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A Deterministic Mechanism for Side-branching in Dendritic Growth

Shuwang Li1, Xiangrong Li1, John Lowengrub1,2 and Martin Glicksman3

Abstract: In this paper, we suggest a deterministic mechanism for the generation and development of side-
branches in dendritic growth. We investigated the existence of such a mechanism for Gibbs-Thomson-Herring
(GTH [1]) anisotropic capillary boundary condition recently in our previous work [2] . Here, we focus our study on
the GTH anisotropic kinetic boundary condition. We developand apply accurate boundary integral methods in 2D
and 3D, in which a time and space rescaling scheme, capable ofseparating the dynamics of growth from those of
morphology change, is implemented. Numerical results reveal that under anisotropic kinetic boundary conditions,
a non-monotone temperature distribution forms on the interface that leads to oscillations of the scaled tip velocity.
This dynamical process works like a limit cycle that generates a sequence of protuberances near the tip. These
protuberances propagate away from the tip and develop into side-branches at later times. Unlike the conventional
noise-amplification theory [3], the generation and development of side-branches is intrinsic and occurs solely under
the influence of GTH boundary condition.
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1 Introduction

Dendrites growing from the supercooled melts or supersaturated solutions are characterized by smooth, parabolic-
like tips and side-branches behind the tips. Understandingthe formation of dendritic structures has long been a
challenging research topic in materials science. Through acombination of analysis, numerics and experiments
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], it is now recognized that anisotropies in surface tension and/or in the
atomic attachment kinetics play an important role to stabilize the tip region against tip splitting. The mechanism that
determines the generation and development of side-branches, however, remains as a subject of controversy.

The conventional theory for the formation of side-branches, first proposed by Pieters and Langer [3], states that
the dendritic side-branches may be generated by selective noise amplification near the tip and the noise may come
from the thermal fluctuations in the system. Using a two dimensional boundary-layer model with kinetic crystalline
anisotropy, their numerical results and linear asymptoticanalysis suggest that a small random perturbation added
to the tip velocity can be amplified to form visible side-branches. Measurements of the dendritic growth ofNH4Br
crystals from supersaturated solution by Doughertyet.al are consistent with the noise amplification proposition in
that the observed side-branches on opposite sides of the dendrite are imperfectly correlated and there are variations
in both phase and amplitude [9]. These observations agree with the random nature of noise amplification theory
though the origin of noise in the experiment remains as an open question.

Using a geometrical model, Martin and Goldenfeld investigated the existence of a deterministic mechanism for the
formation of side-branches within the framework of an eigenmode analysis of a linear stability operator [11]. They
presented a number of possible reasons for the generation ofside-branches in dendritic growth, such as a limit
cycle behavior due to a Hopf bifurcation and a solvability-induced side-branching [11]. Their analysis emphasizes
the importance of nonlinear effects and suggests that the combination of both nonlinear dynamics and the singular

1Department of Mathematics, University of California at Irvine, Irvine CA 92697
2Department of Chemical Engineering and Material Science, University of California at Irvine, Irvine CA 92697
3Department of Material Science and Engineering,University of Florida, Galnesville, FL 32611



2 Copyright c© 2007 Tech Science Press FDMP, vol.2, no.28, pp.1-8, 2007

nature of the steady state is responsible for side-branching [11]. Experimental results by Couderet. al show that
the nonlinear effects play an important role in the generation of side-branching [12, 13]. In these experiments, a
small air bubble is placed at the tip of viscous finger in a Hele-Shaw cell. The nonlinear interaction between the
small air bubble and the finger tip gives rise to the generation of perfectly correlated side-branches on either side
of the finger. This suggests that noise effects are not important here. Similar phenomena were also observed in
liquid crystals. Borzsonyiet. al [14] demonstrated that by applying a nonlocal periodic force (e.g. an oscillatory
pressure or heating) in the vicinity of the liquid crystal dendrite tip, the resulting tip velocity becomes oscillatoryand
side-branches are regularized by these forces, i.e. the side-branches are nearly perfect-correlated, which indicates
that the noise amplification mechanism is not important hereeither. Using non-Newtonian fluids, Kondicet. al
[15, 16, 17] found that a shear-rate dependent viscosity of the driven fluid significantly influences pattern formation
in a Hele-Shaw cell. In particular, shear thinning suppresses tip-splitting and produces fingers which grow in an
oscillating manner, shedding side-branches from their tips. These results again strongly suggest that an oscillatorytip
velocity is important to the understanding of the generation and development of side-branches, which was recognized
previously in Pieters and Langer’s work [3] although with a non-deterministic origin.

The noise amplification theory certainly provides an explanation of side-branching in some systems, but the experi-
mental and theoretical results mentioned above suggest that deterministic mechanisms for side-branching need to be
further explored. The existence of such a mechanism for the Gibbs-Thomson-Herring (GTH) anisotropic capillary
boundary condition was investigated recently in our previous work [2]. In this paper, we focus our study on an
evolving crystal with the Gibbs-Thomson-Herring anisotropic kinetic boundary condition. We develop accurate 2D
and 3D boundary integral methods in which a time and space rescaling scheme is implemented in a way such that
the area/volume of the crystal keeps unchanged. By scaling out the overall growth of the evolving crystal, we are
able to track the detailed dynamics of dendrite tip due to theGTH boundary condition. Our numerical results reveal
that the interface can develop a non-monotone temperature distribution that leads to the oscillations of the scaled
tip velocity. This dynamical process works like a limit cycle and generates a sequence of protuberances near the tip
that propagate away from the tip and form side-branches at later times. Unlike the conventional noise-amplification
theory [3], the formation of side-branches is intrinsic andoccurs solely under the influence of the GTH boundary
condition, without any significant noise present.

This paper is organized as follows: in section 2, we review the governing equations; in section 3, we present the
rescaling scheme; in section 4, we discuss numerical results; and in section 5, we give conclusions.

2 Governing Equations

In this paper, we consider a solid crystal growing quasi-statically in a supercooled liquid phase. The interface
Σ separates the solid phaseΩ1 from the liquid phaseΩ2. We assume that for simplicity the surface tension
along the interface is isotropic, and the interfacial kinetic coefficient is 4-fold anisotropic, i.e.ε(n) = ε0(1−
β
(

3−4
(

n2
1 +n2

2+n2
3

))

) whereni denote the components of the normal vectorn. In 2D, this reduces toε(θ) =
(1+ µcos(4θ)), whereθ is the angle between the normal vector and a fixed axis, andµ represents the strength of
anisotropy. For simplicity, the thermal diffusivities of the two phases are assumed to be identical. The length scale
is the equivalent radius of the crystal (radius of a sphere/circle with the same volume/area) at timet = 0 and the
time scale is the characteristic surface tension relaxation time scale [19, 20, 21]. The following non-dimensional
equations govern the growth of the crystal:

∇2Ti = 0 in Ωi i=1,2, (1)

V = (∇T1−∇T2) ·n onΣ, (2)

T1 = T2 = −κ− ε(n)V onΣ, (3)

J =
1

2(N−1)π

Z

Σ
VdΣ, (4)
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whereTi is the temperature field,i = 1 for solid phase andi = 2 for liquid phase,κ is the mean curvature, andJ is
the integral far-field heat flux and specifies the time derivative of the volume/area of the solid phase andN = 2, 3 is
the spatial dimension. In this paper,J = C ·R(t)N−2 whereR is the equivalent radius at timet andC is a constant.
The interfaceΣ evolves via

n ·
dx
dt

= V onΣ, (5)

whereV is the normal velocity of the interface andn is the unit normal directed towardsΩ2.

Equation (3) is the well known anisotropic kinetic GTH boundary condition. The kinetic coefficient reflects the
underlying crystallographic orientation (4-fold cubic symmetry) and represents the finite rate of atomic attachment
from the liquid phase to the solid phase. A non-zero, anisotropic interfacial kinetic coefficient causes the interface
to deviate from its local equilibrium temperature and introduces preferred growth directions.

Since the temperature fields in both solid and liquid phases are harmonic, the temperature may be given as a single-
layer potential. This yields the second-kind Fredholm integral equations [23] forV(x) andT∞(t) where the latter is
the far-field temperature. This gives,

−κ(x)− ε(n)V =

Z

Σ
G(x−x′)V(X′)dΣ(x′)+T∞ (6)

J =
1

2(N−1)π

Z

Σ
V(x′)dΣ(x′), (7)

whereG(x) = 1
2π log|x| in 2D andG(x) = 1

4π 1/|x| in 3D are the Green’s functions.

3 Time and space rescaling scheme

In order to accurately and efficiently simulate the nonlinear dynamics of the evolving crystal, we use 2D and 3D
boundary integral methods in which a time and space rescaling is implemented. The methods are capable of separat-
ing the dynamics of growth from those of morphology change. This enables us to capture the processes underlying
side-branching. We have successfully implemented this scheme to study the long time dynamics of a growing crystal
[18, 20, 21] and viscous fingering in a Hele-Shaw cell [22]. For completeness, the method is briefly described below.
We introduce the following spatial and temporal scaling

x = R(t)x(t,α), (8)

t =
Z t

0

1
ρ(t ′)

dt′, (9)

whereR(t) = R(t(t)) andx(t,α) is the position vector of the scaled interface, andt is the new time variable andρ
defines the new time scale. The scalingR is chosen such that the volumeVol in 3D and areaA in 2D enclosed by the
scaled interface is constant in time. The scalingRcan be found by integrating the normal velocity over the interface
to get

dR(t)
dt

=
ρ(t)

R(t)N−1 ·Vol
·
2(N−1)π

N
·J(t) (10)

whereρ(t) = ρ(t(t)) and analogouslyJ(t) = J(t(t)). To achieve exponential growth ofR in the scaled frame, we

chooseρ =
R

N
volN

2(N−1)πJ
following Eq. (10).

The normal velocity in the new frame isV(t,α) =
dx(t,α)

dt
·n and satisfies

−κ
ρ
R

3 −
ε(n)

R
x ·n−G [x] =

Z

Σ
G(|x−x′|)Vds′ +

ε(n)

R
V +T∞(t), (11)
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and

0 =

Z

Σ
Vds, (12)

whereκ = Rκ and the scaling factorR is
R(t) = exp(t). (13)

Further, in Eq. (11) we have takenT∞(t) =
Alog(R)

π
+

ρ
R

2T∞(t(t)) in 2D andT∞(t) = ρT∞/R
2

in 3D, andG(x) =
R

Σ x′ ·n(x′)G(x−x′)ds′.

To evolve the interface numerically, Eqs. (11) and (12) are discretized in space and solved efficiently using GMRES
[25]. In 2D, Eqs. (11) and (12) are discretized in space usingspectrally accurate discretizations [24]. The resulting
discrete system is solved efficiently using a diagonal preconditioner in Fourier space [24, 26].

In 3D, the surface is discretized using an adaptive surface triangulated mesh [27]. The surface is then divided into
three regions[28]: (1) a singular region which contains allthe triangles with the evaluation pointx as a vertex; (2)
a quasi-singular region which is the collection of triangles whose center is a distanced from x; and (3) a nonsin-
gular region which contains all other triangles. In the non-singular region, the trapezoid rule is used to perform the
integration. In the quasi-singular region, a seven-point Gaussian quadrature is used. In the singular region, Duffy’s
transformation is used to map the triangle to a unit square which removes the 1/r singularity and a seven-point Gaus-
sian quadrature is then used. The discretized equations aresolved using GMRES with a diagonal preconditioner.
The curvature is approximated using a least-squares parabolic fit of the surface [29].

OnceV is obtained, the interface is evolved by using a second orderaccurate non-stiff updating scheme in time and
the equal arclength parameterization [24, 26] in 2D and an explicit second order Runge-Kutta method in 3D [18, 28].

4 Results

In order to isolate the effects of anisotropic kinetics on the formation of dendrite primary arms and side-branches,
the initial crystal shape was chosen to be a unit circle or sphere.

4.1 2D simulations

We consider a small anisotropy coefficient ofε(θ) = 0.16(1+0.025cos(4θ)). The crystal is grown under the driving
force of a constant far-field heat flux. Because of the symmetry of initial data, the interfacial contours of only one-
half of the interface are shown in the sequence of interface morphologies in Fig. 1 and 2. The pattern is clearly
dendritic at later times. Because the surface tension is isotropic, this pattern develops solely under the influence of
the anisotropic kinetics. Refinement studies (not shown) indicate there is no significant noise present. This is due to
the fact that our method is spectrally accurate and that the heat flux used is well below that for which noise due to
discretization and rounding errors could be significantly amplified during the computation.

The details of how a side-branch is initiated and grows can beseen in Figs. 1 and 2. In Fig. 1, the scaled tip
velocityV of the x-primary arm in the scaled frame is shown as a functionof R(t); the true tip velocityV is shown
as an inset. From Fig. 2, it is seen that during the oscillation, the local maxima inV correspond very well with the
development of non-monotonic temperature distributions near the tip and the initiation of side-branches. Notice that
these oscillations are not observable in the true tip velocity as they are concealed by the overall growth dynamics.
Thus, an accurate numerical method, capable of separating the dynamics of growth from those of shape change, is
necessary to capture this phenomena.

In Fig. 2[a]-[f], a sequence of interface morphologies and associated interface temperature distributions are shown,
corresponding to the index marked along theV curve in Fig. 1. In the absence of externally imposed noise or
disturbances, the interface develops negative curvature in synchrony with the interfacial temperature becoming non-
monotone near the tip. The observed non-monotonicity of thetemperature near the tip is periodic, which suggests
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the operation of a limit cycle, rather than selective amplification of noise, introduces the formation of dendritic side-
branching. The operation of the dendritic limit cycle involves progressive shape changes near the tip that eventually
induce a non-monotonic temperature distribution. This leads to the development of a protuberance, changes in the
sign of the interface curvature and the formation of a side-branch as seen in Fig. 2[a]-[f]. The cycle then repeats to
produce another side-branch.

The initial circular shape, Fig. 2[a], has a a monotonic temperature distribution as the tip is approached (α → 0±). In
Fig. 2[b] the circular shape becomes curved, and the interfacial temperature distribution changes correspondingly.
In Fig. 2[c], a pair of local temperature maxima develop nearα ≈ 0.1. The primary arm of the dendrite along x-axis
is about to form. In Fig. 2[d], a primary arm of the dendrite has already formed and negative curvature develops
aroundα ≈ 0.05. The temperature distribution is about to become non-monotonic. In Fig. 2[e], although it is not
apparent yet from the interface at the resolution shown, theinterface curvature develops oscillations near the local
temperature maxima (aroundα ≈ 0.05) that give rise to a small protuberance that will later grow into a side branch.
In Fig. 2[f], the small protuberance is now seen. The new local maxima in the temperature nearα0.05 are more
apparent and the temperature around the tip (fromα = 0. to α ≈±0.05 becomes monotone again. As can be inferred
from Fig. 2[g], new local maxima in the temperature occur andnew protuberances will be produced. In Fig. 2[h],
we show the small protuberance develops into a side-branch.This completes a limit cycle. This cycle is repeated
indefinitely as suggested by the overall solidification pattern.

4.2 3D simulations

In 3D, the results are qualitatively similar to those obtained in 2D when the fluxJ = CR, whereC is a constant.
In Figures 3 and 4, results are presented using an initially spherical crystal with anisotropic kinetic coefficient,
ε(n) = ε0(1−β(3−4[n2

1 +n2
2+n2

3])), ε0 = 0.1 and anisotropyβ = 0.1. In Figure 3, the scaled velocity,V , at the tip
and the unscaled (true) tip velocity,V, are also shown. As in the two dimensional case, there are oscillations ofV,
which suggest the presence of a limit cycle that gives rise tothe formation of side-branches. In Figure 4 the crystal
morphologies are shown during the evolution (the last frameshows the adaptive mesh). As in 2D, the primary arms
form followed by a succession of side-branches whose origincorresponds to the oscillations observed in the normal
velocity which arise through a non-monotonic temperature distribution near the tip (not shown).

5 Conclusion and discussion

In this paper, we investigated the existence of a deterministic mechanism for side-branching in dendritic growth
under the Gibbs-Thomson-Herring (GTH) anisotropic kinetic boundary condition. We developed accurate 2D and
3D boundary integral methods in which a time and space rescaling scheme is implemented in a way such that the
area/volume of the crystal keeps unchanged. By scaling out the overall growth of the evolving crystal, we were able
to track the detailed dynamics of dendrite tip due to the GTH boundary condition. Our numerical results revealed
that the interface can develop a non-monotone temperature distribution that leads to the oscillations of the scaled tip
velocity that apparently acts like a limit cycle and generates a sequence of protuberances near the tip that propagate
away from the tip and form side-branches at later times. The formation of side-branches is intrinsic and occurs solely
under the influence of the GTH boundary condition, without any significant noise present.

Similar phenomena were observed in our previous work [2], inwhich the competing anisotropies of the shape and
of the surface energy were investigated with regard to the development of side-branching. In [2], a careful analysis
of the Gibbs-Thomson-Herring (GTH) boundary condition shows that the combination of shape anisotropy, i.e., an
elongated shape in one spatial direction, with surface energy anisotropy can also lead to non-monotone equilibrium
temperature distributions. As in the results presented here, a sequence of non-monotonicities in temperature occurs
close to the tip, and the temperature field interacts dynamically with the evolving shape. It appears that each time
local temperature maxima occur, curvature oscillations develop slightly aft of the tip. These curvature oscillations
stimulate the formation of a pair of protuberances, which inmost cases continue to grow and form opposing, coherent
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side branches.

Though the circular shape used in this paper is not dendriticinitially, the anisotropic interfacial kinetics drives the
interface to evolve along its preferred direction and the primary arms of the dendrite forms accordingly. A detailed
analysis of the coupling between temperature distributionand interface morphologies shows that the mechanisms
for side-branching are very similar to what we observed in [2]. The pattern formation mechanism uncovered here
and [2] rely solely on the GTH boundary condition. Other interesting morphological phenomena concerning the
directional solidification of alloys, such as the cell-to-dendrite transition, and the relationship of side branch spacings
to the solidification parameters might also require re-interpretation based on the non-monotonic behavior of the GTH
boundary condition disclosed herein.

Experimental observations, such as accomplished in the IDGE, seldom reveal coherent side branching, but this fact
might simply be caused by the fact that the thermal fields during dendritic growth are never perfectly symmetrical
about the growth axis. Also, what seems especially significant about these simulations of dendritic pattern formation
is that perturbations to the crystal-melt interface, and selective amplification of noise, play no role in the process.
The GTH boundary condition itself seems to provide a deterministic boundary condition that, when combined with
sufficient shape and energy anisotropies, is fully capable of inducing a dynamic limit cycle near the tip. The origin
of dendritic side branching might be quite different from current conventional concepts.
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Figure 1 : Boundary integral simulation of the evolution of a circular interface with a kinetics anisotropy ofε(θ) =
0.16(1+0.025cos(θ)) and a constant far-field heat flux. The scaled velocity,V , at the tip and the unscaled (true) tip
velocity, V, are also shown. The evolution periodically generates side-branches when the temperature distribution
near the tip becomes non-monotonic. These are reflected in the oscillations ofV. The tip grows faster than the
surrounding interface, and subsequent negative curvatures are initiated at various locations along the interface where
the temperature periodically becomes non-monotonic, suggestive of a dynamic limit cycle.
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Figure 2 : Details of the development of side branches during evolution of the initially circular interface shown
in Fig. 1, suggestive of the operation of a limit cycle. [a] T1= 0: Starting from a circle, with a monotone-down
interface temperature as the tip,α → 0± is approached. [b] T2 = 0.27: Shape becomes non-circular anda primary
arm starts to form. [c] T3 = 0.86: maxima in the temperature develop nearα = 0.1. Dendrite tip forms. [d] T34 =
1.3: The temperature becomes non-monotone aroundα = 0.05. [e] T4 = 1.9: and [f] T45 =2.6: Negative curvatures
form ahead of the growing protuberances, and additional newtemperature maxima develops nearα = 0.05. A pair of
protuberance forms. [g] T=5.8, the protuberances develop into side-branches. The temperature near the tip becomes
monotonic.



12 Copyright c© 2007 Tech Science Press FDMP, vol.2, no.28, pp.1-8, 2007

0 5 10 15 20
0

0.05

0.1

 R

 T
ip

 v
el

o
ci

ty
 in

 s
ca

le
d

 f
ra

m
e

0 5 10 15 20
0

1

2

3

4

5

6

 R

 T
ru

e 
ti

p
 ip

 v
el

o
ci

ty
 

T1 

T2 

T3 

T4

T5 

T6

Figure 3 : Three dimensional boundary integral simulation of the evolution of a sphere interface with a far-field heat
flux increasing linearly inR(t). The anisotropic kinetic coefficient,ε(n) = ε0(1−β(3−4[n2

1 + n2
2 + n2

3])), wheren
is the outwards normal of the interface with three components n1,n2 andn3, ε0 = 0.1 and anisotropyβ = 0.1. The
scaled velocity,V , at the tip and the unscaled (true) tip velocity,V, are also shown. Similar to the two dimensional
case, there are oscillations ofV, suggest a dynamic limit cycle that gives rise to the formation of side-branches as
shown in the following sequence of morphologies.
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Figure 4 : Details of the development of side branches during evolution of a sphere interface with a far-field heat
flux increasing linearly inR(t). The number of pointsN = 362 initially andN = 29,280 at the final image shown.


