes is found by solvingthe reformulated (weak form) momentum and mass equations on a �xed meshrepresented by nodes at x(t) for the preditor step and x(t+�t=2) for the orretorstep. Whereas x(t) is obtained diretly from a 3D remeshing step (see Setion 2.2),values of x(t+�t=2) not loated on the drop surfae must be determined by someonsistent proedure.In impliit time integration shemes with mesh displaements oupled to solutionof the veloity and pressure �elds, nodal displaements are taken are of automati-ally [26, 27, 28, 15, 16℄. However, deoupling the mesh movement via expliit timeintegration plaes the burden of devising a onsistent sheme on the modeler. Aonsistent sheme is one that moves nodes not on a kinemati boundary in suh away that element distortions are minimized, element volumes are prevented fromollapsing to zero or hanging sign and distortions of the bounding outer surfae



10 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBY
TABLE 1Seond-order Runge-Kutta time integration algorithm for NewtonianStokes owsGiven: 
0,For eah time step �t until t � tmax:PreditorFind y1;t = (v; p)t :F1 (y1;t;dt) = 0Find 
t dt+�t=2�! 
t+�t=2:Mdd �dt+�t=2�dt�t=2 � = Fd (vt)CorretorFind y1;t+�t=2 = (v; p)t+�t=2 :F1 �y1;t+�t=2;dt+�t=2� = 0Find 
t dt+�t�! 
t+�t:Mdd �dt+�t�dt�t � = Fd �vt+�t=2�Update time: t = t+�tRemesh: 
oldt 7! 
newt



ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 11mesh are either prevented or ontrolled. The latter ondition is needed to alloworret implementation of the imposed ow via eq. (7). One possibility for a onsis-tent expliit sheme is to adapt an impliit sheme suh as the pseudo-solid meshtreatment used by Zhou & Derby [15℄. The primary drawbak to suh an approahis the additional omputational e�ort needed to solve the (deoupled) mesh dis-plaement equations eah time the mesh is displaed (twie per time step usingRK2). We have hosen to employ a muh heaper but more ad ho sheme basedon spines and algebrai weighting of nodal displaements.The sheme we use in this study for single drop systems an be summarized asfollows:� For a node not on a drop (kinemati) surfae, determine whether it lies insideor outside a drop phase.� For nodes in the outer uid phase:{ Find whih drop surfae element is interseted by the position vetor on-neting the enter of the drop to the node.{ Interpolate a normal veloity on the drop surfae at the point of intersetionusing the three normal veloities at the triangle verties.{ Determine a relative displaement veloity by dividing the distane from thepoint of intersetion to the node by the distane from the point of intersetion tothe point at whih the position vetor intersets the outer boundary surfae andmultiplying this ratio by the interpolated normal veloity at the point of intersetionon the drop surfae.� For nodes inside a drop phase:{ Find the nearest drop surfae element to the node.{ Find the loation within the surfae element whih is interseted by theposition vetor onneting the enter of the drop to the node.{ Interpolate a normal veloity on the drop surfae at the point of intersetionusing the three normal veloities at the triangle verties.{ Determine a relative displaement veloity by dividing the distane fromthe drop enter to the node by the distane from the drop enter to the point ofintersetion and multiplying this ratio by the interpolated normal veloity at thepoint of intersetion on the drop surfae.Expressions in the notation of Setion 4.3 are as follows:Mdd = I (24)(25)Fd = 8<: nn � v ; x 2 S0 ; x 2 Soutervrel ; x 62 S; Souter (26)with vrel the relative displaement veloity found using the interpolation shemejust desribed.



12 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYFor multiple drop simulations, we again take advantage of the absene of timederivatives in the Newtonian Stokes equations and simply move all nodes with theveloity �eld, thereby moving the mesh in a purely Lagrangian way, i.e. Fd = v;8x.Resulting mesh distortions are larger than for the ad ho sheme but are preventedfrom beoming exessive by remeshing after every time step. A purely Lagrangianmovement of the mesh ould also be used with single drops, but the ad ho methodprodues less element distortion and holds some potential for permitting multiplemesh traking steps to be taken between remeshing.Both shemes just desribed provide nodal veloities. Atual displaements areobtained by multiplying the nodal veloities by an appropriate time step. In ourimplementation, a variable time step �t = �lmin is used and set by requiring�x < lmin ; (27)where lmin is the shortest node-to-node distane over the mesh. The requirementis met by hoosing � = 0:5Ca for Ca � O(1) and � = 0:5 for Ca� O(1).5. RESULTS OF SIMULATIONSFinite element simulations were performed on single CPU-nodes of an IBM-SPat the Minnesota Superomputer Institute. A CPU-node onsists of four 222 MHzPower3 proessors sharing 4 Gb memory. The FEM was implemented in parallelon all four proessors using Open-MP. The level of mesh re�nement varied duringthe ourse of the simulation, beoming greater during later stages as maximumurvature inreased. A typial simulation required on the order of 1000 time stepswith the last steps requiring about 30 CPU minutes eah to omplete. Total timerequired was about 48 CPU hours.5.1. Subritial axisymmetri deformationIn this setion, we explore the onverge harateristis of the adaptive FEM bysimulating single drop deformation in a start-up uniaxial extensional ow imposedusing eq. (7). This allows omparison of 3D results to highly onverged 2D axisym-metri results obtained with the method desribed by Hooper et al. [28℄. Meshre�nement studies are performed by ombining initial surfae meshes of presribedresolution for both the drop surfae and the outer spherial domain boundary. Anexample of three suh ombinations and the orresponding 3-dimensional tetrahe-dral mesh orresponding to eah is given in table 2. The table reports the numberof surfae nodes N0;outer initially used to disretize the outer domain surfae, theinitial surfae nodes N0;drop on the drop surfae, and the oresponding total numberof nodes N0;3D initially in the omplete 3-dimensional omputational domain. Thesurfae mesh pairs are also shown in Figure 1. The spherial outer boundary shapewith loation at 10R0 onforms to that used in the 2D axisymmetri simulations.As a �rst test for onvergene, the outer spherial mesh of Mesh 2 is used withfour di�erent initial drop surfae disretizations omprising N0;drop = 200; 400; 600and 800. Transient drop evolution is shown in �gure 2 as a plot of drop lengthin the diretion of extension normalized by initial length 2R0 versus time madedimensionless using ow time, _�1. Line urves are the atual simulation results,
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Mesh 1

Mesh 2

Mesh 3FIG. 1. Initial surfae meshes used to onstrut 3-dimensional unstrutured tetrahedralmeshes used in onvergene tests for uniaxial extensional ows.



14 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYTABLE 23D meshes used to test onvergene in uniaxial extensional owMesh N0;outer N0;drop N0;3DMesh 1 59 200 3439Mesh 2 507 400 6802Mesh 3 2007 800 11,263and symbols are values at times orresponding to the unequally spaed time steps ofthe 2D FEM result. For the 3D adaptive FEM results, values of drop length at thesetimes were found by �rst �tting eah urve to a ubi spline followed by interpolationof the spline data. These points are needed for the onvergene analysis desribedlater. Flow onditions were hosen to be fairly severe in order to test the robustnessof the 3D adaptive method. We selet � = 0:1 and Ca = 0:17 whih orrespondsto a subritial ow for whih a stable drop shape is ahieved. As the steady stateis approahed, the visous stress from the outer uid must be balaned by thoseinside the drop along with apillarity. With the drop being an order of magnitudeless visous, larger drop surfae urvature is required to establish this balane, andthe drop ends exhibit more pronouned urvature as a result. The inset of �gure 2shows a portion of the surfae mesh for the �nal time step simulated using the �nestdrop surfae mesh having N0;drop = 800. The maximum mean surfae urvatureis 3:23 and is well-resolved by the adaptive meshing algorithm whih has inreasedthe number of surfae nodes from N0 = 800 used to disretize the initially spherialdrop surfae to NS = 1231. We tested both methods of setion 4.2 to aountfor apillarity. The weak form implementation tended to underpredit apillarye�ets as evidened by the inability to provide a stable shape for any of the meshre�nements in table 2. The urves in �gure 2 are results obtained using the loalparaboloid �t to determine surfae normal vetors and urvature used in eq. (10).These learly indiate an over-predition of apillarity with less mesh resolution.The points represented by symbols in �gure 2 are now used to asertain anapproximate order of spatial onvergene for the 3D adaptive FEM. A onvergeneof O(N�10 ) might be expeted based on surfae urvature being aurate to O(�x2)sine �x � N�1o with �x being the minimum surfae triangle edge length. Usingthe values in �gure 2 at time t = 3:25 the error de�ned as E � � l2R0 �2D�� l2R0 �3Dis plotted as a funtion of N�10 in �gure 3. An extrapolation to in�nite meshre�nement N0 ! 1 shows the 3D FEM predition di�ers from the aurate 2DFEM result by 0:6%. Performing the extrapolation for eah 2D FEM time step,represented by symbols in �gure 2, leads to the omparison shown in �gure 4.An empirial order of onverge was determined by minimizing the error E. The
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FIG. 3. Error de�ned as E � � l2R0 �2D � � l2R0 �3D plotted against N�10 for time t = 3:25using data of �gure 2. Symbol x at N�10 = 0 orresponds to 2D FEM result.resulting order of onvergene of O(N�1:40 ) � O(�x2:8) is also shown in �gure 4.The error for both orders of onvergene are depited in �gure 5.Whereas the previous onvergene test re�ned only the drop surfae mesh whilekeeping the outer domain surfae mesh onstant, a subsequent onvergene test isnow performed in whih both the drop and outer domain surfae meshes are re�nedsimultaneously. Hene, the meshes in table 1 are used exatly. Figure 6 showsaurate 2D FEM results and 3D FEM results for eah of the three mesh re�nementlevels for uniaxial extensional ow with Ca = 0:10 and lambda = 1:0. This ow issubritial with the drop attaining a stable shape but is less severe than previouslyonsidered in that the extent of drop deformation is less. As before, in �gure 6 lineurves represent atual results, whereas symbols reet interpolations from ubispline �ts for time steps orresponding to the 2D FEM result. Extrapolations toin�nite 3D mesh re�nement are again performed assuming the error E depends onN�10 and N�1:50 with the latter dependene determined empirially. Extrapolated3D FEM results are shown along with 2D FEM results in �gure 7, and errors ateah 2D FEM time step for both salings are shown in �gure 8. The empiriallydetermined dependene suggests an order of spatial onvergene of the 3D adaptiveFEM of O(�x3).The order of spatial onvergene found here and for the ow senario onsideredpreviously should be onsidered approximate estimates sine many aspets of theadaptive method prevent a lear saling of the error. For example, use of lineartetrahedra to solve the uid ow equations with an equal-order interpolation ofall �eld variables would be expeted to produe spatial onvergene of � O(�x)with the length sale now being the minimum within the 3D domain. However,
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22 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYthese errors may fortuitously o�set (be of opposite sign to) those from the O(�x2)resolution of the drop surfae urvature and thereby produe a method with ap-parently higher order spatial onvergene. Aurate identi�ation of the order ofonvergene of eah part of the adaptive 3D FEM and of the method as a wholewould be muh more involved than the analysis presented in this setion. It is notlear whether the return on suh signi�ant e�ort would be of muh bene�t.5.2. Subritial 3D deformationWe next apply the 3D FEM to a fully 3-dimensional transient ow, drop defor-mation in start-up simple shearing. We hoose subritial ow onditions orre-sponding to experimental results obtained independently by Guido (private om-muniation), i.e. � = 1:0 and Ca = 0:38. The outer domain boundary is nowonstruted as a ubi box having edges of length 20R0 in all three dimensionswith the enter of mass of the drop loated at the enter of the box. The dropenter de�nes the oordinate origin for appliation of simple shear using eq. (7).This prevents translation of the drop enter by imposing a shear ow by equal andopposite translations of the upper and lower faes of the bounding box. Fully de-veloped shear ow is similarly imposed at the box faes orresponding to the inletand outlet ow planes. At the remaining two box sides, whih have normals inthe diretion of ow vortiity, the normal veloity is set to zero and a stress-freeondition, n � T = 0, is imposed naturally along the planes. This represents aperiodi ondition in the vortiity oordinate diretion. All spei�ed veloities areimposed as essential boundary onditions by diret modi�ation of the disretizedsystem of equations. At the drop surfae, apillarity was treated using the weakform, and normal vetors needed to move nodes were obtained using the paraboloid�t. Domain mesh movement of was performed using the ad ho proedure basedon spines.The evolution of the dimensionless drop length in the ow diretion is shownin �gure 9 as a funtion of dimensionless time. The numerial results are seen toagree with the experimental data to within the auray of the experiment (� 10%).Additional agreement is shown in the inset whih depits a ross-setion of the meshin the ow plane (having normal vetor parallel to ow vortiity) through the enterof the drop shown at steady state onditions. The dark urve de�nes the boundaryof the drop determined from the experiment. The use of adaptivity is seen in thehigher element density near the drop tips needed to resolve these regions of higherurvature. 5.3. Drop breakupWe now test the ability of the adaptive FEM to handle a more severe 3D simu-lation of superritial deformation approahing drop breakup in simple shear ow.Here, � = 1:0 and Ca = 0:44, and the same initial mesh is used as for the preedingsubritial simple shear simulation. Capillary e�ets are implemented using theweak form implementation. In �gure 10 the drop surfae mesh is shown at varioustimes. The eÆieny of the transient simulation a�orded by adaptivity is evidenedby fewer elements being required early in the simulation with more being addedonly as needed based on the evolving drop shape. The evolution of dimensionlessdrop length is ompared to onverged boundary integral results in �gure 12. Good
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FIG. 9. Dimensionless drop length in the ow diretion as a funtion of dimensionless time, = _t, for simple shear with Ca = 0:38, � = 1:0 and a ubi outer boundary with faes 10R0from the drop enter. FEM simulation (solid urve) orresponds to N0 = 110 and is ompared toexperimental data (open symbols) with the same parameter values obtained by S. Guido (personalommuniation). Inset: ut through omputational mesh showing stationary drop on�gurationfrom FEM simulation and from experiment (solid ontour).



24 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYagreement is maintained to a drop strain, Rmax=R0, of about 2.5. Faster dropdeformation is predited by the FEM beyond this point likely as a result of the�nite outer domain (loated 10 initial drop radii away) and the imposition of fullydeveloped shear ow at the inlet and outlet domain boundaries. The boundaryintegral formulation implies an outer domain of in�nite extent.In spite of the disrepany at larger drop deformation, the qualitative features ofthe approah to breakup are aurately desribed [29, 10℄. The drop elongates androtates beoming dumbbell in shape and haraterized by two symmetri bulbousends separated by a nek. The bulbs assume a roughly stable size and shape deter-mined by the value of Ca and translate approximately parallel to the ow. Corre-spondingly the nek shrinks, and two bridges of uid eventually form that onnetthe slender nek to the bulbs. The bridges are unstable and would ultimately pinho� in �nite time [29℄. The approah to pinh-o� is evident in �gure 11 whih showsthe mesh ross-setion as before for the �nal time step simulated. The blow-up inthe nek region depits the high onentration of elements required to maintain aspei�ed resolution of urvature. The spatial variation in disretization reinforeshow dissimilar length sales are well-resolved by adaptivity and that omputationaleÆieny is realized by adding elements only when and where needed.5.4. Drop ollisionsAs a �nal demonstration of the adaptive 3D FEM, we onsider a two-drop systemsubjeted to the same simple shear ow as in the previous two senarios. Here,� = 1:0, Ca = 0:33 and the initially spherial drops with unit radius are initiallypositioned with their enters of mass separated by 6:0 drop radii horizontally and1:0 drop radius vertially. In ontrast to the ows previously onsidered, the shearow translates the drops toward eah other, foring them to interat as shown in�gure 13 for an adaptive FEM simulation. The drops are prevented from touhing(oalesing) due to deformation of the surfaes and the resulting lubriation forethat aompanies the squeezing ow developed between the drops. The nonlinearityassoiated with surfae deformation leads to an irreversible interation in whihthe �nal vertial o�set of the drops is greater than the initial o�set, a phenomenonknown as hydrodynami di�usion.Figure 14 shows the relative trajetory of the interating drops as a plot ofvertial o�set versus horizontal o�set of the enters of mass. Two urves for FEMsimulations with di�erent re�nements of the drop surfaes (but the same re�nementof the outer box surfae) are shown along with a boundary integral result fromthe method of Cristini [11℄ and an extrapolation of the FEM results to in�nitere�nement as performed in setion 5.1. While qualitative agreement is observed,the FEM urves show a onsistent shift indiating less vertial o�set. At the pointof maximum vertial o�set, the extrapolated FEM and boundary integral resultsdi�er by � 1%. A gradual derease in vertial o�set is evident from the outset ofthe FEM simulations. This vertial migration preedes and is opposite in diretionto hydrodynami interations of the drops. The same reasoning for the deviationof FEM results from boundary integral simulations in setion 5.3 applies here aswell, and we believe the present disrepany to also be due to the presene ofthe bounding walls used in the FEM simulations. To test this, we performed a
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FIG. 10. Drop evolution and onset of breakup in shear ow for Ca = 0:44 and � = 1:0.Only the surfae triangulation is shown. Mesh resolution orresponds to N0 = 110. Dimensionlesstimes _t from top to bottom are 3.6, 14.7, 25.1, 35.4, 43.8 and 48.1.
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28 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBY

a b

 d

e fFIG. 13. Drop shape evolution for two equal-sized drops having enters of mass initiallyo�set �ym0 = 0:5 vertially and �xm0 = 6:0 horizontally. Flow orresponds to simple shear withCa = 0:44 and � = 1:0. Only the surfae triangulation is shown. Mesh resolution for eah droporresponds to N0 = 162. Dimensionless times _t are as follows: a) 4:92, b) 8:89, ) 10:8, d) 11:7,e) 12:3, f) 13:4.
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FIG. 14. Vertial o�set �ym versus horizontal o�set �xm of drop enters of mass for twoequal sized drops with � = 1:0 and Ca = 0:33 subjet to simple shear. FEM urves orrespondto N0 = 59 (large dashed urve), N0 = 162 (small dashed urve) and extrapolation to N0 ! 1(+) all with outer domain boundary at 10R0. Boundary integral result from method of Cristini[11℄ with N0 = 162 is inluded (solid urve) for omparison.
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FIG. 15. Vertial o�set �ym versus horizontal o�set �xm of drop enters of mass for sameonditions as �gure 14. FEM urves orrespond to N0 = 59 and outer boundary at 10R0 (dashedurve) and 100R0 (+). Boundary integral result from �gure 14 is also shown (solid urve).
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FIG. 16. Shortest distane between drop surfaes lgap versus time made dimensionlessusing apillary time, t� = ��R0 t for same onditions as �gures 14 and 15. Results are for FEMwith N0 = 162 and outer boundary at 10R0 (dashed urve) and boundary integral result of �gure14 (solid urve).in the loation of losest approah and is a reetion of the surfae disretization.The di�erene between the urves at the losest approah is 2:8% relative to theinitial drop radius.As a �nal result omparing FEM and boundary integral simulations whih furtherdemonstrates the wall e�et and provides a more severe test of the FEM to resolveow in the gap region, �gure 19 shows FEM results for the same onditions as�gure 16 but with the initial vertial o�set halved, �ym0 = 0:5. Also shown aretwo boundary integral simulation results with �ym0 = 0:50 and �ym0 � 0:42. Thelatter initial vertial o�set was hosen to math the minimum value enounteredduring the FEM simulation due to the vertial migration indued by the walls.The �gure shows that very good agreement between FEM and boundary integralsimulations is ahieved when the vertial o�set of the drop enters is the same goinginto the regime dominated by the squeezing ow in the gap.6. CONCLUSIONSWe have demonstrated a novel FEM utilizing an adaptive 3D remeshing apa-bility applied to drop deformations in fully 3D Newtonian systems. Convergeneharateristis and auray were addressed by quantitative omparison to estab-lished axisymmetri FEM and boundary integral numerial results and to indepen-dent experimental results. Agreement was good in general with disrepanies beingonsistent with di�erenes in the way outer boundaries are treated by the FEMand boundary integral method. The results of this hapter indiate this FEM to
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FIG. 17. Cross-setion of omputational mesh for the simulation of �gure 13 orrespondingto time _t = 6:41.
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FIG. 18. Vertial o�set �ym versus horizontal o�set �xm of drop enters of mass forCa=0.33 and � = 1:0. FEM urve orrespond to N0 = 162 and outer boundary at 10R0.
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ADAPTIVE MESH FOR DOMAINS WITH INTERFACES 35be apable of desribing very large deformations suh as would be enountered inrealisti polymer proessing senarios. Numerial re�nements remain whih wouldfurther improve the auray of the method. Among these are a more robust sur-fae mesh density funtion whih more aggressively re�nes the surfae in the gapregion for multiple drop interations. This would result in more than a single layerof 3D tetrahedra being generated in this region and thereby better resolve the loalow �eld.In its present form, the FEM developed here is apable of simulating generalized-Newtonian uid behavior, wall e�ets and oupled transport phenomena involvingdi�usion alone. Extension of the method to inlude onvetive transport wouldenable 3D adaptive simulations whih inlude suh phenomena as inertia, uidvisoelastiity, and onvetion-di�usion of heat and speies. Issues relevant to suhan endeavor are the subjet of the next hapter.ACKNOWLEDGMENTThe authors thank Dr. Stefano Guido of the Universita' degli Studi di Napoli "Federio II" forproviding the experimental data reported in �gure 9.7. APPENDIX: DERIVATIONS/IMPLEMENTATIONHere we present more details for the FEM formulation of this hapter and itsimplementation. First, the Galerkin form of the governing equations is developed.Building on this, the pressure-stabilized Petrov-Galerkin form is then presented.7.1. Galerkin (v; p)-FEM formulationMomentum and mass onservation of eqs. (3) and (4) are ast in a variationalformulation over drop domains 
1 and outer uid domain 
2 as follows:Z
k w � [�r �T(v; p)℄ d
 + Z
k qr � vd
 = 0 (28)where w and q are weighting (test) funtions, and subsript k denotes the drop(k = 1) or outer uid (k = 2) phase domain. Integration by parts an be appliedto the �rst integral to obtain:Z
k rw : T(v; p)d
 � Z
k r � [w �T(v; p)℄ d
 + Z
k qr � vd
 = 0 : (29)Now the divergene theorm is applied to onvert the seond domain integral to aorresponding surfae integral,Z
k rw : T(v; p)d
 � Z�k n � [w �T(v; p)℄ d
 + Z
k qr � vd
 = 0 (30)where n is the unit normal to the surfae of domain 
k direted outward from thedomain. Writing an expression of the form of eq. (30) for eah phase and summingthem, keeping in mind n1 = �n2 at � 2 
1 \ 
2 leads to the following,Z
rw : T(v; p)d
 + Z�w � [n �T(v; p)℄� d� + Z
 qr � vd
 = 0 : (31)



36 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBYHere, symmetry of the total stress tensor T has been exploited, and the resultingintegrand for the surfae integral orresponds to a jump in stress aross the inter-fae. This term allows a natural implementation of dynami boundary onditionssuh as eq. (8).For an equal-order interpolation formulation, the same �nite-dimensional basis�i(x) is used for q and eah vetor omponent ofw allowing eq. (31) to be disretizedusing w = Xi aik�iek (32)q = Xi bi�i (33)where the sums are performed over all i nodes in the disreatized domain, �i is aspatially dependent basis funtion de�ned at node i, and aik and bi are arbitraryonstants with k ranging from 1 to the number of spatial dimensions. Writingeq. (31) for eah i, olleting terms for all aik and bi and setting their oeÆientsto zero leads to the following system of residual equations for eah omponent ofmomentum Rm and for ontinuity R,Rim = Z
r�i �T(v; p) � emd
 + Z� �i [n �T(v; p)℄� � emd� = 0 (34)Ri = Z
 �ir � vd
 = 0 : (35)Appropriate to the Galerkin methodology, the problem degrees of freedom on-sisting of three omponents of veloity v and the pressure p are interpolated usingnodal values for eah and the same funtional basis used for the test funtions:vx(t;x) =Xj vx(t;xj) �(x;xj) (36)vy(t;x) =Xj vy(t;xj) �(x;xj) (37)vz(t;x) =Xj vz(t;xj) �(x;xj) (38)p1(t;x) =Xj p1(t;xj) �(x;xj) (39)p2(t;x) =Xj p2(t;xj) �(x;xj) (40)where the summation is over all nodes of the mesh having positions xj , and theoeÆients of the summations omprise the time-dependent problem degrees offreedom. The two pressure �elds p1 and p2 permit a disontinuous pressure atthe drop interfaes. Aordingly, pressure p1 is nonzero within drop phases and atdrop boundary nodes, and p2 is nonzero within the outer uid phase and at dropboundary nodes. This means of allowing disontinuous pressure aross the dropinterfae(s) preserves bookkeeping based on element-level omputations needed for
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38 HOOPER, CRISTINI, LOWENGRUB, MACOSKO AND DERBY7.2. Pressure-Stabilized Petrov Galerkin (v; p)-FEM formulationFor equal-order interpolation of veloity v and pressure p degrees of freedom,spurious pressure modes marked by node-to-node osillations are known to our[19℄. This stems from violation of the well-known LBB or `inf-sup' ondition andis typially overome in one of two ways. A mixed formulation an be employed inwhih the funtional basis for veloities is of higher order than that for pressure.This was the approah taken in Chapters 2 and 3 of this thesis. The other popularalternative is to apply a stabilized FEM formulation. This is attrative for 3-dimensional problems involving omplex domain shapes due to the relative easeof onstruting unstrutured tetrahedral meshes. This setion presents a pressure-stabilized Petrov-Galerkin (PSPG) FEM formulation whih has enjoyed suess insimilar 3D moving boundary problems involving Newtonain Stokes ow [15, 16℄.The PSPG FEM begins by augmenting the variational formulation of eq. (28) asfollows: Z
w � [�r �T(v; p)℄ d
 + Z
 qr � vd
+XK �PSPG Z
K [�r �T(w; q)℄ � [�r �T(v; p)℄ d
 = 0 (41)where the summation is performed over all K elements in the mesh, �PSPG is anelement-based stabilization parameter, and T(�; �) is the Newtonian Stokes operatorgiven by [30, 31℄, T(v; p) = �pI+ �i �rv +rvT � : (42)The linear tetrahedral basis used in this work leads to seond and higher spatialderivatives being identially zero so that the following simpli�ations apply,r �T(w; q) = rqr �T(v; p) = rpThe �rst two terms of eq. (41) are treated as in the Galerkin FEM formulation.The additional term is a onsistent least squares ontribution applied at the elementlevel. As reommended in [18℄ and applied in [15, 16℄, �SUPG = 0:25h2K with hKhalf the side length of an equilateral tetrahedron having the same volume as elementK. Substituting eqs. (32) and (33) into eq. (41) and applying the manipulations ofSetion 7.1 leads to the expressions of eqs. (10) and (11).REFERENCES1. P. L. George. Automati mesh generation, appliation to �nite-element methods. Wiley,Chihester, 1991.2. T. J. Baker. Developments and trends in three-dimensional mesh generation. Appl. Numer.Math., 5:275{304, 1989.3. M. S. Shephard and M. K. Georges. Automati three-dimensional mesh generation by the�nite otree tehnique. Int. J. Numer. Methods Eng., 32:709{749, 1991.4. P. L. George, F. Heht, and E. Saltel. Automati mesh generator with spei�ed boundary.Comput. Methods Appl. Meh. Eng., 92:269{288, 1991.
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