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Microfluidics
Microscopic drop formation and manipulation:

•DNA analysis, 
•Analysis of human physiological fluids
•Protein crystalization

Droplets used to improve mixing efficiency
•Coalescence,
•Inter-drop mixing

Channel geometry is used to control  
hydrodynamic forces

Tan et al, Lab Chip 2004

Muradoglu, 
Stone PF 2005



Typical flows

•Stokes/Navier-Stokes equations

•Complex geometry

•Topology changes (pinchoff/reconnection)

•Multiple fluids

•In this talk, will focus on techniques for solving such problems
on larger scales that have application to microfluidics

•Drop/Interface interactions
•Coalescence cascades in polymer blends



Drop/Interface 
Impact

Motivation and Physical Application

•Many engineering, industrial, and biomedical applications

•Fundamental study of topological changes

•Very difficult test for numerical methods (need to resolve 
near contact region accurately)

Z. Mohammed-Kassim, 

E. K. Longmire Phys Fluids, 2003



Experiments: Drop/Interface Impact and Coalescence
Z. Mohammed-Kassim, E. K. Longmire Phys Fluids, 2003

•Slow gap drainage
•Rebound of drop
•3D initiation of coalescence
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Mathematical Model
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•Highly nonlinear, non-local free boundary problem

Boussinesq
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Numerical methods for Multiphase Flows

• Boundary Integral Method: highly accurate, difficult to perform topological 
changes, limited physics

• Mesh-Free Methods such as Particle methods: Marker Point method, Molecular 
Dynamics, Dissipative Particle Dynamics 

• Diffuse Interface Methods: physically based, popular in material science

• Front Tracking Methods:: sharp interface, accurate hard to do topology changes

• Volume of Fluid Method (VOF): automatic topological changes, difficult to 
reconstruct interfaces. Conservation  of mass

• Level-set Method: automatic topological changes, easy to compute interface 
geometry, loss of mass 

Trends in Numerical Methods:

• Hybrid method: combining the advantages of existing methods, for example, 
combined LS and VOF, combined MP and VOF, etc

• Adaptive Mesh: moving mesh, locally refined mesh, etc



This structured mesh has 14400 nodes. 
Almost the same number of nodes as in 
our adaptive mesh simulation.

Difficulty in simulating drop/interface impact

•Accurate evolution on large scale

•Inaccurate in near-contact region

•Unphysical coalescence

•Expensive to resolve near-contact region 
using uniform mesh
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Uniform mesh

Adaptive Mesh Refinement



Adaptive Mesh Refinement/
Multiphase Navier-Stokes 

Equations/
Finite-element/ Level-set/

Method
Anderson, Zheng, Cristini. J. Comp. Phys. (2005)
Zheng, Lowengrub, Anderson, Cristini. J. Comp. Phys. (2005)



Adaptive mesh refinement
•Unstructured meshes (our work)

-Triangles (2-D, Axisymmetric)

-Tetrahedra (3-D)

Other approaches:

•Structured mesh refinement
(Provatas et al, Sussman et al, Ceniceros and Roma, Agresar et al.,…)

•Mesh mapping/moving meshes
(Huang et al, Ren and Wang, Hou and Ceniceros, Wilkes et al…)

(Other 2D unstructured mesh work: 
Ubbink and Issa 1999; 
Ginzberg and Wittum 2001)
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• Regard mesh edges as damped springs, 
define local equilibrium length scale 
according to relevant physical quantities 

Optimal mesh ⇔ Global minimum of E
Local operations

• Equilibration

• Node reconnection

• Node addition/subtraction

Anderson, Zheng, Cristini  J. Comp. Phys. (2005)
Cristini et al.           J. Comp. Phys. 2001
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Adaptive Mesh Refinement Contd.



• Embed axisymmetric domain(red box) in a square domain 
where the mesh is refined

• Align the mesh to the axisymmetric boundary(red lines).

Adaptive Mesh Refinement: Axisymmetric Domain

Zheng, Lowengrub, Cristini. In preparation.•Algorithm can be used for
complex boundaries



Before alignment After alignment

Alignment to axis of symmetry

1. First we select all the edges that 
intersect with the axis, and from the 
two endpoints of each such edge, we 
select the one closer to the axis to be 
the candidate to project to the axis. 
After we collect all the candidates as 
subset S1. 

2. Then we check every triangle, if all its 
vertices are in S1, then we delete its 
node farthest from the axis from S1. 
After checking all triangles, we get 
subset S2. We project all nodes in S2 
to the axis orthogonally.

3.     After step 2, some intersecting edges 
would have no endpoints projected, 
then we add the crossing points of 
such edges with the axis into the 
mesh, with two additional edges 
added.



Distribution Boussinesq Navier-
Stokes equations
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Uzawa-Projection Method For NSE
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• Uzawa Projection scheme: use iteration to improve accuracy
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• Navier-Stokes Eqns:

1. Improve accuracy for nonlinear terms;

2. Improve incompressibility of velocity, especially with singular force;

3. In adaptive mesh refinement, only need information from one earlier 
time step.

•Advantages:



Implementation of FE/LS Adaptive Method

Mixed Finite Element Uzawa-Projection method(P2/P1, MINI)

•Level set: Discontinuous Galerkin Method(TVD_RK2, P1)

• Navier-Stokes Eqns

•Reinitialization: Explicit Positive Coefficient Scheme
(Barth and Sethian, 1998)

•Adaptive mesh:
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•Surface tension term:
( )I δ∑− nnwe use capillary tensor,              

only normal is needed 
(integration by parts),                      
which is easy to compute

Zheng, Lowengrub, Anderson, Cristini, J. Comp. Phys. (2005)



Efficiency of FE/LS Adaptive Method

h = smallest mesh size, 
then d.o.f.(N)=O(1/h^(n-1)) in adaptive mesh, compared to
O(1/h^n) in uniform n-dimensional mesh.

Evolution Solver Cost (FEM is based MINI elements)

•Remeshing cost: ( 1)( )nO h− − very small compared 
to flow solver

•Example: gap 310h −∼
6,000-fold reduction in CPU time

h^(-5)h^(-3)Boundary Integral

h^(-4.5)h^(-3.5)Non-adaptive 
FEM

h^(-3.33)h^(-2.25)Adaptive FEM
3D2DMethod

5/ 4

7 / 6

/ in 2D
/ in 3D

N h
N h



Application to drop interface 
impact



Axisymmetric results 
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Experiment Simulation

•Excellent agreement
with experiment



Axisymmetric simulation

•Adaptive mesh follows interface

•Near contact regions accurately

resolved

•Drop rebound is captured



Largest mesh size 
=2, 

Smallest mesh size 
=0.002

There are total 15890 nodes in the axisymmetric domain

10 times zoom-in of each boxed region.

The adaptive mesh



Normalized location of interface and drop surface
•Solid lines are from numerical simulations
•Symbols are from experiments

Quantative comparison with experiment 



Minimum distance between 
drop and interface is 0.007, 
smallest mesh size h=0.002, 
effectively 3.6E+7 nodes in 
uniform mesh.

Comparison to non-adaptive mesh



Extensions
•Hybrid methods

Adaptive Level-Set Volume-of-Fluid (ACLSVOF)
Yang, James, Lowengrub, Zheng, Cristini JCP 2006

•Complex fluids

Viscoelastic flows-- Pillapakkam and Singh, JCP 2001

Surfactants– Xu, Li, Lowengrub, Zhao JCP 2006



Multi-drop simulation with surfactant

Ca=0.7, Pe=10, E=0.2, x=0.3, 8/ ,01.0 ],5,5[]9,9[ hth =∆=−×−=Ω

Complex drop morphologies and surfactant distributions.
f(.,0)=1.

Xu, Li, Lowengrub, Zhao JCP 2006



Numerical simulation of 
cocontinuous polymer blends



Cocontinuous Polymer Blends

Droplet / Matrix morphology                         Cocontinuous morphology

Intense 
mixing

Immiscible 
polymer 
blends

3D sponge-like microstructure
Interpenetrating

self-supporting phases

Important route to new materials
(solid materials, tissue scaffolds)



• Improved processibility, Static charge control (RTP, B.F. Goodrich) , 

Packaging for moisture sensitive products (Capitol Specialty Plastics, U.S. 
Patent 5,911,937), Permeability applications, Tissue scaffolds, 
Mechanical property improvement
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Drops Continuous phases

NSF funded collaboration.



Features of cocontinuous flows

Continuum interface methods

Experiments:

•Fully 3D structures
•Detection difficult
•Optimized control parameters for formation
•Stability of microstructures (non-equilibrium)

Theory/numerics:
•Many topology transitions
•Large number of interfaces (complex microstructures)

•Macroscopic properties depend on microstructure



Governing equations for single fluid flow

u = cos2(t)

u = -sin2(t)

fixed wall

Navier-Stokes equations



Governing equations for multi-fluid flow

Navier-Stokes equations

Laplace - Young equation



Phase-field model

• Multi component, 
multi phase fluid flows 
with deformable interfaces

• Topological changes
(merging, pinch-off)

• Increasingly popular method
Anderson, McFadden, Wheeler, Shen, Liu, Feng, Glasner, Bertozzi,…



Navier-Stokes-Cahn-Hilliard system

Converges to sharp interface as approaches zero: 
(Liu & Shen;  J. Lowengrub and L. Truskinovsky)

Phase-field modeling of multicomponent flows

ε



New improvement for phase-field models

Accurate surface tension force formulation ((Continuum Surface Force)

J.S. Kim JCP 2005.



Numerical methods

1. Projection method for the Navier-Stokes equation

2. Crank-Nicholson for the Cahn-Hilliard equation, nonlinear multigrid method

Conservative multigrid method for Cahn-Hilliard fluid,  J. Comp. Phys.  Kim, 
Kang, and Lowengrub (2004).



Convergence to sharp interface 
limit

Long time evolution

The growth rate is given by linear stability analysis 



Convergence to sharp interface 
limit



Simulation of cocontinuous morphology

Numerical mixing

Ref. J.M. Ottino, The kinematic of mixing: stretching, chaos and transport, 
Cambridge University Press, 1989.

500 massless particles



Interface length / Area

apply shear flow

Initial morphology by 
spinodal decomposition
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Interface length / Area
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numerical result on 512x512 mesh



Annealing

30%                    50%                     70%50/50 PEO/PS blend morphology 
changes dramatically after annealing
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Scanning electron microscopy



3-D simulation
Random shear boundary conditions on top and bottom plates

Periodic boundary conditions on side walls
Randomly distributed ellipsoids.
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Future directions

•Adaptive mesh refinement

Kim, Wise, Lowengrub (in preparation)

•Multicomponent (>2) Fluids
Kim, Lowengrub IFB 2005

•Viscoelastic flow

•Complex domains


